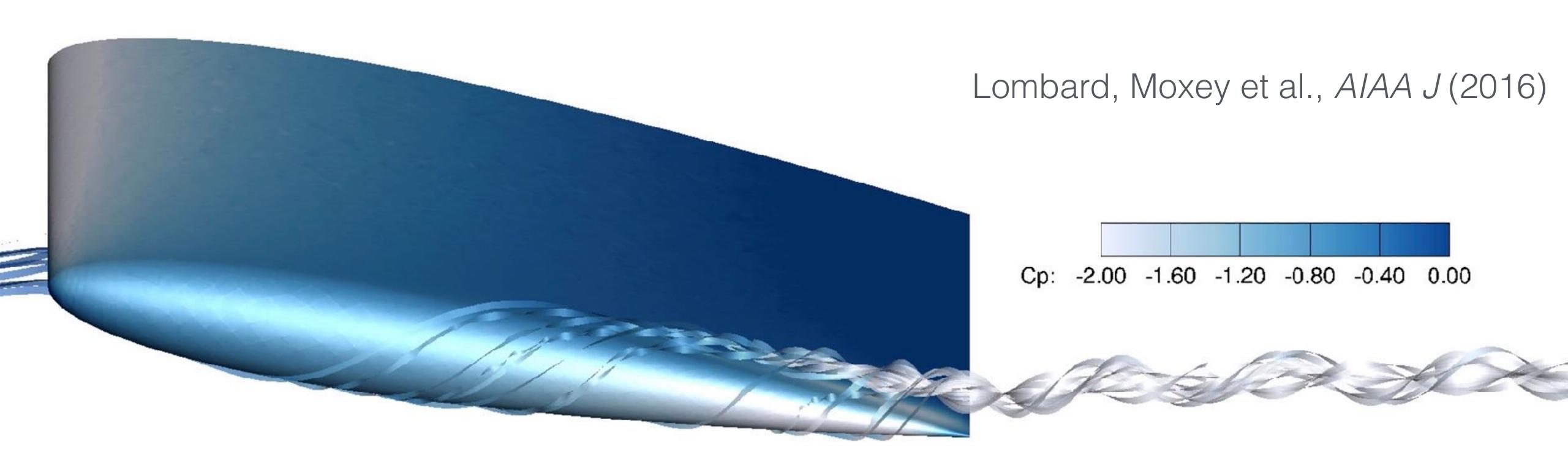
Towards high-fidelity industrial fluid dynamics simulations at high order

David Moxey

Department of Engineering, King's College London College of Engineering, Mathematics & Physical Sciences, University of Exeter

Platform for Advanced Scientific Computing

6th July 2021



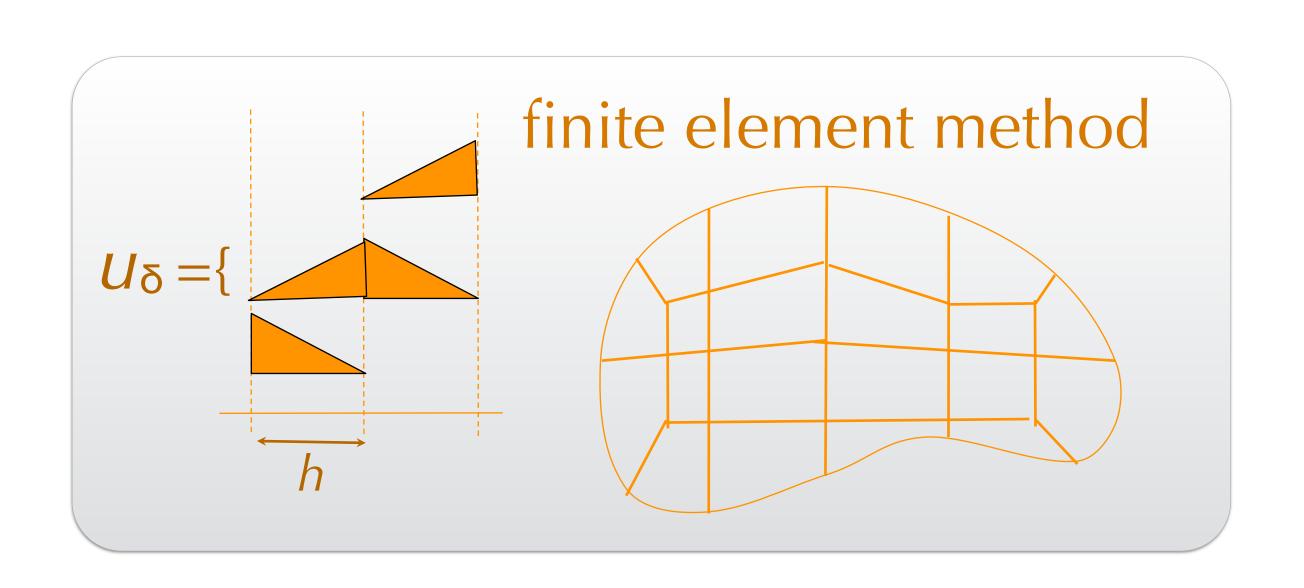
Increasing desire for **high-fidelity** CFD simulations in high-end aeronautics applications.

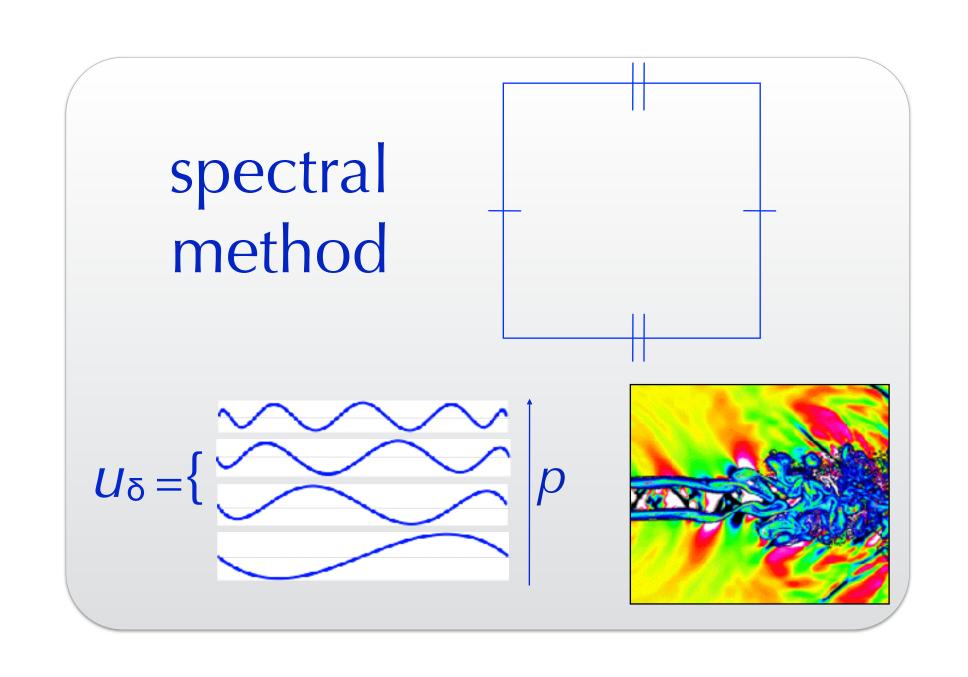
Want to accurately model 'difficult' features:

- strongly separated flows, vortex interaction;
- feature tracking and prediction.

Goal: develop methods and techniques for making LES affordable & routine, based on high-order finite element methods.

What are high-order methods?



