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• Computational modelling plays a key 
role in many scientific fields. 

• The increasing power of computing 
hardware means: 
➡ more detailed simulations, finer 

resolution of physics; 
➡ look at wider ranges of parameters. 

• Today I'll talk about two fairly 
disconnected fields: fluid dynamics & 
cardiac electrophysiology. 

• How do we design software that's 
flexible enough to tackle multiple 
areas & can exploit power on offer?

Overview
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Figure 7: Solitary wave impinging a cylinder. (a) t = 4.5 s; (b) t = 5.5 s; (c)
t = 8.5 s; (d) t = 12.5 s;

substrate modification to restore normal rhythm is often partic-
ularly challenging and may benefit from insight derived from
computer modelling.

The CardiacEPSolver models the conduction process us-
ing the monodomain equations

�

 
Cm
@u
@t
+ Iion

!
= r · �ru,

where the Iion term captures the complex movement of ions
in and out of cells and is itself modelled as a set of ordinary
di↵erential equations. Additionally, � captures the potentially
heterogeneous and anisotropic nature of the tissue which af-
fects the speed of electrical propagation. While full 3D simula-
tions of myocardium are traditionally performed, the left atrium
is su�ciently thin that it can be reasonably represented as a
two-dimensional manifold embedded in three dimensions and
solved at significantly reduced computational cost [32]. The
geometry of the left atrium is created through segmentation of
magnetic resonance images of the heart.

An example of a left atrium simulation is illustrated in Fig-
ure 8. Electrophysiological characteristics vary spatially, with
regions of scar and fibrosis more resistive to activation, re-

Figure 8: Illustrative simulation of a depolarising electrochemical wavefront
on a two-dimensional manifold representation of a human left atrium. Blue
areas denote regions of unexcited (polarised) tisue, while green denotes areas
of excited (depolarised) cells. The red areas highlight the wavefront.

sulting in more complex activation patterns. The geometry is
derived from segmented magnetic resonance imaging (MRI)
data, while tissue heterogeneity is prescribed based on late
gadolinium-enhanced MRI. A human atrial ionic model [33]
is used as the reactive term in the model and represents the ex-
changes of ions between the interior and exterior of the cell,
along with other cellular biophysics.

4.6. Biological flow
1D modelling of the vasculature (arterial network) represents

an insightful and e�cient tool for tackling problems encoun-
tered in arterial biomechanics as well as other engineering prob-
lems. In particular, 3D modelling of the vasculature is relatively
expensive. 1D modelling provides an alternative in which the
modelling assumptions provide a good balance between physi-
ological accuracy and computational e�ciency. To describe the
flow and pressure in this network we consider the conservation
of mass and momentum applied to an impermeable, deformable
tube filled with an incompressible fluid, the nonlinear system
of partial di↵erential equations presented in non-conservative
form is given by
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in which A is the Area (related to pressure), x is the axial coor-
dinate along the vessel, U(x, t) the axial velocity, P(x, t) is the
pressure in the tube, ⇢ is the density and finally f the frictional
force per unit length. The unknowns in equation 14 are u, A and
p; hence we must provide an explicit algebraic relationship to
close this system. Typically, closure is provided by an algebraic
relationship between A and p.

For a thin elastic tube this is given by
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where p0 is the external pressure, A0 is the initial cross-
sectional area, E is the Young’s modulus, h is the vessel wall
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Lombard, Moxey et al., AIAA J (2016)

Increasing desire for high-fidelity 
simulation in high-end engineering 
applications.

Want to accurately model difficult features: 
• strongly separated flows 
• feature tracking and prediction 
• vortex interaction

Computational power is nearly there: but we need the software to drive this.



How do we model a physical system?

