
New and improved development
practices in Nektar++

David Moxey
Department of Engineering, King's College London

Nektar++ Workshop 2021
13th December 2021

Overview

2

Adventures in
containerisation

Improvements to
packaging

Tutorials &
onboarding of new

users

Running on HPC
with Singularity

Improving
continuous
integration

What are containers?

• Essentially a mini virtual machine.

- Images: contains all of the software & its
dependencies: a sort of snapshot or blueprint. These
are immutable once built.

- Containers: run on top of images without altering
them, are where the program actually runs.

• Their main advantage is that they are easily distributable
and have very low startup cost compared to a normal
VM: you can pull an image and 'go'.

3

Why are we interested in containers?

• Nektar++ is a complex piece of software with quite a few dependencies;
often a struggle to get compiled and running, particularly for new users.

- Containers are obviously a neat way to package & ship all of those.

- However containers offer also a way to provide a 'clean' environment
which is really useful for testing & packaging.

• Pushing towards a development practice of not only testing commits but
building releases alongside them: i.e. continuous delivery.

4

Containers and CI

• We use CI to build and test the code at every merge request to help keep the
code stable and test for regressions.

• Previously used buildbot based on traditional VMs. Quite a few
disadvantages to this that we discovered over time:

• maintaining many VMs is a pain;

• not easy to add new infrastructure to allow for faster builds;

• when things went wrong, very hard to get into the environment to debug.

5

Switching to containers & gitlab CI

6

Build environments
i.e. Ubuntu, Debian etc +

deps

Compile & test code
done in single step to avoid

caching issues

Compiler warnings
based on output of previous

stage

Build & test docker images

nektarpp/nektar: just want to run Nektar++

nektarpp/nektar-dev: development environment

nektarpp/nektar-workbook: Jupyter notebook

You can grab either latest master with latest, or tagged versions (v5.1.0)

When pipelines go wrong

• gitlab is configured to build a new docker image when the pipeline fails.

- Gives access to the entire build environment at the time of failure.

- You can use this to debug compiler & test errors.

- Images are pushed to tags called pipeline_id_runner_name

7

log into the docker container registry
$ docker login gitlab.nektar.info:4567

then pull a docker image and get a shell inside it
$ docker run -it gitlab.nektar.info:4567/nektar/nektar:pipeline_3097_bionic_full /bin/bash

now you can run command to e.g. see a build error
nektar@beee5eb9f130:~/nektar$ cd build && make install

Running on HPC

• Our docker images are built with pretty much all the bells and whistles,
including MPI for parallel execution.

• Increasingly HPC resources are looking into containerisation since
compilation of codes is often an even larger problem in this environment.

• Singularity is an alternative containerisation that's increasingly used in HPC
due to increased security, but can use docker images

8

$ module load apps/singularity # Load singularity in HPC environment
$ singularity pull docker://nektarpp/nektar # Pull docker image
$ srun -n 4 -p test --pty /bin/bash # Launch a job on 4 nodes (16 CPUs total)
$ singularity shell ./nektar_latest.sif # Grab a shell on this image
$ mpirun -n 16 IncNavierStokesSolver s.xml # Run Navier-Stokes solver

docker://nektarpp/nektar

Packaging improvements

Now also using CI to automate build of
binary packages when we tag new release

9

Pre-built packages for:
• Ubuntu/Debian (.deb)
• CentOS 7 (.rpm)
Details on website

Vanilla serial version that
has binary package
$ sudo port install nektarpp

Spicy MPI + Python version,
requires compilation
$ sudo port install nektarpp \
 +openmpi +python39

Has most bells/whistles, but
not yet in main trunk. Some
binaries available for
macOS 10.15, 11.0 using GitHub
$ brew tap mdave/nektar
$ brew install nektar

Finally: training and tutorials

10

undergraduate, postgraduate or
PDRA projects

conference workshops or training
sessions

Our training requirements
Some common challenges:

• Onboarding into the environment: a complex
C++ framework with advanced numerics.

• Developing resources for a wide range of user
abilities and experience.

• Taking into account requirements: some want
to use the code, others want to develop

• Handling vastly heterogeneous computational
environments (OS, compilers, etc).

• Doing all of this remotely!

First approach: user/developer guides

• First attempt at getting good
documentation was to develop a
user guide (developer guide also
available but still a WIP!)

• A good way to give reference for the
capabilities of the framework...

• ...but maybe too unwieldy to give
new users a way to access the code.

11

Tutorials

12

• Next, developed a series of tutorials:

➡ documents key solvers;

➡ numerical concepts;

➡ pre- and post-processing.

• Come with a set of incomplete files to
work through, and a set of solution
files to show final configuration.

• Available as a PDF or on the website.

More recent developments

13

docker pull nektarpp/nektar-workbook

Jupyter notebook, contains Python
interface as well as core solvers,
utilities for pre- and post-processing

• Can be combined with cloud resources/Kubernetes to deliver flexible
resources for workshops.

• We'll be demoing this in morning session on Tues/Weds

What we are working towards

Increased interactivity
(Jupyter notebooks)

Onboarding
Theory

Intro to SEM
Numerical integration

More traditional tutorials
(command line)

Terminal/HPC usage

Navier-Stokes
basics: incompressible
basics: compressible
3DH1D simulations

Pre-post processing
NekMesh basics

FieldConvert basics

Theory
Higher dimensions

Navier-Stokes
turbulence simulations

stability
bioflows

finite strip modelling

Pre-post processing
Mesh generation from CAD
Advanced postprocessing

Developer
How to develop codes
based around Nektar++

Compiling
How to compile

Using docker dev. env.

in
cr

ea
si

ng
 c

om
pl

ex
ity

Basics
Creating a forcing term

Creating a solver

Post-processing
Creating a filter/forcing
Using the Python API

application area

Conclusions

• Lots of new developments in this area with some quite exciting work!

• I hope some of these efforts might help in challenges you or your groups
face using/developing Nektar++ in a more practical manner!

- Chris Cave-Ayland (ICL RSE team) for efforts on modernising our CI

- Chris Cantwell for packaging developments

- Mohsen Lahooti for leading tutorial development efforts, with
Mohammad Hossain & Ganlin Lyu.

15

Thanks for listening!

https://davidmoxey.uk/

david.moxey@kcl.ac.uk

www.nektar.info

https://davidmoxey.uk
mailto:david.moxey@kcl.ac.uk
http://www.nektar.info