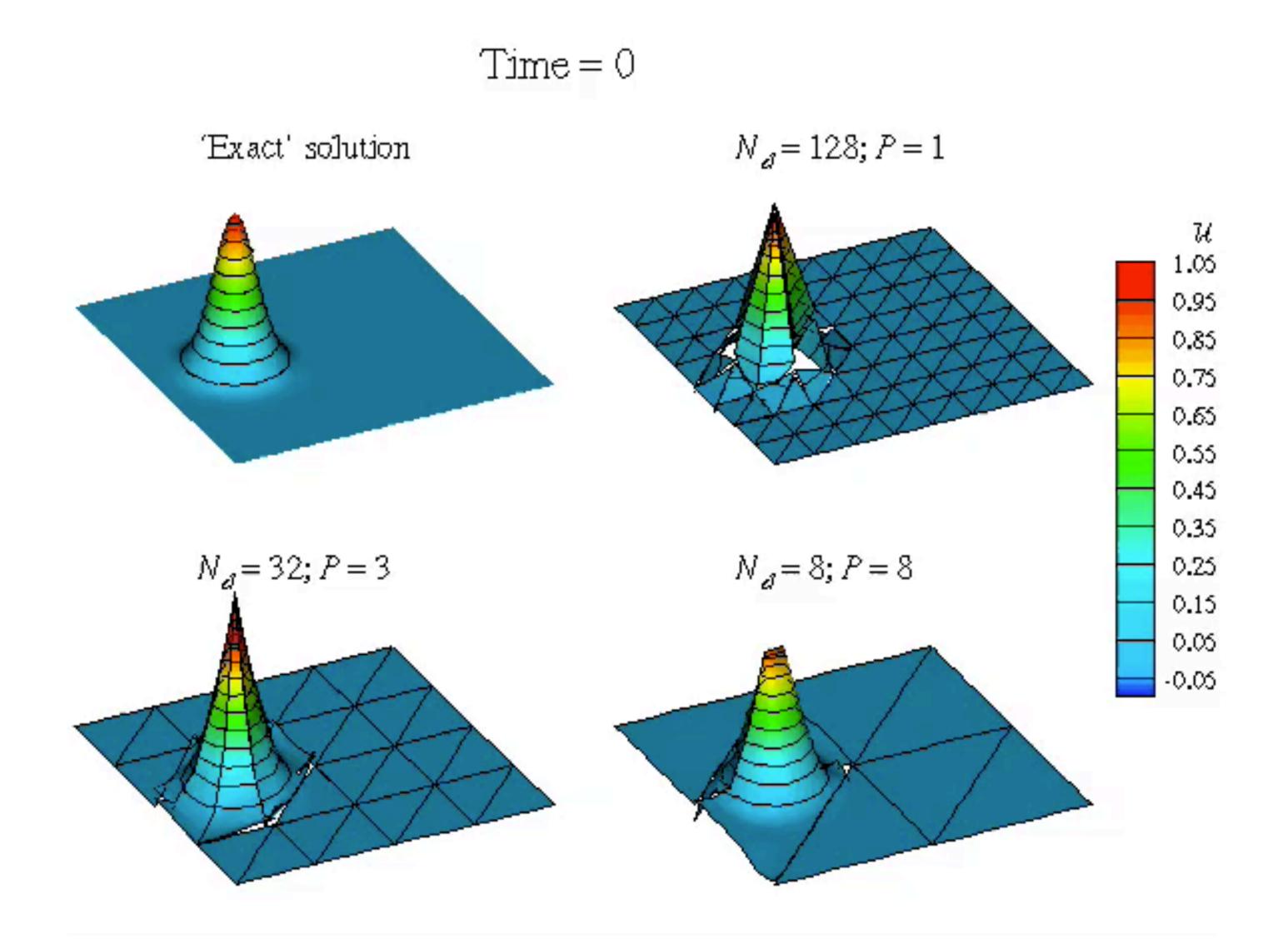


spatial flexibility (h)

spectral/hp element

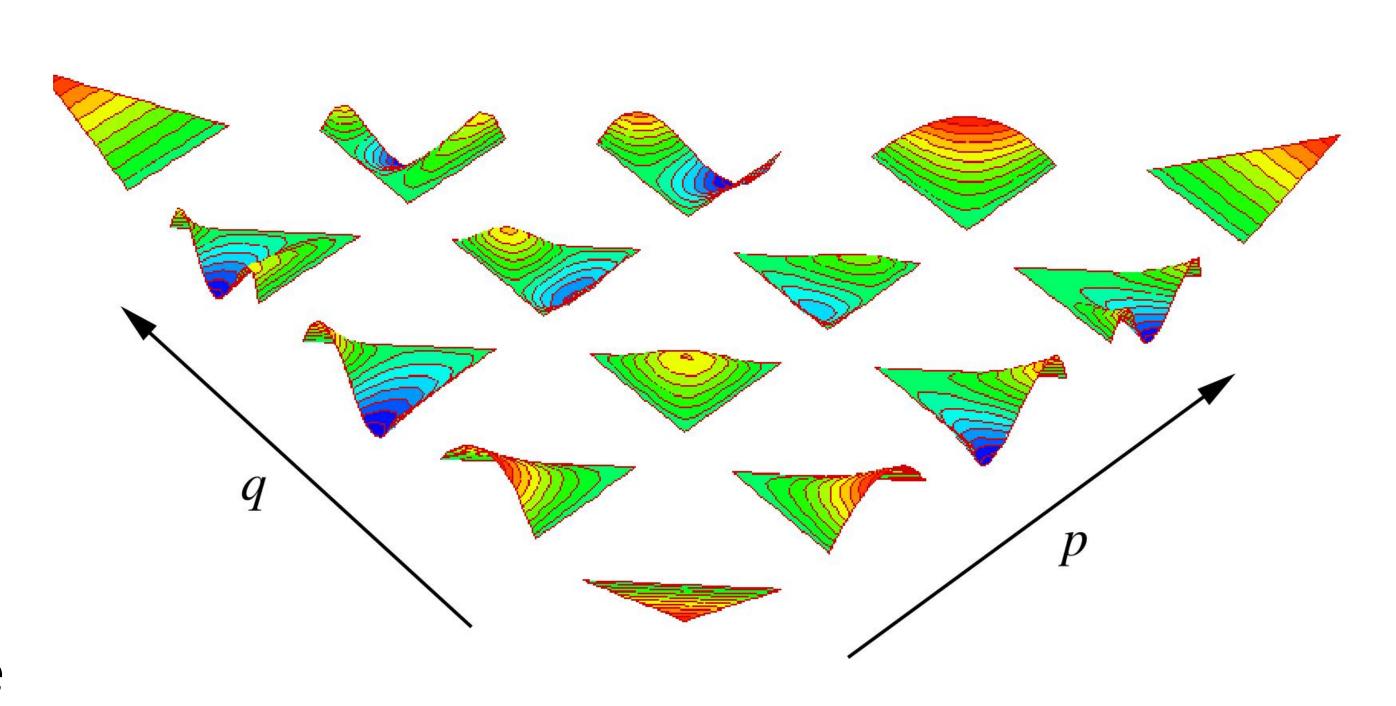
accuracy (p)

Why use a high-order method for CFD?