∂u
∂t

+ v ⋅ ∇u = 0

advection velocity v

form underlying equations
discretise (typically) complex 

domain

simpler elements on which 
the equations can be solved

solve resulting system

Ax = b
(+ timestepping)



Applications in aeronautics

Wavy wing (Serson)

Figure 5: Contours of the magnitude of velocity in a periodic hill simulation at
Re = 2800.

for flow over a NACA0012 aerofoil at a farfield Mach number
Ma1 = 0.8 and a 1.5� angle of attack. The transonic mach
number of this flow leads to the development of a strong and
weak shock along the upper and lower surfaces of the wing re-
spectively. This figure shows isocontours of the mach number
where the presence of the shocks are clearly identified. Finally,
In Fig. 4(c), we visualise the temperature field from flow pass-
ing over a T106C low-pressure turbine blade at Re = 80,000
to highlight applications to high Reynolds number flow simula-
tions.

4.2. Transitional turbulent flow dynamics

Transient problems in which turbulence dominates the flow
domain, or in which the transition to turbulence dominates the
simulation, remain some of the most challenging problems to
resolve in computational fluid simulations. Here, accurate nu-
merical schemes and high resolution of the domain is critical.
Moreover, any choice of scheme must be e�cient in order to ob-
tain results in computationally feasible time-scales. Tradition-
ally, highly resolved turbulence simulations, such as the Taylor-
Green vortex problem, lie firmly in the class of spectral meth-
ods. However, spectral methods typically lead to strong geom-
etry restrictions which limits the domain of interest to simple
shapes such as cuboids or cylinders.

Whilst spectral element methods may seem the ideal choice
for such simulations, particularly when the domain of interest
is geometrically complex, they can be more computationally
expensive in comparison to spectral methods. However, when
the domain of interest has a geometrically homogeneous com-
ponent – that is, the domain can be seen to be the tensor prod-
uct of a two-dimensional ‘complex’ part and a one-dimensional
segment – we can combine both the spectral element and tradi-
tional spectral methods to create a highly e�cient and spectrally
accurate technique [4].

We consider the application of this methodology to the prob-
lem of flow over a periodic hill, depicted in Fig. 5, where the
flow is periodic in both streamwise and spanwise directions.
This case is a well-established benchmark problem in the DNS
and LES communities [25], and is challenging to resolve due to
the smooth detachment of the fluid from the surface and recir-
culation region. Here we consider a Reynolds number of 2800,
normalised by the bulk velocity at the hill crest and the height
of the hill, with an appropriate body forcing term to drive the
flow over the periodic hill configuration.

The periodicity of this problem makes it an ideal candidate
for the hybrid technique described above. We therefore con-

struct a two-dimensional mesh of 3626 quadrilateral elements
at polynomial order P = 6, and exploit the domain symmetry
with a Fourier pseudospectral method consisting of 160 collo-
cation points in the spanwise direction to perform the simula-
tion. This yields a resolution of 20.9M degrees of freedom per
field variable and allows us to obtain excellent agreement with
the benchmark statistics.

4.3. Flow stability
In addition to direct numerical simulation of the full

non-linear incompressible Navier-Stokes equations, the
IncNavierStokesSolver supports global flow stability
analysis through the linearised Navier-Stokes equations with
respect to a steady or periodic base flow. This process identifies
whether a steady flow is susceptible to a fundamental change
of state when perturbed by an infinitesimal disturbance. The
linearisation takes the form
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where U is the base flow and u0 is now the infinitesimal pertur-
bation. The time-independent base flow is computed through
evolving Equs. 9 to steady-state with appropriate boundary con-
ditions. For time-period base flows, the flow is sampled at reg-
ular intervals and interpolated.

The linear evolution of a perturbation under Equs. 10 can be
expressed as

u0(t) = A(t)u00

for some initial state u00, and we seek, for some arbitrary time
T, the dominant eigenvalues and eigenmodes of the operator
A(T ), which are solutions to the equation

A(T )ũ j = � jũ j.

