Towards high-fidelity industrial fluid

dynamics simulations at high order
David Moxey

Platform for Advanced Scientific Computing

6th July 2021

ombard, Moxey et al., AIAA J (2016)

.

Cp: -2.00 -160 -1.20 -0.80 -0.40 0.00

Increasing desire for high-fidelity =~ Want to accurately model “difficult’ features:
CFD simulations in high-end e strongly separated flows, vortex interaction;
aeronautics applications. » feature tracking and prediction.

Goal: develop methods and techniques for making LES affordable & routine,
based on high-order finite element methods.

2

What are high-order methods?

4 finite element method Spec}fradl
metho
.

spatial flexibility (h)

1 spectral/hp
element

accuracy (p)

Why use a high-order method for CFD?

Time =

‘Exact’ solution N,=128 F=1

1.05
0.95
=1 0.85
0.75
0.63

1 0.55
0.45

0.335
0.25
0.135
0.05
-0.05

N,=32;P=3 N,=8P=8

The spectral/hp element method

 Extend traditional FEM by
adding higher order
polynomials of degree P within

each element.

* e.g. high-order triangle has
(P+1)(P+2)/2 degrees of
freedom at a given order P.

* Increased accuracy: more done
per degree of freedom,
increased arithmetic intensity. spectral/hp element basis functions

5

The spectral/hp element method

X = x(5)
RS ARRNN
LN
collapsed reference
coordinates element
(n,1) € —1,1] (&1, 5) € Qg
r D

(C9) tensor
product basis

cb,? un, 561(’72)
- Y

Challenges

High order methods can provide a lot of
benetfits for these problems:

very high accuracy over time/space;

excellent for tracking transient
structures;

tuneable arithmetic intensity:
overcome flops/byte barrier;

geometric flexibility.

but there are also some challenges...
» implementation difficulty;

» extra work per degree of freedom
means computational efficiency is
Important;

> mesh generation;

» other numerical challenges, e.g.
scalable preconditioning.

"Defining" features of spectral/hp method

Generally not collocated

u(é i &) = Z i, (&) = 2 Z D EDD (&)

/ =N

quadrature points modal coefficients

Uses tensor products of 1D basis functions, even for non-
tensor product shapes

P O—-pR-p—q

U Ep &) = D D Dl DHE DD EN DL, (Ex)

p=0 g=0 r=0 \

basis function indexing harder

Implementation choices

Finite element operation evaluations (e.g. mass matrix) form bulk of
simulation cost; however can be evaluated in several ways.

Global matrix Local evaluation Matrix free
assemble a sparse matrix create elemental dense no local matrices at all
matrices + assembly map speedup

—) nNCreasing arithmetic intensity

Sum-factorisation

Key to performance at high polynomial orders: complexity O(P2d) to O(Pd+1)

P O P 0,
Y Y i, b EDbE) = Y D) | Y ()
p=0

p=0 g=0 qg=0 \

store this

Works in essentially the same way for more complex indexing for e.g. triangles:

P Q7 P Q—p
YD i DB E) = D BEED | Y, gl N
p=0 g=0 p=0 g=0

store this

10

Unstructured simulations

« Common knowledge: hex/quad
elements yield best performance.

* However complex geometries
presently require meshes of
‘unstructured’ elements: tets, prisms,
etc.

» Potentially use tensor-product basis on
unstructured elements, enable matrix-
free operators + sum factorisation.

11

High-order mesh generation

triangulation

» Good quality meshes are essential to
simulation results.

* We can have a very fancy solver, but if
there's no mesh then you can’t run
your simulation!

* At high orders we have an additional

headache, as we must curve the
elements to fit the geometry. \

don’t lie on the surface!

12

High-order mesh generation

—————
add curvature

13

Straight-sided mesh . . .
Optimisation

find min & (@) = min W(V@) dy
¢ ¢ 0,

i.e. treat the mesh as a solid body

. N |
NN N

A. VAVA‘ | Deformed mesh
L
Boundary
projection

Example: DLR F6 e

100 ¢ .
- I Orginial
10° |

ngine

10|

1031

Element count

—1.0 —0.5 0.0 0.5 1.0
Scaled Jacobian J;

10 ¢ . . .