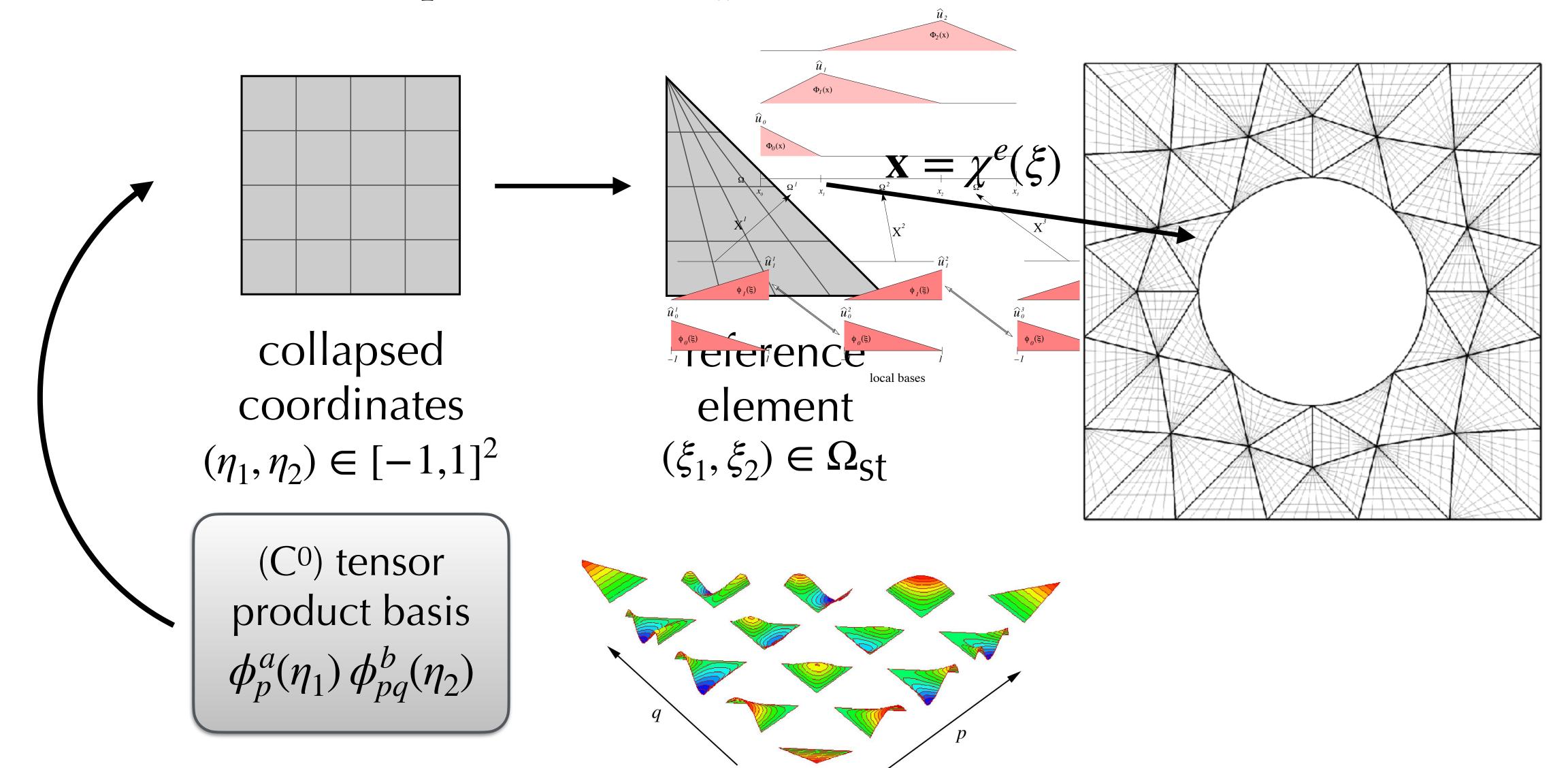
The spectral/hp element method

- Extend traditional FEM by adding higher order polynomials of degree *P* within each element.
- e.g. high-order triangle has (P+1)(P+2)/2 degrees of freedom at a given order *P*.
- Increased accuracy: more done per degree of freedom, increased arithmetic intensity.



spectral/hp element basis functions

The spectral/hp element method



Challenges

High order methods can provide a lot of benefits for these problems:

- ✓ very high accuracy over time/space;
- ✓ excellent for tracking transient structures;
- √ geometric flexibility.

but there are also some challenges...

- implementation difficulty;
- extra work per degree of freedom means computational efficiency is important;
- mesh generation;
- other numerical challenges, e.g. scalable preconditioning.

"Defining" features of spectral/hp method

Generally not collocated

$$u(\xi_{1i}, \xi_{2j}) = \sum_{n=0}^{P^2} \hat{u}_n \phi_n(\xi) = \sum_{p=0}^{P} \sum_{q=0}^{Q} \hat{u}_{pq} \phi_p(\xi_{1i}) \phi_q(\xi_{2j})$$

quadrature points

modal coefficients

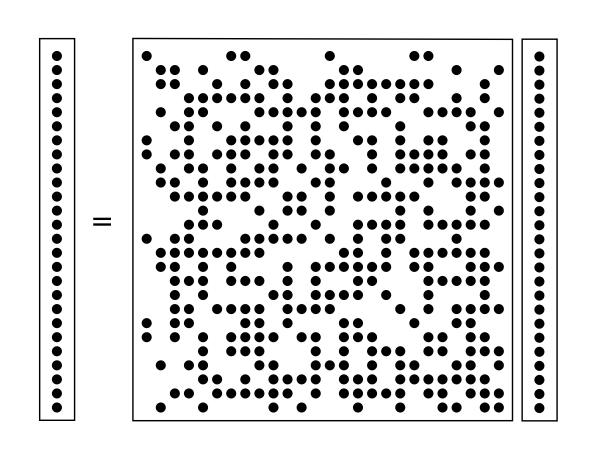
Uses tensor products of 1D basis functions, even for non-tensor product shapes

$$u(\xi_{1i}, \xi_{2j}, \xi_{3j}) = \sum_{p=0}^{P} \sum_{q=0}^{Q-p} \sum_{r=0}^{R-p-q} \hat{u}_{pqr} \phi_p^a(\xi_{1i}) \phi_{pq}^b(\xi_{2j}) \phi_{pqr}^c(\xi_{3k})$$

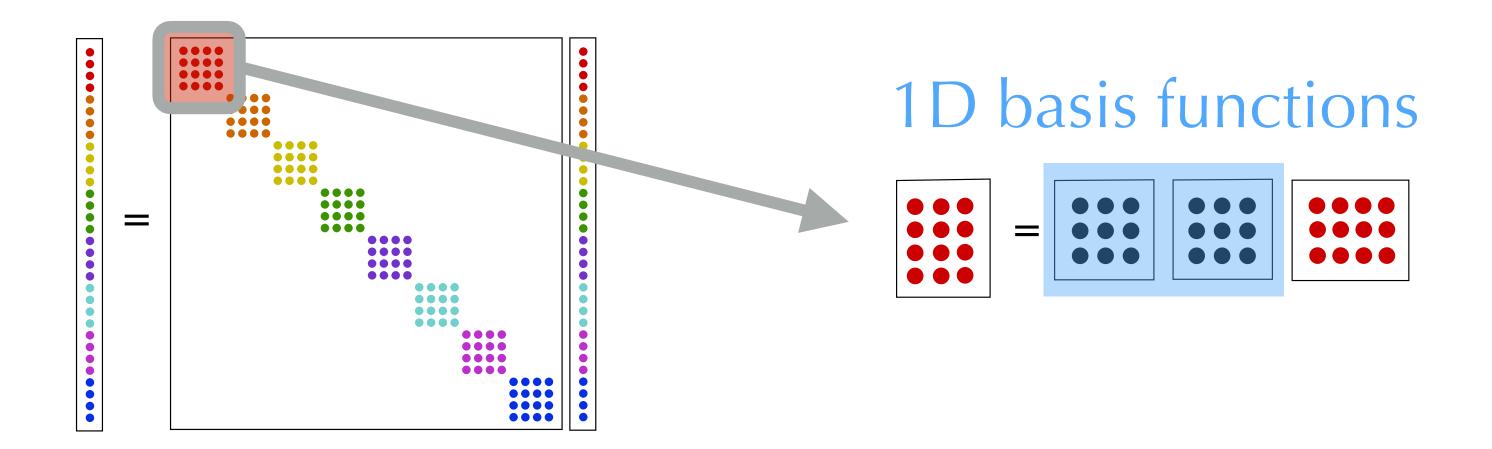
basis function indexing harder

Implementation choices

Finite element operation evaluations (e.g. mass matrix) form bulk of simulation cost; however can be evaluated in several ways.



Global matrix assemble a sparse matrix



Local evaluation create elemental dense

Matrix free no local matrices at all matrices + assembly map sum factorisation speedup

