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Lombard, Moxey et al., AIAA J (2016)

Increasing desire for high-fidelity

simulation in high-end engineering

applications.

Want to accurately model difficult features:

• strongly separated flows

• feature tracking and prediction

• vortex interaction

My goal: develop methods and techniques for making LES affordable



What are high-order methods?
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Higher-order expansions

• Extend traditional FEM by 
adding higher order 
polynomials of degree P within 
each element.


• Traditional linear triangular 
elements have 3 degrees of 
freedom per element (each 
vertex).


• High-order has (P+1)(P+2)/2 at 
a given order P.
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Spectral/hp element methods
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Spectral/hp element formulation
6 D. MOXEY, R. AMICI AND R. M. KIRBY

⌘ = (⌘1, ⌘2) 2 [�1, 1]2

collapsed element
⇠ = (⇠1, ⇠2) 2 ⌦tri

st

standard element
x = (x1, x2) 2 ⌦e

curvilinear element

Fig. 1. Illustration of the three coordinate systems used in the representation of a high-order
triangle. A representative equally-spaced distribution of points is used to highlight the distribution
of quadrature points in the resulting high-order element.

ment a basis for a quadrilateral can be formed as �pq(⇠1, ⇠2) = �p(⇠1)�q(⇠2).224

Evaluation of an expansion at a given point can then be represented as225
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ûpq�q(⇠2)

#
,226

where the brackets denote the use of a temporary storage. At a given di-227

mension d, and considering a tensor product of quadrature or solution points228

that require evaluation, this technique thereby substantially reduces operator229

evaluations from O(P 2d) to O(P 2(d�1)).230

The relative performance of these approaches, specifically on modern hardware,231

has been considered previously in separate work (e.g. [21]), but only for elements that232

naturally lend themselves to a tensor-product basis: namely quadrilaterals and hexa-233

hedra. In this paper, however, we consider how e↵ectively this matrix-free evaluation234

can be applied in the context of unstructured elements to yield e�cient solvers for235

very complex geometries. To do this requires the selection of a basis permitting tensor236

product decomposition, which we discuss in the following section.237

2.2. Choice of polynomial basis. The selection of the polynomial basis on238

each element is a key consideration of this paper. Much of the prior work considered239

in Section 1 exploits the use of a tensor product of one-dimensional nodal Lagrange240

basis functions, where on the standard segment [�1, 1], these are defined as241

`p(⇠) =
Y

0qP
q 6=p

⇠ � ⇠̂q

⇠̂p � ⇠̂q
242

where ⇠̂q 2 [�1, 1] denote a set of P + 1 data points frequently chosen to align or243

collocate with an underlying quadrature (e.g. Gauss or Gauss-Lobatto points). Al-244

though this approach can readily be extended to higher dimensional tensor-product245

elements, a formulation of these basis functions inside hybrid or simplicial elements246

such as triangles and tetrahedra leads to a set of basis functions that lack the tensor247

product structure required to enable the use of sum factorisation. More details on248

this approach can be found in e.g. [16].249

To arrive at a tensor product formulation, we follow standard practice [18] and250

employ the use of a square-to-triangle Du↵y transformation [10] to define two inde-251

pendent coordinate directions over which to perform the decomposition (or otherwise252

This manuscript is for review purposes only.
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Why use a high-order method?



Why use a high-order method?
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So why doesn’t everyone use high-order?

Things I’ll discuss today:


• Pre-processing (mesh generation), particularly for complex geometries.


• Efficiency & cost: linear algebra techniques & operator implementations.


• Difficulty and effort of implementation.


Other issues:


• Post-processing and visualisation, stability and robustness, preconditioning…
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Challenge 1: high-order mesh generation

Complex geometries

look like this

Not like this



High-order mesh generation

• Good quality meshes are essential to 
finite element and finite volume 
simulations.


• You can have a very fancy solver, but 
without a mesh you can’t run your 
simulation!


• At high orders we have an additional 
headache, as we must curve the 
elements to fit the geometry.
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surface

triangulation

don’t lie on the surface!



High-order mesh generation

13

surface surface

add curvature

to interior



High-order mesh generation

• Curving coarse meshes leads to 
invalid elements.


• Most existing mesh generation 
packages cannot deal with this.


• Involves non-trivial optimisation 
procedure.


• Therefore a need to develop new 
techniques.



Straight-sided mesh

Boundary  
projection

Deformed mesh

Optimisation

Φ

Recast PDE as energy minimisation: solve

Different W give PDE and optimisation 
methods in a single framework
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Variational approach

M. Turner, J. Peiró, D. Moxey, Curvilinear mesh generation using a variational framework

Computer Aided Design 103 73-91 (2018)
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Figure 1: Notation for mappings used throughout the paper: a triangular element is used for illustration purposes, but the notation is general and
applicable to other element types. On the left we map a standard (reference) element ⌦st onto the straight-sided element ⌦e

I through the mapping
�I : ⌦st ! ⌦e

I and onto the curvilinear element �e : ⌦st ! ⌦e. The deformation mapping � : ⌦e
I ! ⌦e is then defined through the composition

� = �e
M � ��1

I .

y 2 ⌦e
I . These mappings are constructed in an isoparametric fashion, so that the nodes ⇠n that define the Lagrange

basis functions on the standard element map to y
n under �I and x

n under �M . We note that other element types, such
as quadrilaterals in two dimensions and tetrahedra, triangular prisms, pyramids and hexahedra in three dimensions,
may use exactly the same definitions as above.

