Exploiting SIMD vectorisation for unstructured scale-resolving simulations

David Moxey College of Engineering, Mathematics & Physical Sciences, University of Exeter

Roman Amici and Mike Kirby Scientific Computing and Imaging Institute, University of Utah

International Symposium on High-Fidelity Computational Methods and Applications Shanghai, China

15th December 2019

Want to accurately model 'difficult' features: Increasing desire for **high-fidelity** CFD simulations in high-end • strongly separated flows, vortex interaction; • feature tracking and prediction. aeronautics applications.

Challenging with current RANS-based industry-standard tools. **Goal:** develop methods and techniques for making LES affordable & routine.

Challenges

High order methods can provide a lot of benefits for these problems:

- ✓ very high accuracy over time/space;
- excellent for tracking transient structures;
- ✓ tuneable arithmetic intensity: overcome flops/byte barrier;
- ✓ geometric flexibility.

but there are also some challenges...

implementation difficulty;

- extra work per degree of freedom means computational efficiency is important;
- other numerical challenges, e.g. scalable preconditioning;
- mesh generation.

The modern hardware landscape

- Peak FLOPS/s are increasing at around **50-60%** per year, but memory bandwidth only increasing at around **25% per year**¹.
- If we want the most out of our hardware, we need to fully exploit its architecture:
 - Many-core environment, perform multiple instructions per cycle: **SIMD vectorisation**;
 - Increase arithmetic intensity of algorithms: do as much work with data as possible.

¹ John McCalpin, *Memory bandwidth and system balance*, Supercomputing, 2016.

The modern hardware landscape

Scalable Fa WITH OMNI-PATH FABRIC

Xeon Platinum 8180M: ~1.7TFLOP/s, ~150GB/s. 28 physical cores, 8 FP64 vector lanes. 2 AVX512 + FMA units: 32 FLOPS/cycle.

Tesla V100 Volta: ~7.8 TFLOP/s, ~300-900GB/s. 2,688 cores, 32 FP64 vector lanes. 32 FP64 FLOPS/cycle.

The spectral/hp element method

- Extend traditional FEM by adding higher order polynomials of degree *P* within each element.
- e.g. high-order triangle has (P+1)(P+2)/2 degrees of freedom at a given order P.
- Increased accuracy: more done per degree of freedom, increased arithmetic intensity.

local bases

spectral/hp element basis functions

The spectral/hp element method

collapsed coordinates $(\eta_1, \eta_2) \in [-1, 1]^2$

(C⁰) tensor product basis $\phi_p^a(\eta_1) \phi_{pq}^b(\eta_2)$

"Defining" features of spectral/hp method

Uses tensor products of 1D basis functions, even for nontensor product shapes

$$u(\xi_{1i},\xi_{2j},\xi_{3j}) = \sum_{p=0}^{P} \sum_{q=0}^{Q-p} \sum_{r=0}^{R-p-q} \hat{u}_{pqr} \phi_p^a(\xi_{1i}) \phi_{pq}^b(\xi_{2j}) \phi_{pqr}^c(\xi_{3k})$$

Generally not collocated

$$\xi) = \sum_{p=0}^{P} \sum_{q=0}^{Q} \hat{u}_{pq} \phi_p(\xi_{1i}) \phi_q(\xi_{2j})$$

modal coefficients

basis function indexing harder

Implementation choices

Global matrix assemble a sparse matrix

increasing arithmetic intensity

Finite element operation evaluations (e.g. mass matrix) form bulk of simulation cost; can be done in several ways.

> Local evaluation **Matrix free** create elemental dense no local matrices at all matrices + assembly map **sum factorisation** speedup

Sum-factorisation

Key to performance at high polynomial orders: complexity O(P^{2d}) to O(P^{d+1})

$$\sum_{p=0}^{P} \sum_{q=0}^{Q} \hat{u}_{pq} \phi_{p}(\xi_{1i}) \phi_{q}(\xi_{2j})$$

Works in essentially the same way for more complex indexing for e.g. triangles:

$$\sum_{p=0}^{P} \sum_{q=0}^{Q-p} \hat{u}_{pq} \phi_{p}^{a}(\xi_{1i}) \phi_{pq}^{b}(\xi_{2j})$$

 $= \sum_{i=1}^{P} \phi_p^a(\xi_{1i}) \left| \begin{array}{c} Q-p \\ \sum \hat{u}_{pq} \phi_{pq}^b(\xi_{2j}) \right| \right|$ *p*=0 q = 0store this

Unstructured simulations

- Common knowledge: hex/quad elements yield best performance.
- However complex geometries presently require meshes of 'unstructured' elements: tets, prisms, etc.
- Potentially use tensor-product basis on unstructured elements, enable matrixfree operators + sum factorisation.

Unstructured elements

P5 triangle, Fekete points

- Unstructured elements generally make use of Lagrange basis functions.
- Combine this with a suitable set of cubature points: either collocated or not.
- However this loses tensorproducts structure: i.e. no sum factorisation possible.