increasing arithmetic intensity

Sum-factorisation

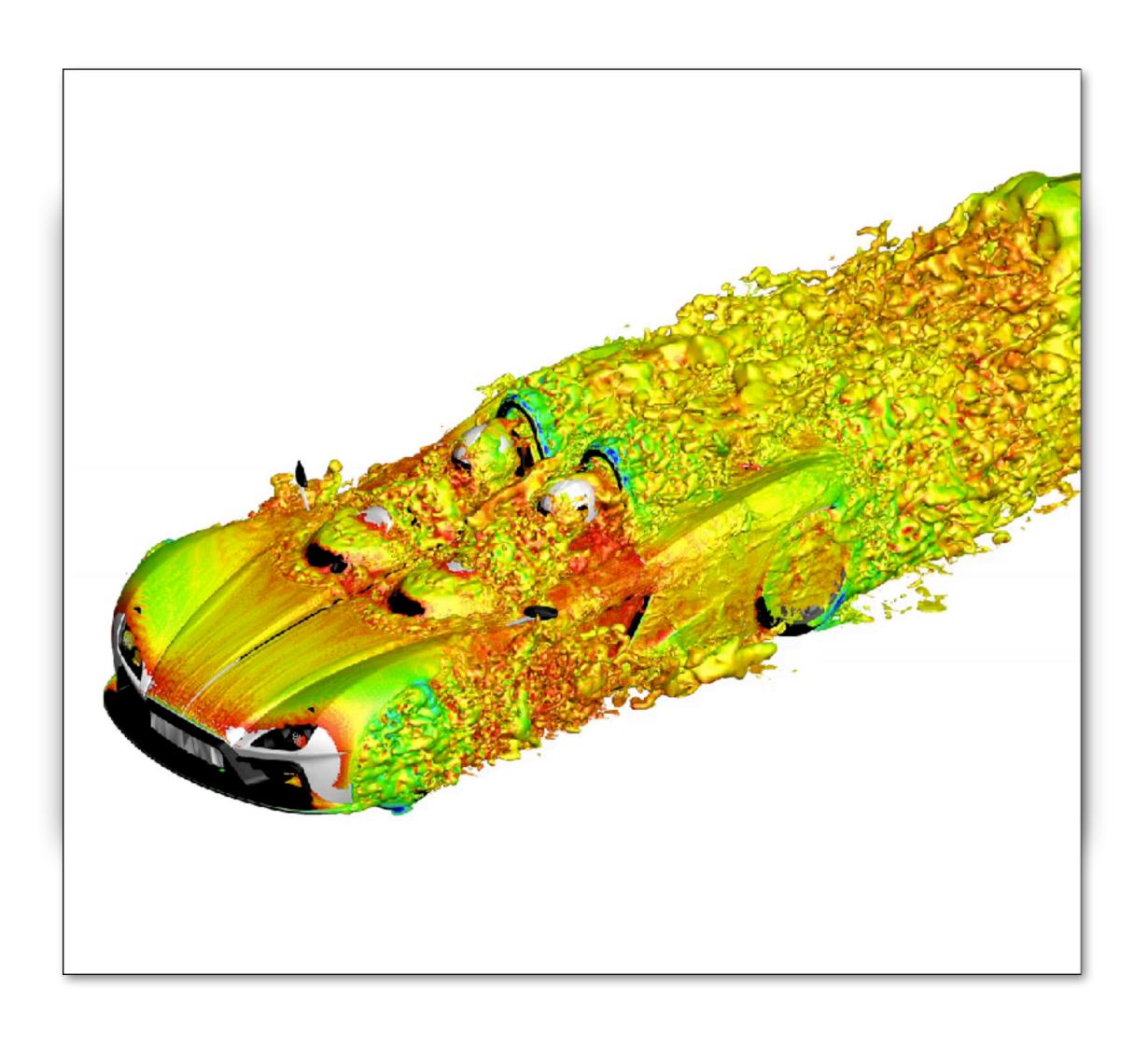
Key to performance at high polynomial orders: complexity $O(P^{2d})$ to $O(P^{d+1})$

$$\sum_{p=0}^{P} \sum_{q=0}^{Q} \hat{u}_{pq} \phi_{p}(\xi_{1i}) \phi_{q}(\xi_{2j}) = \sum_{p=0}^{P} \phi_{p}(\xi_{1i}) \left[\sum_{q=0}^{Q} \hat{u}_{pq} \phi_{q}(\xi_{2j}) \right]$$
store this

Works in essentially the same way for more complex indexing for e.g. triangles:

$$\sum_{p=0}^{P} \sum_{q=0}^{Q-p} \hat{u}_{pq} \phi_p^a(\xi_{1i}) \phi_{pq}^b(\xi_{2j}) = \sum_{p=0}^{P} \phi_p^a(\xi_{1i}) \left[\sum_{q=0}^{Q-p} \hat{u}_{pq} \phi_{pq}^b(\xi_{2j}) \right]$$
store this

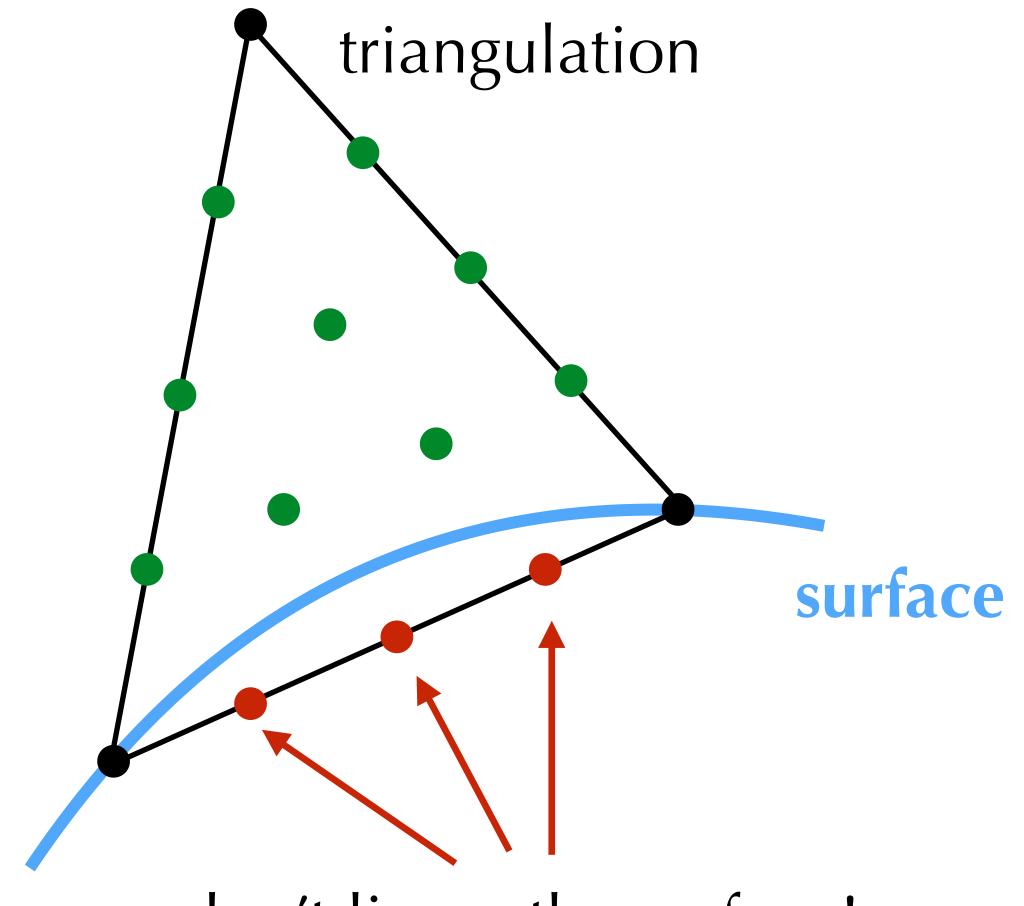
Unstructured simulations



- Common knowledge: hex/quad elements yield best performance.
- However complex geometries presently require meshes of 'unstructured' elements: tets, prisms, etc.
- Potentially use tensor-product basis on unstructured elements, enable matrix-free operators + sum factorisation.

