Towards high-fidelity industrial fluid

dynamics simulations at high order
David Moxey

SPPEXA Final Symposium 2019
Dresden, Germany

2 1st October 2019



ombard, Moxey et al., AIAA J (2016)

[T

Cp: -2.00 -160 -1.20 -0.80 -0.40 0.00

Increasing desire for high-fidelity Want to accurately model ‘difficult’ features:
CFD simulations in high-end » strongly separated flows, vortex interaction
aeronautics applications. e feature tracking and prediction

Challenging with current industry-standard tools

Goal: develop methods and techniques for making LES affordable & routine
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What are high-order methods?
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High-order expansions

 Extend traditional FEM by
adding higher order
polynomials of degree P within

each element.

* e.g. high-order triangle has
(P+1)(P+2)/2 degrees of
freedom at a given order P.

- Increased accuracy: comes at
additional work done per
degree of freedom. spectral/hp element basis functions
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Why use a high-order method for CFD?
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Challenges

High order methods can provide a lot of
benetfits for these problems:

very high accuracy over time/space;

excellent for tracking transient
structures;

tuneable arithmetic intensity:
overcome flops/byte barrier;

geometric flexible.

but there are also some challenges...
» implementation difficulty;

» extra work per degree of freedom
means computational efficiency is
Important;

» other numerical challenges, e.g.
scalable preconditioning;

> mesh generation.



Nektar++
¢ spectral/hp element framework
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Nektar++ is an open-source MIT-licensed framework for high-order methods.

Arbitrary order curvilinear meshes to support complex geometries in a wide
range of application areas, including incompressible/compressible fluids.

Wide range of discretisation choices: CG/DG/HDG, Fourier, modal/nodal
expansions, 1/2/3D, embedded manifolds.

Parallel MPI support, scalable to many thousands of cores.

C++11, extensive testing, Cl & distributed source control, etc
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Framework design
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Recent F1 simulations

F1 simulations highlight complex vortex

Interaction: ideal candidates for LES.

Front wing simulations with
experimental PIV datasets as new
proposed benchmark case.

Analysis found in Buscariolo et al, arXiv

1909.06701.

Dataset/geometry doi: 10.14469/hpc/
6049
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Comparison with experiment

Experimental Result
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Design 2: +33% Downforce
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High-performance methods

High-order methods potentially map well onto the exascale hardware
landscape where memory bandwidth is significant bottleneck:

Use of matrix-free formulations of operators to reduce reliance on slow
memory bandwidth performance: higher arithmetic intensity.

Use of sum-factorisation to reduce evaluation complexity, which relies
on the use of tensor-product basis.

Can effectively use element structure to exploit SIMD instructions to
achieve close to theoretical peak performance.
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Unstructured simulations

« Common knowledge: hex/quad
elements yield best performance.

* However complex geometries
presently require meshes of
‘unstructured’ elements: tets, prisms,
etc.

» Potentially use tensor-product basis on
unstructured elements, enable matrix-
free operators + sum factorisation.
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High-order mesh generation

triangulation

At high orders we must curve the
elements to fit the geometry.

» This significantly complicates the mesh
generation process.

 Additionally has performance
implications: Jacobian now spatially-
variable, additional storage required.

N

don’t lie on the surface!
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High-order mesh generation

—————
add curvature

to interior
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Unstructured elements

» Unstructured elements generally
make use of Lagrange basis
functions.

e Combine this with a suitable set
of cubature points: either
collocated or not.

* However this loses tensor-
products structure: i.e. no sum
factorisation possible.

P5 triangle, Fekete points
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Spectral/hp element formulation
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"Defining" features of spectral/hp method

Generally not collocated

u(é i &) = Z i, (&) = 2 Z D EDD (&)

/ =N

quadrature points modal coefficients

Uses tensor products of 1D basis functions, even for non-
tensor product shapes
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basis function indexing harder




Sum-factorisation

Key to performance at high polynomial orders: complexity O(P2d) to O(Pd+1)
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This works in essentially the same way for more complex indexing:
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Key questions

» Under spectral/hp approach, sum-factorisation matrix-free operators are
certainly possible for any element type. Some questions:

- How much performance do we lose relative to hex/quad?

- How should SIMD be used?

» Developed a benchmarking utility for Helmholtz operator to test viability
of this approach, to be used later in Collections library.

Viu—u=fx) - (L+iAMa="f
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Data layout

. Opgratlons OCCur over groups of elements elements
of size of vector width

« Use C++ data type that encodes vector
operations vs. compiler intrinsics.

» Templating used to allow compiler to
unroll as much as possible.

T

256-bit AVX2

'

basis functions
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Tests

* Benchmarking of Helmholtz operator performed on two architectures with
varying SIMD widths.

Broadwell (AVX2) Skylake (AVX512)

Model E5-2697 v4 Xeon Gold 6130

Clock speed(s) 23/2.0 GHz 21/1.7 /1.3 GHz
P standard / AVX?2 standard / AVX / AVX512
Cores / sockets 18 /2 16/ 2

870 (AVX2)

Max node GFLOP/s 1152 1331 (AVX512)
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Assessing performance

» Various techniques used to assess kernel performance:

- Throughput: number of local DoF/s processed, for a mesh whose sizes exceeds
available cache.

- GFLOP/s gives some indication of capabilities, provided we are not memory-

bound.

- Better is roofline analysis: where do we sit in terms of memory bandwidth to
arithmetic intensity?

* Note all results for local elemental operation evaluation only: Co work in progress.
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Throughput (AVX2, Broadwell)
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2D: Quades, triangles
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Throughput (DoF/s)

Throughput (AVX512/AVX2, Skylake)
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3D: ‘Regular’ elements
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3D: ‘Deformed’ elements




Throughput against static condensation
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Throughput against static condensation
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GFLOPS

Roofline results

Peak FLOPS, 2.0 GHz with FMA /AVX2

without vectorisation
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Some clear trends

 This behaves pretty much as you might anticipate:

- For regular elements, clear hierarchy of element type/dimension, where
throughput is lost as dimension/complexity of indexing increases.

- Regular elements outperform deformed elements due to increased
memory bandwidth.

- Relative performance gap between deformed elements decreases at
moderate polynomial orders.
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Summary

Efficient matrix-free implementations of key finite element operators are
certainly achievable on modern architectures for ‘unstructured” elements.

Inevitable drop in performance from quads/hexahedra: complexity of
indexing, additional cache pressure, etc.

However relative performance of e.g. hex/prism and quad/tri is actually
pretty good, particularly for deformed elements; important for e.g.
boundary layer problems with large proportion of BL prisms.

Future directions: revisit elemental basis formulations.
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Thanks for listening!
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