Key questions

- Under spectral/*hp* approach, sum-factorisation matrix-free operators are certainly possible for any element type. Some questions:
 - How much performance do we lose relative to hex/quad?
 - How should SIMD be used?
- Developed a benchmarking utility for Helmholtz operator to test viability of this approach: used for implicit solve in incompressible N-S equations.

$$\nabla^2 u - \lambda u = f(x)$$

$$\rightarrow (\mathbf{L} + \lambda \mathbf{M})\hat{\mathbf{u}} = \hat{\mathbf{f}}$$

Data layout

Natural to consider data laid out element by element

Data layout

Exploit vectorisation by grouping DoFs by vector width

Data layout

elements

- Operations occur over groups of elements of size of vector width.
- Use C++ data type that encodes vector operations (common strategy).

basis functions

Implementation particulars

- Hand-written kernels for each element type to implement three key components: **interpolation**, **derivatives** and **inner products/integration**.
- Written using C++: templating on (potentially heterogeneous) polynomial order and quadrature order.
- Also templates on **affine elements** (spatially-constant Jacobian) vs. **curvilinear** (spatially-varying); no consideration for Cartesian meshes.
- Templating gives *significant* improvements in runtime performance, particularly for complex loop structures found in this regime.

• Benchmarking of Helmholtz operator performed on two architectures with varying SIMD widths.

Tests

well (AVX2)	Skylake (AVX512)
5-2697 v4	Xeon Gold 6130
/ 2.0 GHz dard / AVX2	2.1 / 1.7 / 1.3 GHz standard / AVX / AVX512
18/2	16/2
1,152	870 (AVX2) 1,331 (AVX512)

- Various techniques used to assess kernel performance:
 - **Throughput**: number of local DoF/s processed, for a mesh whose sizes exceeds available cache.
 - GFLOP/s gives some indication of capabilities, provided we are not memorybound.
 - Better is **roofline analysis**: where do we sit in terms of memory bandwidth to arithmetic intensity?
- Note all results for local elemental operation evaluation only: C⁰ work in progress.

Assessing performance

Throughput (AVX2, Broadwell)

2D: Quads, triangles

3D: Hexahedra, prisms, tetrahedra

Throughput (AVX512/AVX2, Skylake)

3D: 'Regular' elements

3D: 'Deformed' elements

Some clear trends

- This behaves pretty much as you might anticipate:

 - memory bandwidth.
 - moderate polynomial orders.

• For regular elements, clear hierarchy of element type/dimension, where throughput is lost as dimension/complexity of indexing increases.

Regular elements outperform deformed elements due to increased

Relative performance gap between deformed elements decreases at

Roofline model

- peak computational performance:

• Roofline modelling should give better indication of ability of kernel to hit

Max GFLOPS/s = min(peak GFLOPS/s, peak memory bandwidth $\times \alpha$)

• Profiled on Broadwell architecture using likwid performance profiling tools; hardware counters observed for GFLOPS/s and memory transfer.

Roofline results

2D: Quads, triangles

3D: Hexahedra, prisms, tetrahedra

Some comparisons: static condensation

- A common strategy to improve performance when considering high-order elements is static condensation (or substructuring).
- Reorder degrees of freedom so that all boundary DoF are first, followed by interior.
- Use Schur complement to form a smaller system to solve on the boundary.
- Loses all tensor product structure, need to use local matrix approach.

Throughput against static condensation

Prisms

Tetrahedra

Work in progress: C⁰ operators

- Throughput reduces as expected when taking into account more expensive global assembly.
- However for a constant DoF problem (i.e. change mesh size as a function of polynomial order), cost at higher orders is reduced relative to increased memory requirements.

Summary

- Efficient matrix-free implementations of key finite element operators are certainly achievable on modern architectures for 'unstructured' elements.
- Inevitable drop in performance from quads/hexahedra: complexity of indexing, additional cache pressure, etc.
- However relative performance of e.g. hex/prism and quad/tri is actually pretty good, particularly for deformed elements; important for e.g. boundary layer problems with large proportion of BL prisms.
- Future directions: revisit elemental basis formulations.

https://davidmoxey.uk/

<u>d.moxey@exeter.ac.uk</u>

www.nektar.info

https://prism.ac.uk/

David Moxey¹, Chris D. Cantwell², Yan Bao³, Andrea Cassinelli², Giacomo Castiglioni², Sehun Chun⁴, Emilia Juda², Ehsan Kazemi⁴, Kilian Lackhove⁶, Julian Marcon², Gianmarco Mengaldo⁷, Douglas Serson², Michael Turner², Hui Xu^{5,2}, Joaquim Peiró², Robert M. Kirby⁸, Spencer J. Sherwin²

Thanks for listening!

Nektar++: enhancing the capability and application of high-fidelity spectral/*hp* element methods