I Hyper elastic
10° L

Element count

100 L I
—1.0 —0.5 0.0
Scaled Jacobian J;

Unstructured elements

» Unstructured elements generally
make use of Lagrange basis
functions.

e Combine this with a suitable set
of cubature points: either
collocated or not.

* However this loses tensor-
products structure: i.e. no sum
factorisation possible.

P5 triangle, Fekete points

16

Key questions

» Under spectral/hp approach, sum-factorisation matrix-free operators are
certainly possible for any element type. Some questions:

- How much performance do we lose relative to hex/quad?

- How should SIMD be used?

» Developed a benchmarking utility for Helmholtz operator to test viability
of this approach: used for implicit solve in incompressible N-S equations.

Viu—u=fx) - (L+iAMa="f

17

Data layout

. Opgratlons OCCur over groups of elements elements
of size of vector width

« Use C++ data type that encodes vector
operations vs. compiler intrinsics.

» Templating used to allow compiler to
unroll as much as possible.

T

256-bit AVX2

'

basis functions

18

Implementation particulars

Hand-written kernels for each element type to implement three key
components: interpolation, derivatives and inner products/integration.

Written using C++: templating on (potentially heterogeneous) polynomial
order, quadrature order and vector width.

Also templates on affine elements (spatially-constant Jacobian) vs.
curvilinear (spatially-varying); no consideration for Cartesian meshes.

Templating gives significant improvements in runtime performance,
particularly for complex loop structures found in this regime.

19

Xx86-64 CPU Tests

» Benchmarking of Helmholtz operator performed on two x86 architectures
with varying SIMD widths.

Broadwell (AVX2) Skylake (AVX512)

Model E5-2697 v4 Xeon Gold 6130

Clock speed(s) 2.3/2.0 GHz 2.1/1.7/1.3 GHz
P standard / AVX2 standard / AVX / AVX512
Cores / sockets 18/ 2 16/ 2
Max node GFLOP/s 1,152 870 (AVX2)

1,331 (AVX512)

20

Assessing performance

» Various techniques used to assess kernel performance:

- Throughput: number of local DoF/s processed, for a mesh whose sizes exceeds
available cache.

- GFLOP/s gives some indication of capabilities, provided we are not memory-

bound.

- Better is roofline analysis: where do we sit in terms of memory bandwidth to
arithmetic intensity?

* Note all results for local elemental operation evaluation only: Co work in progress.

21

Throughput (AVX2, Broadwell)

—A&— Quad (regular)

3 x 10” / -¥- Quad (deformed)
—&— Tri (regular)
-¥- Tri (deformed)
9
—~ 2 x 10
~=
eF
@,
S}
+~
-
oF
=
=
@) ’—" —————————— -
E 109 - \ SO <" ~~~~~~~~ v-
H ',— * ~~~~~ ‘ ~~~*~~~
T - = 2 v
aat A
i 2
NN*N
8 S~
6 x 10° 1 V-~ __
I 4
| | | | | | | | | |
1 2 3 4 5! 6 7 8 9 10

Polynomial order p

2D: Quades, triangles

Throughput (DoF/s)

109 -
—A&— Tet (regular) ~~e
-¥- Tet (deformed) = ~=~<_
—A— Prism (regular) =~ TTeg
-¥- Prism (deformed) TS=y__
—— Hex (regular) TWw___ v
108 - -¥- Hex (deformed) 0 TTTee=s v
| | | | | | |
1 2 3 5! 6 9 10

3D: Hexahedra, prisms, tetrahedra

Polynomial order p

Throughput (DoF/s)

Throughput (AVX512/AVX2, Skylake)

Tet (AVX512)
Tet (AVX2)
Prism (AVX512)
Prism (AVX2)
Hex (AVX512)

-
—y
-~
e I

—
—
—
‘-

Hex (AVX2)
10 -
~~ae__
~ae__)
108 i I I I I I I I I I I
1 2 3 4 5 6 7 8 9 10

Polynomial order p

3D: ‘Regular’ elements

6 x 108 -
2 4% 108 -
[y
Qo
-
3 x10%;
=S
2,
<
20
S
2 2 x 108
= —A— Tet (AVX512)
-A- Tet (AVX2) A
—&— Prism (AVX512)
-A- Prism (AVX2) .
* HeX (AVX512) \\N*\
10° 1 -A- Hex (AVX?2) TN
1 2 3 4 5 0 7 8 9 10

Polynomial order p

3D: ‘Deformed’ elements

Some clear trends

 This behaves pretty much as you might anticipate:

- For regular elements, clear hierarchy of element type/dimension, where
throughput is lost as dimension/complexity of indexing increases.