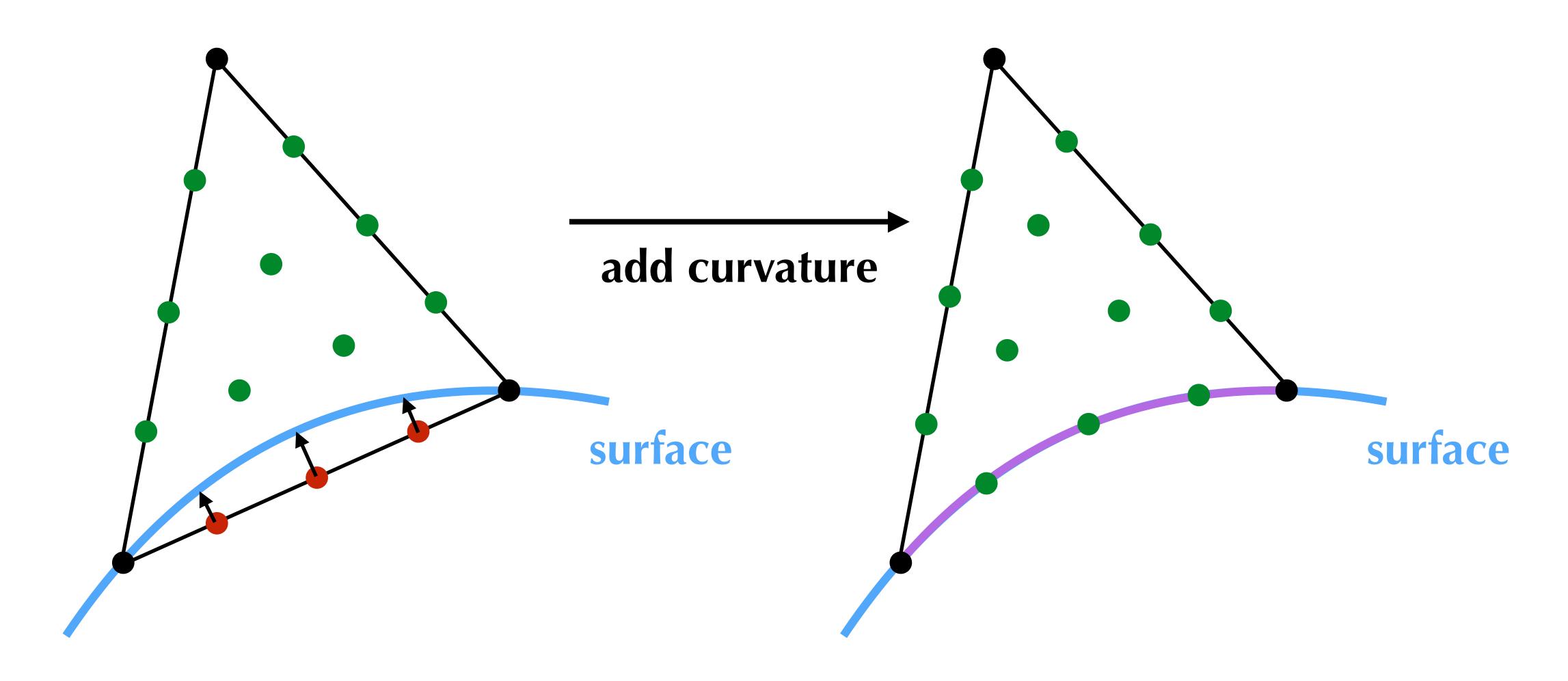
High-order mesh generation

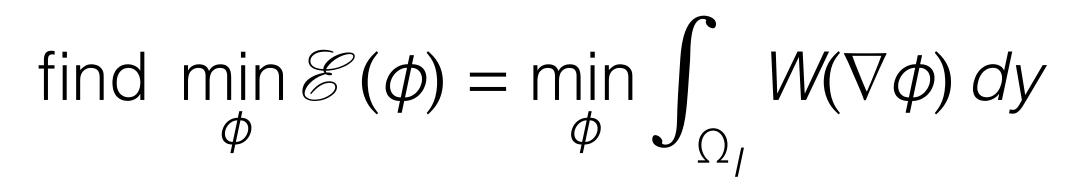
- Good quality meshes are **essential** to simulation results.
- We can have a very fancy solver, but if there's no mesh then you can't run your simulation!
- At high orders we have an additional headache, as we must curve the elements to fit the geometry.



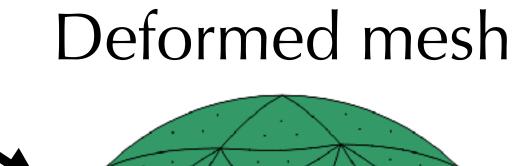
don't lie on the surface!