The energy functional is then defined as the integral

E(r�) =
Z

⌦I

W(r�) dy, (1)

where W depends on the deformation gradient tensor

r�(y) =
@�

@y
;

⇥r�(y)
⇤
i j =
@�i

@y j
,

and its determinant J = detr�, which we hereafter refer to as the Jacobian. In the following section we describe the
di↵erent forms of the energy that we investigate in this article.

2.1. Forms of the energy functional
This section outlines a key contribution of this work, where we show that many of the existing curvilinear mesh

generation methods can be unified in a variational setting through the definition of an energy functional.

2.1.1. Linear elasticity energy
A number of articles have examined the use of a linear elastic analogy in the context of high-order mesh genera-

tion [20, 21, 3]. This takes the form of an elliptic PDE

r · (� tr(E)I + µE) = � f
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Benefits

�0.5

0

0.5

1
Qe

Figure 10: Cross-section of a semi-sphere case highlighting the sliding of CAD curves along the surface. The left-hand image shows the initial
mesh and the right-hand figure shows the optimised mesh. Note that the colour of the surface triangles is not related to mesh quality.

5.7. CAD sliding
Fig. 10 highlights the e↵ects of the CAD sliding outlined in section 5.7. In this example, we take a flat surface and

place a semi-sphere onto it. This generates an initial curved mesh, visualised on the left hand side, which possesses 8
invalid elements. Taking a closer look at the initial mesh, it is very clear that the surface mesh induces an invalidity
where the sphere meets the flat plane. The ability to slide the element edges along the flat plane and additionally the
surface of the sphere is therefore required in order to have any chance of generating a valid mesh. The optimised mesh
on the right-hand side shows how the deformation is incorporated into the surface edges, deforming them appropriately
in order to produce a valid and very high-quality mesh, as can be see from the quality metric.

5.8. Boeing reduced landing gear
In our final example, we show results for optimisation of another well-known complex geometric example: the

Boeing reduced landing gear. In this case, we have created a hybrid mesh containing a prismatic boundary layer, filled
with tetrahedra in the interior. The purpose of the prism layers is to capture the wall-normal flow physics, where very
large gradients of the flow velocities occur close to the surface. Since this region contains very high shear, the prismatic
elements should substantially decrease in thickness near the wall so that they become highly stretched relative to the
tangential surface direction. This poses a substantial challenge for curved boundary layer generation. If we apply
curvature to a standard linear boundary layer mesh, it is all but guaranteed for all but the most simple geometries that
there will be a large number of invalid elements. Given that there is very little space available to accommodate the
curvature of the boundary, correcting these boundary layer elements becomes very di�cult. Further, the number of
elements to optimise also increases substantially, thus increasing the computational cost of the method.

As has been noted in previous work it is far more practical and robust for high-order meshing to generate a single
‘macro’ isotropic prism at the geometric boundary, in which the curvature of the surface can be readily applied, and
then use a method of isoparametric splitting to produce the anisotropic elements [37]. Adopting this approach here,
we first generate a linear hybrid mesh combining tetrahedral elements and triangular prismatic ‘macro’ elements,
introduce the boundary curvature and then apply the variational optimisation to optimize the quality of the mesh. We
then finish the mesh by applying isoparametric splitting to obtain the desired boundary-layer thickness.

Fig. 11 shows the ‘macro’ mesh before and after optimisation, for which we have used the hyperelastic functional
since this has been shown to produce the highest quality meshes. We also show the final mesh created after the macro
layer has been split. For the purposes of clarity, the tetrahedra have been removed. Overall the figure shows that whilst
the initial configuration before optimisation is of a reasonable quality, there are a number of lower-quality elements
on the shoulders of the tyres. The quality in this area, as well as throughout the mesh generally, is then improved in
optimisation across all of the elements shown. The figure also show the quality of the prismatic layers after splitting,
where in general it can be seen that this approach produces a high quality mesh.
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Example: DLR F6 engine
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Speeding up optimisation

• Meshing usually accomplished on a single workstation, generally repeated 
as part of many design iterations.


• Optimisation process is resource intensive, but GPUs have lots of compute 
density.


• Can we leverage parallelism of the method effectively on a GPU?


• How do we do this in a code-friendly way?
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Parallelisation strategy

Figure 4: Node colouring scheme for a domain of six triangular elements

Node colouring

20

• For each node, solve local 
minimisation problem.


• Calculate functional + gradients 
analytically.


• Uses multi-level threading to 
exploit GPU hierarchy: use 
Kokkos.


• Iterate until global functional 
residual is small.