The sign of the leading eigenvalues � j are used to establish the
global stability of the flow. An iterative Arnoldi method [26]
is applied to a discretisation M of A(T ). Repeated actions
of M are applied to the initial state u0 using the same time-
integration code as for the non-linear equations [27]. The re-
sulting sequence of vectors spans a Krylov subspace of M and,
through a partial Hessenberg reduction, the leading eigenval-
ues and eigenvectors can be e�ciently determined. The same
approach can be applied to the adjoint form of the linearised
Navier-Stokes evolution operatorA⇤ to examine the receptivity
of the flow and, in combination with the direct mode, identify
the sensitivity of the flow to base flow modification and local
feedback. The direct and adjoint methods can also be combined
to identify convective instabilities over di↵erent time horizons
⌧ in a flow by computing the leading eigenmodes of (A⇤A)(⌧).
This is referred to as transient growth analysis.

To illustrate the linear analysis capabilities of Nektar++, we
use the example of two-dimensional flow past a circular cylin-
der at Re = 42, just below the critical Reynolds number for
the onset of the Bénard-von Kármán vortex street. This is a
well-established test case for which significant analysis is avail-
able in the literature. We show in Fig. 6 the leading eigen-
modes for the direct (A) and adjoint (A⇤) linear operators for
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Figure 4: Examples of external aerodynamics problems solved using the CompressibleFlowSolver. (a) Flow over a cylinder at Re = 3, 900. (b) Euler simulation
over a NACA0012 aerofoil at Ma1 = 0.8. (c) Temperature of flow passing over a T106C low-pressure turbine blade at Re = 80, 000.

where U = [⇢, ⇢u, ⇢v, ⇢w, E]> is the vector of conserved vari-
ables in terms of density ⇢, velocity (u1, u2, u3) = (u, v,w), E is
the specific total energy, and

F(U) =
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where p is the pressure. To close the system we need to specify
an equation of state, in this case the ideal gas law p = ⇢RT
where T is the temperature and R is the gas constant. For the
Euler equations, the tensor of viscous forces Fv(U) = 0, and for
Navier-Stokes

Fv(U) =

2
666666666666666664

0 0 0
⌧xx ⌧yx ⌧zx
⌧xy ⌧yy ⌧zy
⌧xz ⌧yz ⌧zz
A B C

3
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A = u⌧xx + v⌧xy + w⌧xz + k@xT,
B = u⌧yx + v⌧yy + w⌧yz + k@yT,
C = u⌧zx + v⌧zy + w⌧zz + k@zT

where in tensor notation the stress tensor ⌧xi x j = 2µ(@xi ui +

@xi u j �
1
3@xk uk�i j), µ is the dynamic viscosity calculated using

Sutherland’s law and k is the thermal conductivity.
To discretise these equations in space, we adopt an approach

which allows for the resolution of discontinuities and shocks
that may appear in the solution at transonic and supersonic flow
speeds. We therefore use approximations to our solution com-
prised of functions which are not continuous across element
boundaries. Traditionally, we follow a Galerkin approach by
utilising the variational form of the equations in order to ob-
tain the discontinuous Galerkin method. One of the key fea-
tures of Nektar++ is the ability to select a wide range of nu-
merical options, and to this end we support both discontinuous

Galerkin and flux reconstruction spatial discretisations, which
have various numerical equivalences [22] but may possess dif-
ferent performance characteristics. In the flux reconstruction
formulation, we instead use the equation in di↵erential form in
combination with correction functions which impose continuity
of fluxes between elements.

In either case, information is transferred between elements
by solving a one-dimensional Riemann problem at the interface
between two elements. For the non-viscous terms there is sup-
port for a wide variety of Riemann solvers, including an exact
solution or a number of appproximate solvers such as HLLC,
Roe and Lax-Friedrichs solvers [23]. For the viscous terms, we
utilise a local discontinuous Galerkin method (or the equivalent
flux reconstruction version). Various versions of the discontin-
uous Galerkin method which are available throughout the lit-
erature, mostly relating to the choices of modal functions and
quadrature points, can also be readily selected by setting appro-
priate options in the session file.

