
Exploiting SIMD vectorisation for 
unstructured scale-resolving simulations

David Moxey

College of Engineering, Mathematics & Physical Sciences, University of Exeter


Roman Amici and Mike Kirby

Scientific Computing and Imaging Institute, University of Utah


International Symposium on High-Fidelity Computational Methods and Applications 
Shanghai, China


15th December 2019



2

Lombard, Moxey et al., AIAA J (2016)

Increasing desire for high-fidelity

CFD simulations in high-end

aeronautics applications.

Want to accurately model ‘difficult’ features:

• strongly separated flows, vortex interaction;

• feature tracking and prediction.

Goal: develop methods and techniques for making LES affordable & routine.

Challenging with current RANS-based industry-standard tools.



Challenges
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High order methods can provide a lot of 
benefits for these problems:


✓ very high accuracy over time/space;


✓ excellent for tracking transient 
structures;


✓ tuneable arithmetic intensity: 
overcome flops/byte barrier; 


✓ geometric flexibility.

but there are also some challenges…


➤ implementation difficulty;


➤ extra work per degree of freedom 
means computational efficiency is 
important;


➤ other numerical challenges, e.g. 
scalable preconditioning;


➤ mesh generation.



The modern hardware landscape

• Peak FLOPS/s are increasing at around 50-60% 
per year, but memory bandwidth only increasing 
at around 25% per year1.


• If we want the most out of our hardware, we 
need to fully exploit its architecture:


• Many-core environment, perform multiple 
instructions per cycle: SIMD vectorisation;


• Increase arithmetic intensity of algorithms: do 
as much work with data as possible.

1 John McCalpin, Memory bandwidth and system balance, Supercomputing, 2016.



The modern hardware landscape

Tesla V100 Volta: ~7.8 TFLOP/s, ~300-900GB/s.

2,688 cores, 32 FP64 vector lanes.

32 FP64 FLOPS/cycle.

Xeon Platinum 8180M: ~1.7TFLOP/s, ~150GB/s.

28 physical cores, 8 FP64 vector lanes.

2 AVX512 + FMA units: 32 FLOPS/cycle.



The spectral/hp element method

• Extend traditional FEM by 
adding higher order 
polynomials of degree P within 
each element.


• e.g. high-order triangle has 
(P+1)(P+2)/2 degrees of 
freedom at a given order P.


• Increased accuracy: more done 
per degree of freedom, 
increased arithmetic intensity.
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spectral/hp element basis functions

Spectral/hp element methods
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Z 1

�1

u(⇠)d⇠ =
Q�1X

i=0

wiu(⇠i)

⌦e �(⇠)

Ω 1 Ω 2 Ω 3
1x 3x0x 2x

0(x)Φ

1(x)Φ

2(x)Φ

3(x)Φ

u1

u3

u2

u0

−1 1

1φ (ξ)

0φ (ξ)

u0
1

u1
1

−1 1

1φ (ξ)

0φ (ξ)

u0
2

−1 1

1φ (ξ)

0φ (ξ)

u0
3

u1
3u1

2

X1
X3

X2

Ω

global bases

local bases

Boundary-interior
decomposition

Assembly matrix

A



The spectral/hp element method
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Fig. 1. Illustration of the three coordinate systems used in the representation of a high-order
triangle. A representative equally-spaced distribution of points is used to highlight the distribution
of quadrature points in the resulting high-order element.
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where the brackets denote the use of a temporary storage. At a given di-227

mension d, and considering a tensor product of quadrature or solution points228

that require evaluation, this technique thereby substantially reduces operator229

evaluations from O(P 2d) to O(P 2(d�1)).230

The relative performance of these approaches, specifically on modern hardware,231

has been considered previously in separate work (e.g. [21]), but only for elements that232

naturally lend themselves to a tensor-product basis: namely quadrilaterals and hexa-233

hedra. In this paper, however, we consider how e↵ectively this matrix-free evaluation234

can be applied in the context of unstructured elements to yield e�cient solvers for235

very complex geometries. To do this requires the selection of a basis permitting tensor236

product decomposition, which we discuss in the following section.237

2.2. Choice of polynomial basis. The selection of the polynomial basis on238

each element is a key consideration of this paper. Much of the prior work considered239

in Section 1 exploits the use of a tensor product of one-dimensional nodal Lagrange240