High-order mesh generation





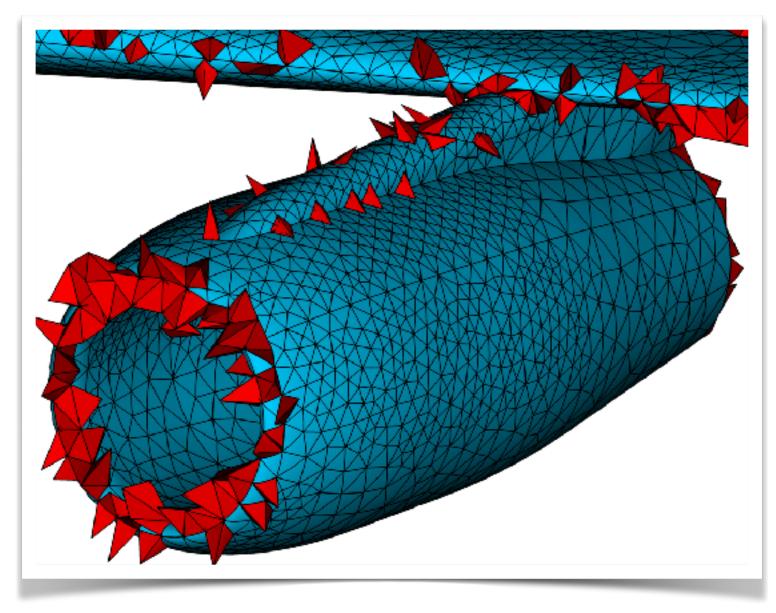
i.e. treat the mesh as a solid body

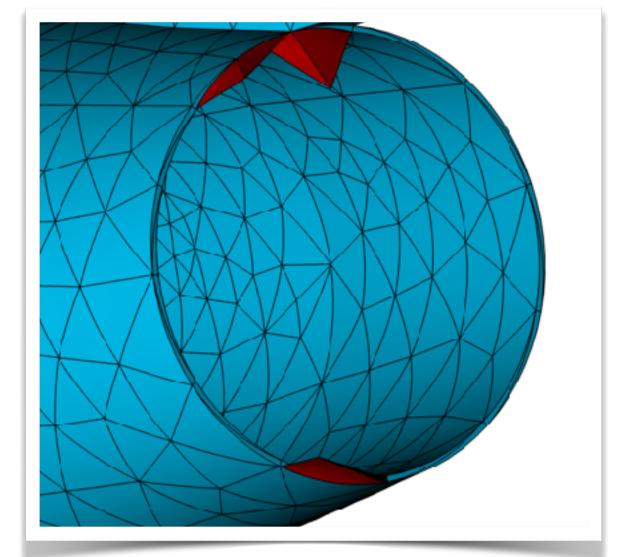


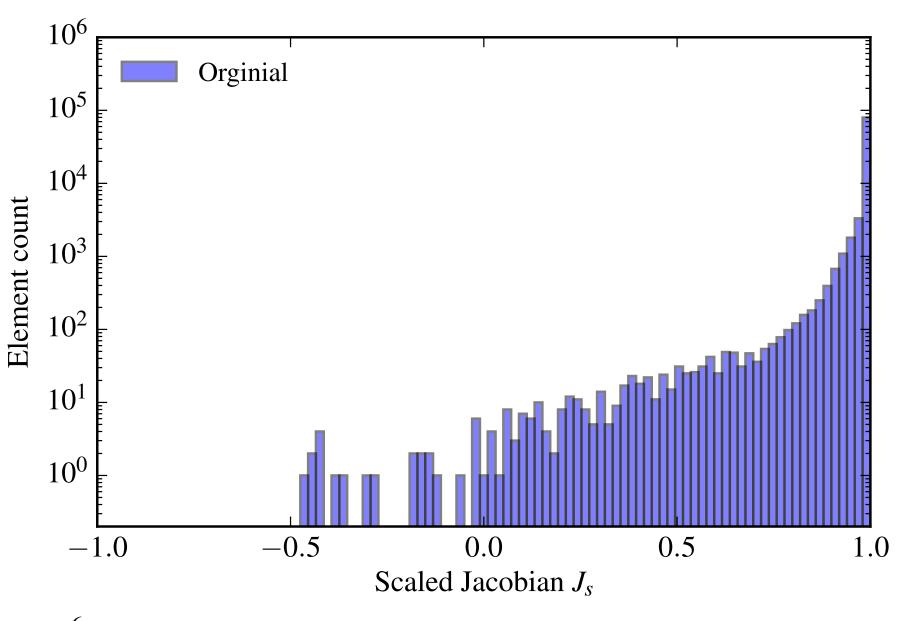
Boundary projection

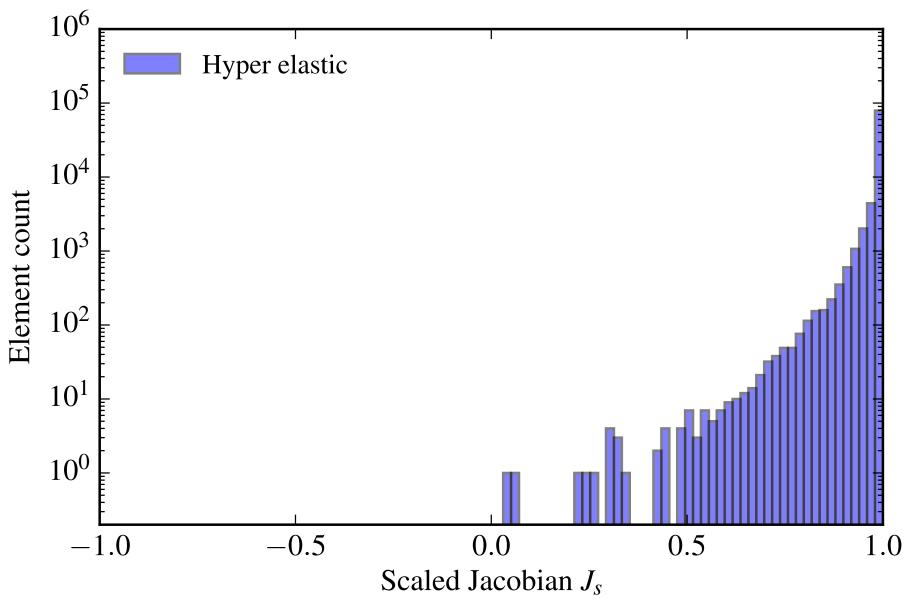
Turner, Peiro, Moxey, Comp. Aided. Design 103 (2018)

Example: DLR F6 engine

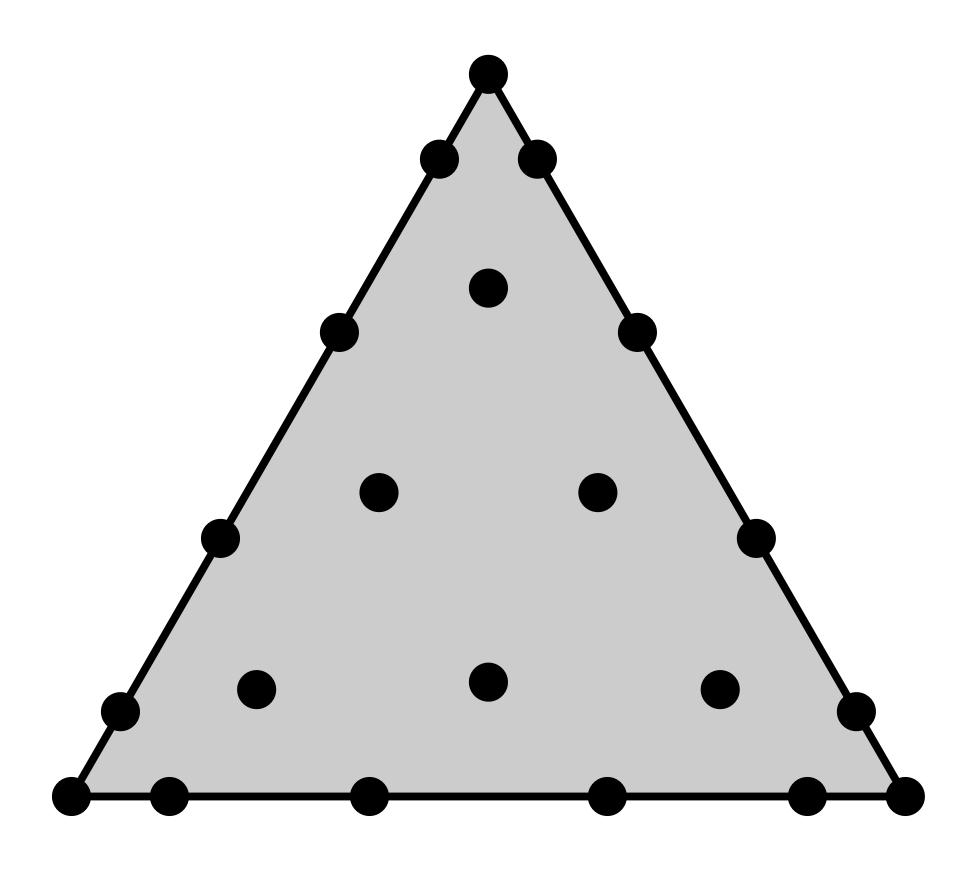








Unstructured elements



P5 triangle, Fekete points

- Unstructured elements generally make use of Lagrange basis functions.
- Combine this with a suitable set of cubature points: either collocated or not.
- However this loses tensorproducts structure: i.e. no sum factorisation possible.

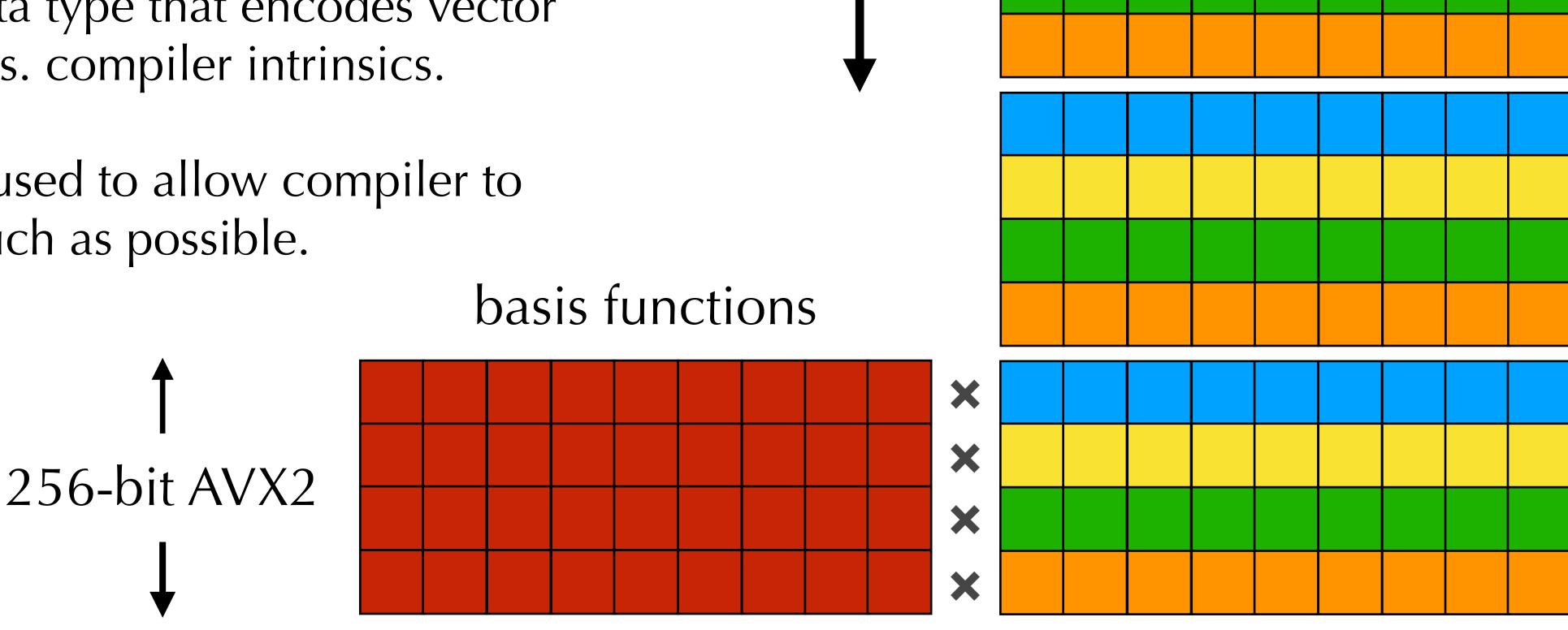
Key questions

- Under spectral/hp approach, sum-factorisation matrix-free operators are certainly possible for any element type. Some questions:
 - How much performance do we lose relative to hex/quad?
 - How should SIMD be used?
- Developed a benchmarking utility for Helmholtz operator to test viability of this approach: used for implicit solve in incompressible N-S equations.

$$\nabla^2 u - \lambda u = f(x) \quad \to \quad (\mathbf{L} + \lambda \mathbf{M})\hat{\mathbf{u}} = \hat{\mathbf{f}}$$

