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Increasing desire for high-fidelity =~ Want to accurately model “difficult’ features:
CFD simulations in high-end e strongly separated flows, vortex interaction;
aeronautics applications. » feature tracking and prediction.

Challenging with current RANS-based industry-standard tools.

Goal: develop methods and techniques for making LES affordable & routine.
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Challenges

High order methods can provide a lot of
benetfits for these problems:

very high accuracy over time/space;

excellent for tracking transient
structures;

tuneable arithmetic intensity:
overcome flops/byte barrier;

geometric flexibility.

but there are also some challenges...
» implementation difficulty;

» extra work per degree of freedom
means computational efficiency is
Important;

» other numerical challenges, e.g.
scalable preconditioning;

> mesh generation.



The modern hardware landscape

» Peak FLOPS/s are increasing at around 50-60%
per year, but memory bandwidth only increasing

at around 25% per year!

* If we want the most out of our hardware, we
need to fully exploit its architecture:

* Many-core environment, perform multiple
instructions per cycle: SIMD vectorisation;

* Increase arithmetic intensity of algorithms: do
as much work with data as possible.

I John McCalpin, Memory bandwidth and system balance, Supercomputing, 2016.



The modern hardware landscape

Tesla V100 Volta: ~7.8 TFLOP/s, ~300-900GB/s.
2,688 cores, 32 FP64 vector lanes.
32 FP64 FLOPS/cycle.

Xeon Platinum 8180M: ~1.7TFLOP/s, ~150GB/s.
28 physical cores, 8 FP64 vector lanes.
2 AVX512 + FMA units: 32 FLOPS/cycle.




The spectral/hp element method

 Extend traditional FEM by
adding higher order
polynomials of degree P within

each element.

* e.g. high-order triangle has
(P+1)(P+2)/2 degrees of
freedom at a given order P.

* Increased accuracy: more done
per degree of freedom,
increased arithmetic intensity. spectral/hp element basis functions

6



The spectral/hp element method

X = x(5)
RS ARRNN
LN
collapsed reference
coordinates element
(n,1) € —1,1] (&1, 5) € Qg
r D

(C9) tensor
product basis

cb,? un, 561(’72)
- Y




"Defining" features of spectral/hp method

Generally not collocated
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quadrature points modal coefficients

Uses tensor products of 1D basis functions, even for non-
tensor product shapes
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basis function indexing harder




Implementation choices

Finite element operation evaluations (e.g. mass matrix) form bulk of
simulation cost; can be done in several ways.

Global matrix Local evaluation Matrix free
assemble a sparse matrix create elemental dense no local matrices at all
matrices + assembly map speedup

—) nNCreasing arithmetic intensity



Sum-factorisation

Key to performance at high polynomial orders: complexity O(P2d) to O(Pd+1)
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store this

Works in essentially the same way for more complex indexing for e.g. triangles:
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Unstructured simulations

« Common knowledge: hex/quad
elements yield best performance.

* However complex geometries
presently require meshes of
‘unstructured’ elements: tets, prisms,
etc.

» Potentially use tensor-product basis on
unstructured elements, enable matrix-
free operators + sum factorisation.
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Unstructured elements

» Unstructured elements generally
make use of Lagrange basis
functions.

e Combine this with a suitable set
of cubature points: either
collocated or not.

* However this loses tensor-
products structure: i.e. no sum
factorisation possible.

P5 triangle, Fekete points
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Key questions

» Under spectral/hp approach, sum-factorisation matrix-free operators are
certainly possible for any element type. Some questions:

- How much performance do we lose relative to hex/quad?

- How should SIMD be used?

» Developed a benchmarking utility for Helmholtz operator to test viability
of this approach: used for implicit solve in incompressible N-S equations.

Viu—u=fx) - (L+iAMa="f
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Data layout

Natural to consider data laid out element by element

degrees of freedom =—

elements




Data layout

Exploit vectorisation by grouping DoFs by vector width

degrees of freedom =—

elements




Data layout

elements

» Operations occur over groups of
elements of size of vector width.

» Use C++ data type that encodes
vector operations (common strategy).

basis functions

T

256-bit AVX2

'
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Implementation particulars

Hand-written kernels for each element type to implement three key
components: interpolation, derivatives and inner products/integration.

Written using C++: templating on (potentially heterogeneous) polynomial
order and quadrature order.

Also templates on affine elements (spatially-constant Jacobian) vs.
curvilinear (spatially-varying); no consideration for Cartesian meshes.

Templating gives significant improvements in runtime performance,
particularly for complex loop structures found in this regime.
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Tests

* Benchmarking of Helmholtz operator performed on two architectures with
varying SIMD widths.

Broadwell (AVX2) Skylake (AVX512)

Model E5-2697 v4 Xeon Gold 6130

Clock speed(s) 2.3/2.0 GHz 2.1/1.7/1.3 GHz
P standard / AVX2 standard / AVX / AVX512
Cores / sockets 18/ 2 16/ 2
Max node GFLOP/s 1,152 870 (AVX2)

1,331 (AVX512)
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Assessing performance

» Various techniques used to assess kernel performance:

- Throughput: number of local DoF/s processed, for a mesh whose sizes exceeds
available cache.

- GFLOP/s gives some indication of capabilities, provided we are not memory-

bound.

- Better is roofline analysis: where do we sit in terms of memory bandwidth to
arithmetic intensity?

* Note all results for local elemental operation evaluation only: Co work in progress.
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Throughput (AVX2, Broadwell)
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2D: Quades, triangles
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3D: Hexahedra, prisms, tetrahedra
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Throughput (DoF/s)

Throughput (AVX512/AVX2, Skylake)
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3D: ‘Regular’ elements
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3D: ‘Deformed’ elements




Some clear trends

 This behaves pretty much as you might anticipate:

- For regular elements, clear hierarchy of element type/dimension, where
throughput is lost as dimension/complexity of indexing increases.

- Regular elements outperform deformed elements due to increased
memory bandwidth.

- Relative performance gap between deformed elements decreases at
moderate polynomial orders.
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Roofline model

» Roofline modelling should give better indication of ability of kernel to hit
peak computational performance:

Max GFLOPS/s = min(peak GFLOPS/s, peak memory bandwidth x a)

 Profiled on Broadwell architecture using 1ikwid performance profiling
tools; hardware counters observed for GFLOPS/s and memory transfer.
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GFLOPS

Roofline results

Peak FLOPS, 2.0 GHz with FMA /AVX2

without vectorisation
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Some comparisons: static condensation

A common strategy to improve performance when
considering high-order elements is static
condensation (or substructuring).

Reorder degrees of freedom so that all boundary
DoF are first, followed by interior.

Use Schur complement to form a smaller system to
solve on the boundary.

Loses all tensor product structure, need to use local
matrix approach.



Throughput (DoF /s)
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Work in progress: C° operators

» Throughput reduces as expected
when taking into account more
expensive global assembly.

* However for a constant DoF
problem (i.e. change mesh size
as a function of polynomial
order), cost at higher orders is
reduced relative to increased
memory requirements.

Throughput (DoF/s)
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Summary

Efficient matrix-free implementations of key finite element operators are
certainly achievable on modern architectures for ‘unstructured” elements.

Inevitable drop in performance from quads/hexahedra: complexity of
indexing, additional cache pressure, etc.

However relative performance of e.g. hex/prism and quad/tri is actually
pretty good, particularly for deformed elements; important for e.g.
boundary layer problems with large proportion of BL prisms.

Future directions: revisit elemental basis formulations.
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Thanks for listening!

https://davidmoxey.uk/

d.moxey@exeter.ac.uk
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