Given the complexity and highly nonlinear form of these
equations, we adopt a fully explicit formulation to discre-
tise the equations in time, allowing us to use any of the ex-
plicit timestepping algorithms implemented through the gen-
eral linear methods framework [16], including 2nd and 4th order
Runge-Kutta methods. Finally, in order to stabilise the flow
in the presence of discontinuities we utilise a shock capturing
technique which makes use of artificial viscosity to damp os-
cillations in the solution, in conjunction with a discontinuity
sensor adapted from the approach taken in [24] to decide where
the addition of artificial viscosity is needed.

Figure 4 shows representative results from compressible flow
simulations of a number of industrially-relevant test cases. We
first highlight two simulations which utilise the Navier-Stokes
equations. Fig. 4(a) demonstrates the three-dimensional ver-
sion of the compressible solver by investigating the flow over a
cylinder at Re = 3,900. In this figure we visualise isocontours
of the pressure field and colour the field according to the den-
sity ⇢. To demonstrate the shock capturing techniques available
in the code, Fig. 4(b) shows the results of an Euler simulation

8

Compressible flows (Yan, Pan, Mengaldo, 
Sherwin, Moxey)



Spectral/hp element methods
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High-order methods

standard linear element 
3 degrees of freedom 

one per vertex (or cell)

P = 5 element 
21 degrees of freedom 

vertex, edge and interior ‘modes’
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High-order methods for fluid dynamics
✓ error decays exponentially (smooth solutions); 

✓ favorable diffusion & dispersion characteristics; 

✓ model complex domains 

✓ computational advantage: reduced memory 
bandwidth, better use of hardware.

h-refinement 
(algebraic)

p-refinement 
(exponential)



Virtual wind tunnel: Elemental road race car

Mengaldo, Moxey, Turner, Jassim, Taylor, Peiro & Sherwin, SIAM Review (2021)

Design 2: +33% Downforce 

Design 3:   +270% Downforce 

1bn degrees of freedom 
Uses only CFD for design



Moving to problems outside of fluids
• Original spectral/hp implementation for fluid dynamics was made ~20 years ago in a code 

called Nektar. 

• We wanted to expand these methods to things outside of just fluid dynamics. But there 
were a lot of software problems trying to adapt Nektar for this: 

𐄂 No version control: everyone had their own versions. 

𐄂 No testing: no way to know if code changes/new features broke things. 

𐄂 Code structure: code was tied to fluids & hard to make work outside of this area for 
more general problems. 

𐄂 Revision was hard: Difficult to get started if you were new to the code. 

• Motto of the story: it's not enough to write working software: you need to write 
maintainable software. Modern development practices are essential.



Nektar++ 
spectral/hp element framework

High-fidelity numerical methods 
Highly parallel, designed for unsteady flows



Nektar++ 
spectral/hp element framework

• Nektar++ is an open source framework for high-order methods. 

• Although fluids is a key application area, we try to make it easier to use these 
methods in many areas, not just fluids. 

• Modern C++ design; runs at variety of scales, from desktops (1-128 cores) 
through to supercomputers (100k+). Uses pure MPI for parallelisation. 

• Extensive use of modern software development practices: continuous 
integration/delivery, git, containerisation.
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What practices do we use in Nektar++?

git (hosted on gitlab) 
for version control

docker pull nektarpp/nektar          # binaries
docker pull nektarpp/nektar-dev      # dev image
docker pull nektarpp/nektar-workbook # jupyter

docker for containerised builds 
(enables use of singularity for HPC)

gitlab CI for continual integration (testing)

pre-built binaries using 
continuous delivery: 
easier installs and 
releases

documentation + 
tutorials



What does this give us?
• Testing + code review: Allows control over the source, make sure that before new 

features or fixes are merged, we aren't introducing new problems. 

• Docker: generates an image of the code at each new commit. 

✓ Reproducibility is much easier. 

✓ Anyone can pull up-to-date master without compiling. 

✓ CI built on top of this means we can quickly pull images where things fail and 
investigate without recompiling. 