Data layout

- Operations occur over groups of elements of size of vector width
- Use C++ data type that encodes vector operations vs. compiler intrinsics.
- Templating used to allow compiler to unroll as much as possible.



elements

Implementation particulars

- Hand-written kernels for each element type to implement three key components: **interpolation**, **derivatives** and **inner products/integration**.
- Written using C++: templating on (potentially heterogeneous) polynomial order, quadrature order and vector width.
- Also templates on **affine elements** (spatially-constant Jacobian) vs. **curvilinear** (spatially-varying); no consideration for Cartesian meshes.
- Templating gives *significant* improvements in runtime performance, particularly for complex loop structures found in this regime.

x86-64 CPU Tests

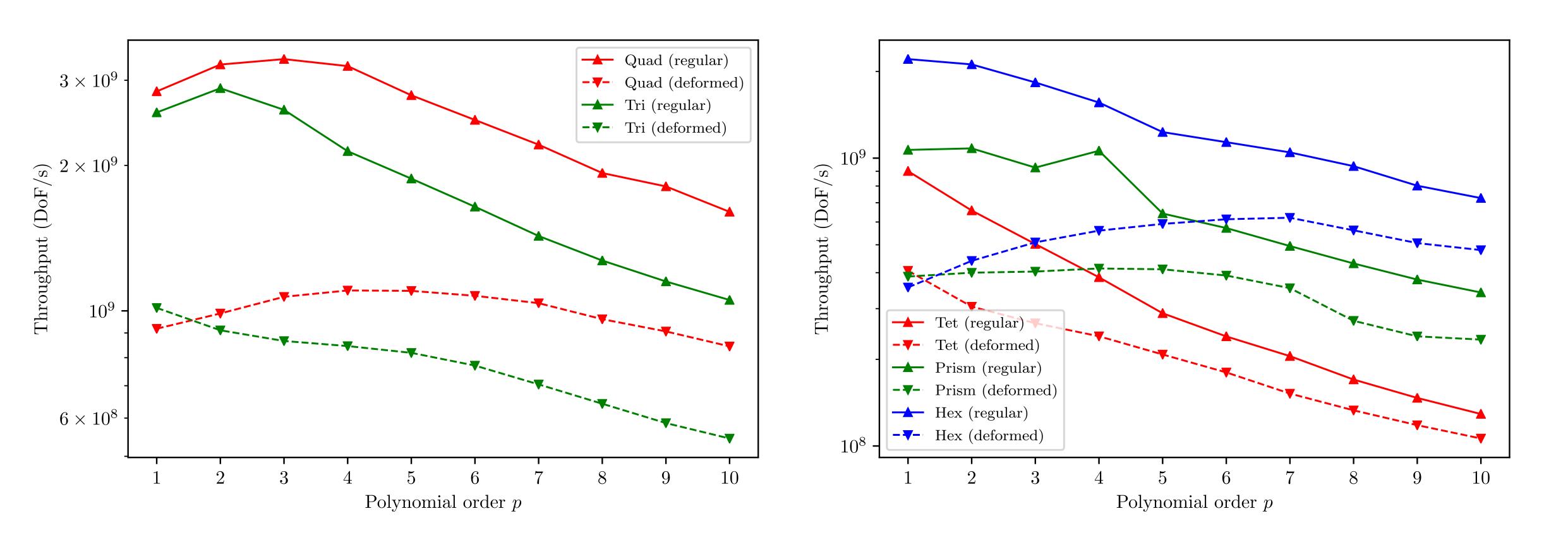
• Benchmarking of Helmholtz operator performed on two x86 architectures with varying SIMD widths.

	Broadwell (AVX2)	Skylake (AVX512)
Model	E5-2697 v4	Xeon Gold 6130
Clock speed(s)	2.3 / 2.0 GHz standard / AVX2	2.1 / 1.7 / 1.3 GHz standard / AVX / AVX512
Cores / sockets	18 / 2	16/2
Max node GFLOP/s	1,152	870 (AVX2) 1,331 (AVX512)

Assessing performance

- Various techniques used to assess kernel performance:
 - Throughput: number of local DoF/s processed, for a mesh whose sizes exceeds available cache.
 - GFLOP/s gives some indication of capabilities, provided we are not memory-bound.
 - Better is **roofline analysis**: where do we sit in terms of memory bandwidth to arithmetic intensity?
- Note all results for local elemental operation evaluation only: Co work in progress.

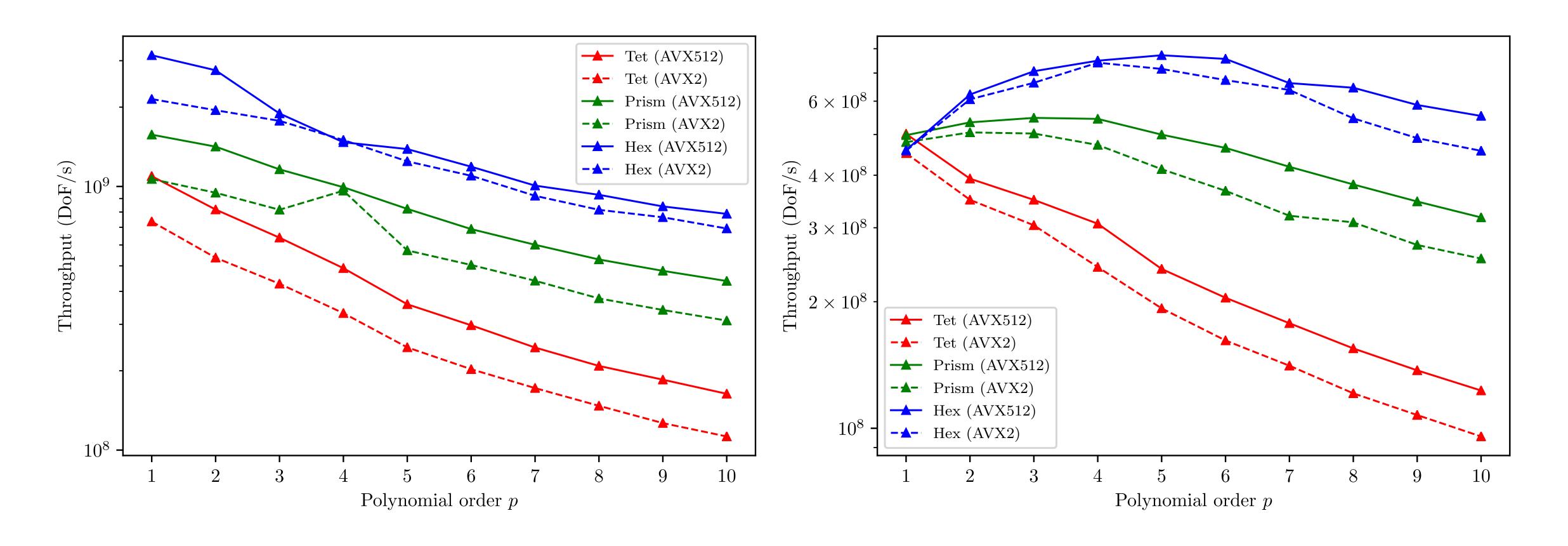
Throughput (AVX2, Broadwell)



2D: Quads, triangles

3D: Hexahedra, prisms, tetrahedra

Throughput (AVX512/AVX2, Skylake)