- Regular elements outperform deformed elements due to increased
memory bandwidth.

- Relative performance gap between deformed elements decreases at
moderate polynomial orders.

24

GFLOPS

Roofline results

Peak FLOPS, 2.0 GHz with FMA /AVX2

without vectorisation

A Quad (regular) Peak FLOPS, 2.0 GHz with FMA /AVX2 A Tet (regular)
10249 v Quad (deformed) 102479 v et (deformed)
A Tri (regular) YR without FMA A Prism (regular)
r194 ¥ Tri (deformed) y r194 ¥ Prism (deformed)
e A Hex (regular)
w m Y Hex (deformed)
256 - v 2 256 -
v =
) without vectorisation %
128 A 128 -
64 - 64 -
32 39
| | | | | | | | | 1 i | |
¥ ; 1 2 4 8 16 32 64 128 256 y : 1 2

2D: Quades, triangles

Arithmetic intensity

4 8 16 32 64

Arithmetic intensity

128 256

3D: Hexahedra, prisms, tetrahedra

What about GPUs?

* More of a work in progress. Good indication that these techniques translate to
GPU architectures, but more care required.

* Central issue is that as vector width increases, so too does cache pressure.
» Therefore a need for multiple strategies as polynomial order increases:

 per thread parallelism: one element per thread, handles work at all solution
points in the element (as in CPU tests).

» per block parallelism: one element per SMX unit, then one thread per
solution point.

26

Throughput (DoF/s)

Results: quadrilateral elements

1.75 -

- - — p— —
(@) ~ - (\) Ot
) ot @) Ot -
I I I I I

0.25 -

0.00 -

x 1010
—&— Quad per block (straight) 3109 -
—a— (Quad per thread (straight)
d block d
Quad per block (curved) 4096 -
Quad per thread (curved)
Q. per thread (cur. & red. BW, isopar.) 2048
Q. per thread (cur. & red. BW, subpar.) o
Q. per block (cur. & red. BW, subpar.) %
a
@)
SN, — T - 2
A
N e 7" - ___
\/ LERRECEY S s LT ——d
| | | | | | | | 1
1 4 5! 6 7 8 9 10 8

Polynomial order P

A Quad per block (straight)
A Quad per thread (straight) Peak FLOPS with FMA
® Quad per block (curved)
® (Quad per thread (curved) without FMA
¢ Quad per thread (cur. & red. BW) ot
¢ Quad per block (cur. & red. BW) ¢ "
st 4%
) "4
oA ¢
1 1 ! 2 1 16 32 64

Arithmetic intensity

Results from Titan V benchmarking
Similar trends for triangular elements

Summary

Efficient matrix-free implementations of key finite element operators are
certainly achievable on modern architectures for ‘unstructured” elements.

Inevitable drop in performance from quads/hexahedra: complexity of
indexing, additional cache pressure, etc.

However relative performance of e.g. hex/prism and quad/tri is actually
pretty good, particularly for deformed elements; important for e.g.
boundary layer problems with large proportion of BL prisms.

Mesh generation still a key problem, GPU in 3D still to do.

28

Thanks for listening!

https://davidmoxey.uk/

david.moxey@kcl.ac.uk
d.moxey@exeter.ac.uk

“loneering research
and skills

www.nektar.info

Nektar++: enhancing the capability and application of high-fidelity spectral/ap element
methods

David Moxeyl, Chris D. Cantwell?, Yan Bao®, Andrea Cassinelli?, Giacomo Castiglioniz, Sehun Chun®, Emilia Juda?,
Ehsan Kazemi®, Kilian Lackhove®, Julian Marcon?, Gianmarco Mengald07, Douglas Serson?, Michael Turner?, Hui Xu>+2,
Joaquim Peiré?, Robert M. Kirby®, Spencer J. Sherwin”

https://davidmoxey.uk
mailto:david.moxey@kcl.ac.uk
mailto:d.moxey@exeter.ac.uk
http://www.nektar.info

