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Increasing desire for high-fidelity =~ Want to accurately model “difficult’ features:
CFD simulations in high-end e strongly separated flows, vortex interaction;
aeronautics applications. » feature tracking and prediction.

Goal: develop methods and techniques for making LES affordable & routine,
based on high-order finite element methods.
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What are high-order methods?
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Why use a high-order method for CFD?
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The spectral/hp element method

 Extend traditional FEM by
adding higher order
polynomials of degree P within

each element.

* e.g. high-order triangle has
(P+1)(P+2)/2 degrees of
freedom at a given order P.

* Increased accuracy: more done
per degree of freedom,
increased arithmetic intensity. spectral/hp element basis functions

5



The spectral/hp element method
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Challenges

High order methods can provide a lot of
benetfits for these problems:

very high accuracy over time/space;

excellent for tracking transient
structures;

tuneable arithmetic intensity:
overcome flops/byte barrier;

geometric flexibility.

but there are also some challenges...
» implementation difficulty;

» extra work per degree of freedom
means computational efficiency is
Important;

> mesh generation;

» other numerical challenges, e.g.
scalable preconditioning.



"Defining" features of spectral/hp method

Generally not collocated
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Uses tensor products of 1D basis functions, even for non-
tensor product shapes
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Implementation choices

Finite element operation evaluations (e.g. mass matrix) form bulk of
simulation cost; however can be evaluated in several ways.

Global matrix Local evaluation Matrix free
assemble a sparse matrix create elemental dense no local matrices at all
matrices + assembly map speedup

—) nNCreasing arithmetic intensity



Sum-factorisation

Key to performance at high polynomial orders: complexity O(P2d) to O(Pd+1)
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Works in essentially the same way for more complex indexing for e.g. triangles:
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Unstructured simulations

« Common knowledge: hex/quad
elements yield best performance.

* However complex geometries
presently require meshes of
‘unstructured’ elements: tets, prisms,
etc.

» Potentially use tensor-product basis on
unstructured elements, enable matrix-
free operators + sum factorisation.
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High-order mesh generation

triangulation

» Good quality meshes are essential to
simulation results.

* We can have a very fancy solver, but if
there's no mesh then you can’t run
your simulation!

* At high orders we have an additional

headache, as we must curve the
elements to fit the geometry. \

don’t lie on the surface!
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High-order mesh generation

—————
add curvature
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Straight-sided mesh . . .
Optimisation

find min & (@) = min W(V@) dy
¢ ¢ 0,

i.e. treat the mesh as a solid body
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Unstructured elements

» Unstructured elements generally
make use of Lagrange basis
functions.

e Combine this with a suitable set
of cubature points: either
collocated or not.

* However this loses tensor-
products structure: i.e. no sum
factorisation possible.

P5 triangle, Fekete points
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Key questions

» Under spectral/hp approach, sum-factorisation matrix-free operators are
certainly possible for any element type. Some questions:

- How much performance do we lose relative to hex/quad?

- How should SIMD be used?

» Developed a benchmarking utility for Helmholtz operator to test viability
of this approach: used for implicit solve in incompressible N-S equations.

Viu—u=fx) - (L+iAMa="f
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Data layout

. Opgratlons OCCur over groups of elements elements
of size of vector width

« Use C++ data type that encodes vector
operations vs. compiler intrinsics.

» Templating used to allow compiler to
unroll as much as possible.

T

256-bit AVX2

'

basis functions
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Implementation particulars

Hand-written kernels for each element type to implement three key
components: interpolation, derivatives and inner products/integration.

Written using C++: templating on (potentially heterogeneous) polynomial
order, quadrature order and vector width.

Also templates on affine elements (spatially-constant Jacobian) vs.
curvilinear (spatially-varying); no consideration for Cartesian meshes.

Templating gives significant improvements in runtime performance,
particularly for complex loop structures found in this regime.
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Xx86-64 CPU Tests

» Benchmarking of Helmholtz operator performed on two x86 architectures
with varying SIMD widths.

Broadwell (AVX2) Skylake (AVX512)

Model E5-2697 v4 Xeon Gold 6130

Clock speed(s) 2.3/2.0 GHz 2.1/1.7/1.3 GHz
P standard / AVX2 standard / AVX / AVX512
Cores / sockets 18/ 2 16/ 2
Max node GFLOP/s 1,152 870 (AVX2)

1,331 (AVX512)
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Assessing performance

» Various techniques used to assess kernel performance:

- Throughput: number of local DoF/s processed, for a mesh whose sizes exceeds
available cache.

- GFLOP/s gives some indication of capabilities, provided we are not memory-

bound.

- Better is roofline analysis: where do we sit in terms of memory bandwidth to
arithmetic intensity?

* Note all results for local elemental operation evaluation only: Co work in progress.
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Throughput (AVX2, Broadwell)
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Throughput (DoF/s)

Throughput (AVX512/AVX2, Skylake)
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Some clear trends

 This behaves pretty much as you might anticipate:

- For regular elements, clear hierarchy of element type/dimension, where
throughput is lost as dimension/complexity of indexing increases.

- Regular elements outperform deformed elements due to increased
memory bandwidth.

- Relative performance gap between deformed elements decreases at
moderate polynomial orders.
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GFLOPS

Roofline results
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What about GPUs?

* More of a work in progress. Good indication that these techniques translate to
GPU architectures, but more care required.

* Central issue is that as vector width increases, so too does cache pressure.
» Therefore a need for multiple strategies as polynomial order increases:

 per thread parallelism: one element per thread, handles work at all solution
points in the element (as in CPU tests).

» per block parallelism: one element per SMX unit, then one thread per
solution point.
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Throughput (DoF/s)

Results: quadrilateral elements
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Summary

Efficient matrix-free implementations of key finite element operators are
certainly achievable on modern architectures for ‘unstructured” elements.

Inevitable drop in performance from quads/hexahedra: complexity of
indexing, additional cache pressure, etc.

However relative performance of e.g. hex/prism and quad/tri is actually
pretty good, particularly for deformed elements; important for e.g.
boundary layer problems with large proportion of BL prisms.

Mesh generation still a key problem, GPU in 3D still to do.
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Thanks for listening!

https://davidmoxey.uk/

david.moxey@kcl.ac.uk
d.moxey@exeter.ac.uk
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