• Interfaces: C++ is pretty hard; friendly interfaces like a Python interface/Jupyter 
notebook makes it hopefully easier for people to get started with a complex codebase!  

• Properly designed software means we can extend outside of fluids!



Modelling cardiac electrophysiology

• Cardiac electrophysiology is the study of how 
electrical activity occurs in the heart. 

• Improve our mechanistic understanding. 
- Examine phenomena in controlled environments. 

- Ask questions which cannot be (easily) tested biologically. 

- Conduct experiments which cannot be (ethically) be 
performed in vivo. 

• Develop emerging clinical tools. 
- Enrich existing clinical mapping technologies. 

- Precision diagnosis. 

- Personalised treatement.



Models for cardiac electrophysiology

Models of Cardiac EP
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...which can be simplified 
(in some cases)



Personalised models
• Great potential in computational modelling for 

personalised models to tailor treatment for 
specific patients.  

• Incorporate multi-model clinical data: 

➡ Imaging (MR/CT) 
- Chamber geometry 
- Location of scar (LGE-CMRI) 

➡ Electroanatomic mapping 
- Activation patterns 
- Nature of arrhythmia 

• Use these to tailor simulation parameters (e.g. 
diffusion tensor), understand how different 
treatments may affect activation patterns.



Summary
• Combination of cutting-edge models and high-quality software can give deep 

insights into challenging problems: from increasing downforce to understanding 
life-altering diseases. 

• Learning about research software development and how to effectively use 
modern practices can be hugely beneficial. 

• Lots of challenges still to overcome! 

• How do we make tools easier to set up and use? 

• How do we deal with the wealth of parameters, meshing, etc? 

• How do we do a better job of handling uncertainty?



Thanks for listening!

https://davidmoxey.uk/ 

d.moxey@kcl.ac.uk 

www.nektar.info  

https://prism.ac.uk/

Nektar++: enhancing the capability and application of high-fidelity spectral/hp element
methods

David Moxey1, Chris D. Cantwell2, Yan Bao3, Andrea Cassinelli2, Giacomo Castiglioni2, Sehun Chun4, Emilia Juda2,
Ehsan Kazemi4, Kilian Lackhove6, Julian Marcon2, Gianmarco Mengaldo7, Douglas Serson2, Michael Turner2, Hui Xu5,2,

Joaquim Peiró2, Robert M. Kirby8, Spencer J. Sherwin2

Abstract

Nektar++ is an open-source framework that provides a flexible, performant and scalable platform for the development of solvers
for partial di↵erential equations using the high-order spectral/hp element method. In particular, Nektar++ aims to overcome the
complex implementation challenges that are often associated with high-order methods, thereby allowing them to be more readily
used in a wide range of application areas. In this paper, we present the algorithmic, implementation and application developments
associated with our Nektar++ version 5.0 release. We describe some of the key software and performance developments, including
our strategies on parallel I/O, on in situ processing, the use of collective operations for exploiting current and emerging hardware, and
interfaces to enable multi-solver coupling. Furthermore, we provide details on a newly developed Python interface that enable more
rapid on-boarding of new users unfamiliar with spectral/hp element methods, C++ and/or Nektar++. This release also incorporates a
number of numerical method developments – in particular: the method of moving frames (MMF), which provides an additional
approach for the simulation of equations on embedded curvilinear manifolds and domains; a means of handling spatially variable
polynomial order; and a novel technique for quasi-3D simulations (which combine a 2D spectral element and 1D Fourier spectral
method) to permit spatially-varying perturbations to the geometry in the homogeneous direction. Finally, we demonstrate the new
application-level features provided in this release, namely: a facility for generating high-order curvilinear meshes called NekMesh; a
novel new AcousticSolver for aeroacoustic problems; our development of a ‘thick’ strip model for the modelling of fluid-structure
interaction (FSI) problems in the context of vortex-induced vibrations (VIV). We conclude by commenting on some lessons learned
and by discussing some directions for future code development and expansion.
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