basis functions, where on the standard segment [�1, 1], these are defined as241

`p(⇠) =
Y

0qP
q 6=p

⇠ � ⇠̂q

⇠̂p � ⇠̂q
242

where ⇠̂q 2 [�1, 1] denote a set of P + 1 data points frequently chosen to align or243

collocate with an underlying quadrature (e.g. Gauss or Gauss-Lobatto points). Al-244

though this approach can readily be extended to higher dimensional tensor-product245

elements, a formulation of these basis functions inside hybrid or simplicial elements246

such as triangles and tetrahedra leads to a set of basis functions that lack the tensor247

product structure required to enable the use of sum factorisation. More details on248

this approach can be found in e.g. [16].249

To arrive at a tensor product formulation, we follow standard practice [18] and250

employ the use of a square-to-triangle Du↵y transformation [10] to define two inde-251

pendent coordinate directions over which to perform the decomposition (or otherwise252
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Generally not collocated

u(ξ1i, ξ2j) =
P2

∑
n=0
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"Defining" features of spectral/hp method

quadrature points modal coefficients

Uses tensor products of 1D basis functions, even for non-
tensor product shapes
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basis function indexing harder



Implementation choices
Finite element operation evaluations (e.g. mass matrix) form bulk of 


simulation cost; can be done in several ways.Implementation strategies

=

Global Strategy

=

Local Strategy

=
Sum-factorisation

Global matrix

assemble a sparse matrix

Implementation strategies

=

Local Strategy

=
Sum-factorisation Local evaluation


create elemental dense

matrices + assembly map

Implementation strategies

=
Sum-factorisation

Matrix free

no local matrices at all


sum factorisation speedup

increasing arithmetic intensity

1D basis functions



Sum-factorisation
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Key to performance at high polynomial orders: complexity O(P 
2d) to O(P 

d+1)
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Unstructured simulations

• Common knowledge: hex/quad 
elements yield best performance.


• However complex geometries 
presently require meshes of 
‘unstructured’ elements: tets, prisms, 
etc.


• Potentially use tensor-product basis on 
unstructured elements, enable matrix-
free operators + sum factorisation.

11



Unstructured elements

• Unstructured elements generally  
make use of Lagrange basis 
functions.


• Combine this with a suitable set 
of cubature points: either 
collocated or not.


• However this loses tensor-
products structure: i.e. no sum 
factorisation possible.
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P5 triangle, Fekete points



Key questions

• Under spectral/hp approach, sum-factorisation matrix-free operators are 
certainly possible for any element type. Some questions:


‣ How much performance do we lose relative to hex/quad?


‣ How should SIMD be used?


• Developed a benchmarking utility for Helmholtz operator to test viability 
of this approach: used for implicit solve in incompressible N-S equations.
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∇2u − λu = f(x) → (L + λM)û = ̂f



Data layout

Natural to consider data laid out element by element

degrees of freedom

elements



Data layout

Exploit vectorisation by grouping DoFs by vector width

degrees of freedom

elements



Data layout

• Operations occur over groups of 
elements of size of vector width.


• Use C++ data type that encodes 
vector operations (common strategy).
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Implementation particulars

• Hand-written kernels for each element type to implement three key 
components: interpolation, derivatives and inner products/integration.


• Written using C++: templating on (potentially heterogeneous) polynomial 
order and quadrature order.


• Also templates on affine elements (spatially-constant Jacobian) vs. 
curvilinear (spatially-varying); no consideration for Cartesian meshes.


• Templating gives significant improvements in runtime performance, 
particularly for complex loop structures found in this regime.
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Tests
• Benchmarking of Helmholtz operator performed on two architectures with 

varying SIMD widths.
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Broadwell (AVX2) Skylake (AVX512)

Model E5-2697 v4 Xeon Gold 6130

Clock speed(s)
2.3 / 2.0 GHz 

standard / AVX2
2.1 / 1.7 / 1.3 GHz 

standard / AVX / AVX512

Cores / sockets 18 / 2 16 / 2

Max node GFLOP/s 1,152
870 (AVX2) 

1,331 (AVX512)



Assessing performance

• Various techniques used to assess kernel performance:


‣ Throughput: number of local DoF/s processed, for a mesh whose sizes exceeds 
available cache.