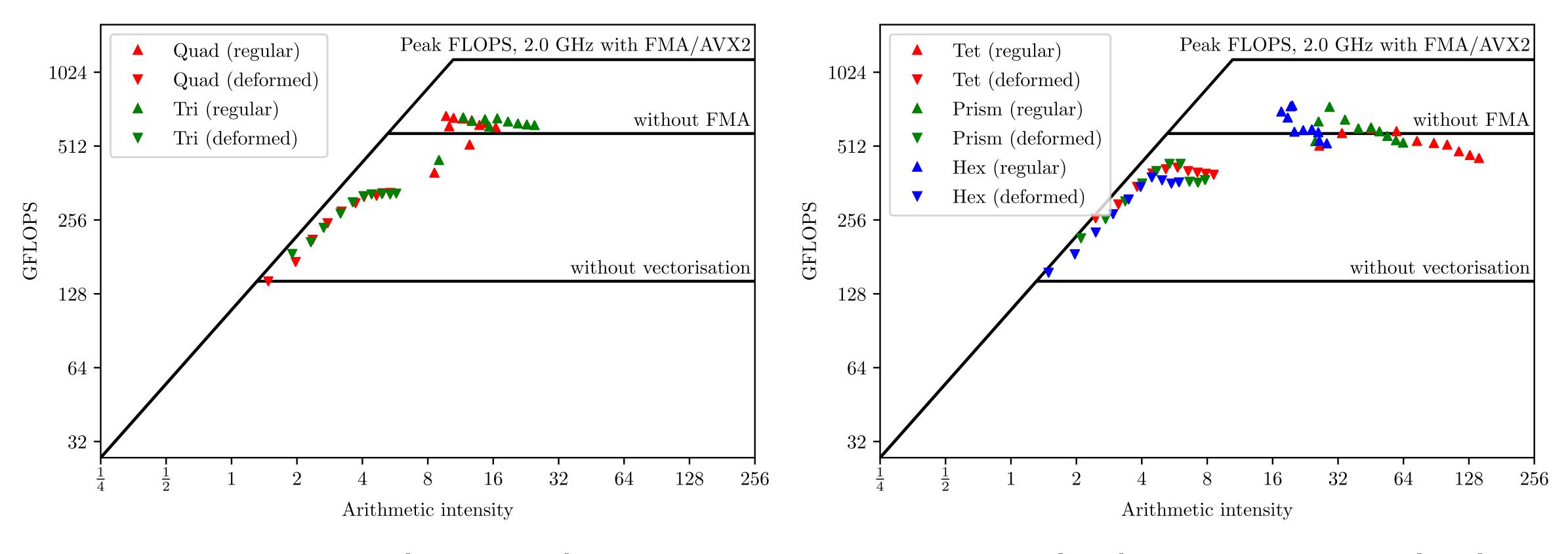
3D: 'Regular' elements

3D: 'Deformed' elements

Some clear trends

- This behaves pretty much as you might anticipate:
 - For regular elements, clear hierarchy of element type/dimension, where throughput is lost as dimension/complexity of indexing increases.
 - Regular elements outperform deformed elements due to increased memory bandwidth.
 - Relative performance gap between deformed elements decreases at moderate polynomial orders.

Roofline results



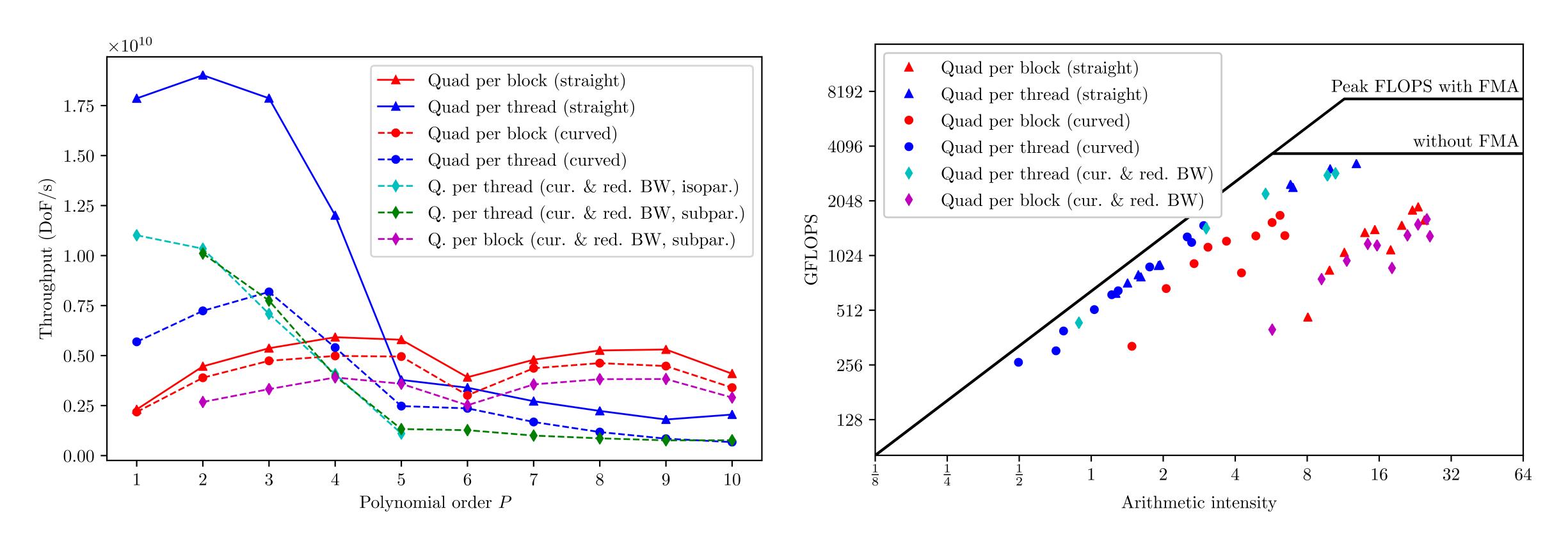
2D: Quads, triangles

3D: Hexahedra, prisms, tetrahedra

What about GPUs?

- More of a work in progress. Good indication that these techniques translate to GPU architectures, but more care required.
- Central issue is that as vector width increases, so too does cache pressure.
- Therefore a need for multiple strategies as polynomial order increases:
 - *per thread* parallelism: one element per thread, handles work at all solution points in the element (as in CPU tests).
 - *per block* parallelism: one element per SMX unit, then one thread per solution point.

Results: quadrilateral elements



Eichstadt, Peiró, Moxey, to be submitted

Results from Titan V benchmarking Similar trends for triangular elements

Summary

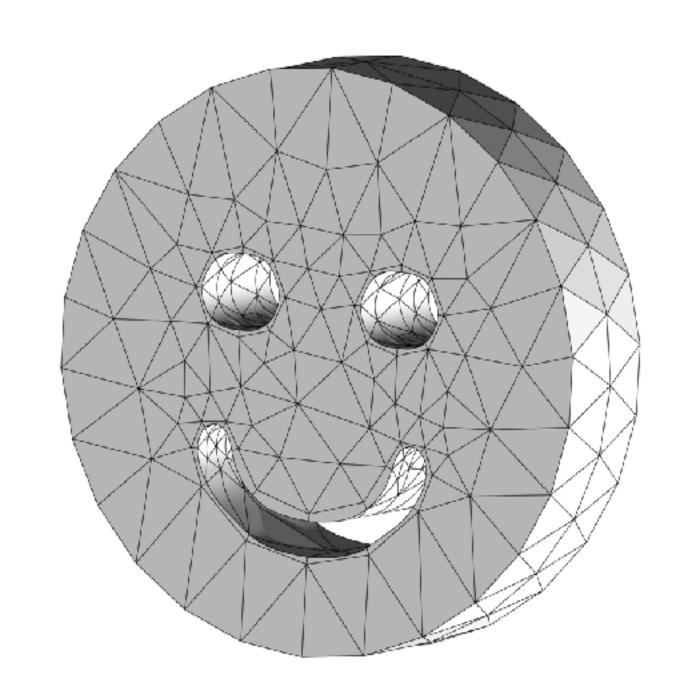
- Efficient matrix-free implementations of key finite element operators are certainly achievable on modern architectures for 'unstructured' elements.
- Inevitable drop in performance from quads/hexahedra: complexity of indexing, additional cache pressure, etc.
- However relative performance of e.g. hex/prism and quad/tri is actually pretty good, particularly for deformed elements; important for e.g. boundary layer problems with large proportion of BL prisms.
- Mesh generation still a key problem, GPU in 3D still to do.

Thanks for listening!

https://davidmoxey.uk/

david.moxey@kcl.ac.uk d.moxey@exeter.ac.uk

www.nektar.info



Nektar++: enhancing the capability and application of high-fidelity spectral/hp element methods

David Moxey¹, Chris D. Cantwell², Yan Bao³, Andrea Cassinelli², Giacomo Castiglioni², Sehun Chun⁴, Emilia Juda², Ehsan Kazemi⁴, Kilian Lackhove⁶, Julian Marcon², Gianmarco Mengaldo⁷, Douglas Serson², Michael Turner², Hui Xu^{5,2}, Joaquim Peiró², Robert M. Kirby⁸, Spencer J. Sherwin²