‣ GFLOP/s gives some indication of capabilities, provided we are not memory-
bound.


‣ Better is roofline analysis: where do we sit in terms of memory bandwidth to 
arithmetic intensity?


• Note all results for local elemental operation evaluation only: C0 work in progress.
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2D: Quads, triangles 3D: Hexahedra, prisms, tetrahedra
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Some clear trends

• This behaves pretty much as you might anticipate:


‣ For regular elements, clear hierarchy of element type/dimension, where 
throughput is lost as dimension/complexity of indexing increases.


‣ Regular elements outperform deformed elements due to increased 
memory bandwidth.


‣ Relative performance gap between deformed elements decreases at 
moderate polynomial orders.
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Roofline model

• Roofline modelling should give better indication of ability of kernel to hit 
peak computational performance:


Max GFLOPS/s = min(peak GFLOPS/s, peak memory bandwidth × α)


• Profiled on Broadwell architecture using likwid performance profiling 
tools; hardware counters observed for GFLOPS/s and memory transfer.
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Roofline results
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Some comparisons: static condensation

• A common strategy to improve performance when 
considering high-order elements is static 
condensation (or substructuring).


• Reorder degrees of freedom so that all boundary 
DoF are first, followed by interior.


• Use Schur complement to form a smaller system to 
solve on the boundary.


• Loses all tensor product structure, need to use local 
matrix approach.



Throughput against static condensation
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Work in progress: C0 operators

• Throughput reduces as expected 
when taking into account more 
expensive global assembly.


• However for a constant DoF 
problem (i.e. change mesh size 
as a function of polynomial 
order), cost at higher orders is 
reduced relative to increased 
memory requirements.
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Summary

• Efficient matrix-free implementations of key finite element operators are 
certainly achievable on modern architectures for ‘unstructured’ elements.


• Inevitable drop in performance from quads/hexahedra: complexity of 
indexing, additional cache pressure, etc.


• However relative performance of e.g. hex/prism and quad/tri is actually 
pretty good, particularly for deformed elements; important for e.g. 
boundary layer problems with large proportion of BL prisms.


• Future directions: revisit elemental basis formulations.
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Thanks for listening!

https://davidmoxey.uk/


d.moxey@exeter.ac.uk
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Nektar++: enhancing the capability and application of high-fidelity spectral/hp element
methods

David Moxey1, Chris D. Cantwell2, Yan Bao3, Andrea Cassinelli2, Giacomo Castiglioni2, Sehun Chun4, Emilia Juda2,
Ehsan Kazemi4, Kilian Lackhove6, Julian Marcon2, Gianmarco Mengaldo7, Douglas Serson2, Michael Turner2, Hui Xu5,2,

Joaquim Peiró2, Robert M. Kirby8, Spencer J. Sherwin2

Abstract

Nektar++ is an open-source framework that provides a flexible, performant and scalable platform for the development of solvers
for partial di↵erential equations using the high-order spectral/hp element method. In particular, Nektar++ aims to overcome the
complex implementation challenges that are often associated with high-order methods, thereby allowing them to be more readily
used in a wide range of application areas. In this paper, we present the algorithmic, implementation and application developments
associated with our Nektar++ version 5.0 release. We describe some of the key software and performance developments, including
our strategies on parallel I/O, on in situ processing, the use of collective operations for exploiting current and emerging hardware, and
interfaces to enable multi-solver coupling. Furthermore, we provide details on a newly developed Python interface that enable more
rapid on-boarding of new users unfamiliar with spectral/hp element methods, C++ and/or Nektar++. This release also incorporates a
number of numerical method developments – in particular: the method of moving frames (MMF), which provides an additional
approach for the simulation of equations on embedded curvilinear manifolds and domains; a means of handling spatially variable
polynomial order; and a novel technique for quasi-3D simulations (which combine a 2D spectral element and 1D Fourier spectral
method) to permit spatially-varying perturbations to the geometry in the homogeneous direction. Finally, we demonstrate the new
application-level features provided in this release, namely: a facility for generating high-order curvilinear meshes called NekMesh; a
novel new AcousticSolver for aeroacoustic problems; our development of a ‘thick’ strip model for the modelling of fluid-structure
interaction (FSI) problems in the context of vortex-induced vibrations (VIV). We conclude by commenting on some lessons learned
and by discussing some directions for future code development and expansion.
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