Results
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Example domain for performance tests

Figure 5: Four spheres in a box, meshed with tetrahedral elements,

Ne = 22kFour spheres in a box, 33k tetrahedra, 
~400k nodes at p = 5
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Challenge 2: efficient implementation

• Today’s computational hardware: lots of FLOPS available, but really hard 
to use them.


• Algorithms will only use hardware effectively if they are arithmetically 
intense: i.e. high ratio of FLOPS per byte of memory transfer.


• This is one of the reasons that current industry-standard CFD codes often 
do not make best use of hardware on offer.


• High-order has potential in this area through matrix-free formulation of 
the underlying operators.
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Matrix-free FEM

• Common in FEM to compute (local or global) mass & stiffness matrices, e.g.


• For a hypercube: rank Pd, storage & multiplication cost O(P2d).


• Entries computed using Gaussian quadrature: evaluation cost also O(P2d); but the 
constant is important!


• Idea of matrix-free: compute action of local matrix by evaluating summations 
corresponding to integrals above to avoid memory transfer.


• Further efficiency if we use a tensor product basis to enable sum-factorisation.
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Mij = ∫Ωe

ϕi(x1)ϕj(x2) dx Sij = ∫Ωe

∇ϕi(x1) ⋅ ∇ϕj(x2) dx



Unstructured elements
• Typically unstructured elements 

make use of Lagrange basis 
functions (although not always).


• Combine this with a suitable set 
of quadrature (cubature) points: 
no tensor-product structure.


• However, spectral/hp does have a 
tensor product structure!
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Sum-factorisation

25

Key to performance at high polynomial orders: complexity O(P 
2d) to O(P 

d+1)!
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Data layout
To exploit hardware, need to consider data layout:


natural to consider data element by element.

degrees of freedom

elements



Data layout

However, can exploit vectorisation by grouping DoFs by vector width.

degrees of freedom

elements



Data layout

• Operations then occur over groups of 
elements of size of vector width.


• Use C++ data type that encodes 
vector operations (common strategy).
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Assessing performance

• Various techniques used to assess kernel performance:


‣ Throughput: number of local DoF/s processed, for a mesh whose sizes 
exceeds available cache.


‣ GFLOP/s gives some indication of capabilities, provided we are not 
memory-bound.


‣ Better is roofline analysis: where do we sit in terms of memory bandwidth to 
arithmetic intensity?


• Note all results for local elemental operation evaluation only.
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Roofline results
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Challenge 3: implementation effort

• High-order methods have potential to bring some nice numerical and 
computational benefits to bear on complex problems.


• Offer high(er) fidelity at equivalent or lower costs, as they have good 
implementation characteristics.


• However, one of the main barriers to using high-order methods is that they 
are difficult to implement.
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Nektar++

spectral/hp element framework



Nektar++

spectral/hp element framework

• Nektar++ is an open-source MIT-licensed framework for high-order methods.


• Arbitrary order curvilinear meshes to support complex geometries in a wide 
range of application areas including incompressible/compressible fluids.


• Wide range of discretisation choices: CG/DG/HDG, Fourier, modal/nodal 
expansions, 1/2/3D, embedded manifolds.


• Parallel MPI support, scalable to many thousands of cores.


• Modern C++11 API, extensive testing, CI & distributed source control.
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Some application areas

(a) (b)

(c)

Figure 4: Examples of external aerodynamics problems solved using the CompressibleFlowSolver. (a) Flow over a cylinder at Re = 3, 900. (b) Euler simulation
over a NACA0012 aerofoil at Ma1 = 0.8. (c) Temperature of flow passing over a T106C low-pressure turbine blade at Re = 80, 000.
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where p is the pressure. To close the system we need to specify
an equation of state, in this case the ideal gas law p = ⇢RT
where T is the temperature and R is the gas constant. For the
Euler equations, the tensor of viscous forces Fv(U) = 0, and for
Navier-Stokes

Fv(U) =

2
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A = u⌧xx + v⌧xy + w⌧xz + k@xT,
B = u⌧yx + v⌧yy + w⌧yz + k@yT,
C = u⌧zx + v⌧zy + w⌧zz + k@zT

where in tensor notation the stress tensor ⌧xi x j = 2µ(@xi ui +

@xi u j �
1
3@xk uk�i j), µ is the dynamic viscosity calculated using

Sutherland’s law and k is the thermal conductivity.
To discretise these equations in space, we adopt an approach

which allows for the resolution of discontinuities and shocks
that may appear in the solution at transonic and supersonic flow
speeds. We therefore use approximations to our solution com-
prised of functions which are not continuous across element
boundaries. Traditionally, we follow a Galerkin approach by
utilising the variational form of the equations in order to ob-
tain the discontinuous Galerkin method. One of the key fea-
tures of Nektar++ is the ability to select a wide range of nu-
merical options, and to this end we support both discontinuous

Galerkin and flux reconstruction spatial discretisations, which
have various numerical equivalences [22] but may possess dif-
ferent performance characteristics. In the flux reconstruction
formulation, we instead use the equation in di↵erential form in
combination with correction functions which impose continuity
of fluxes between elements.

In either case, information is transferred between elements
by solving a one-dimensional Riemann problem at the interface
between two elements. For the non-viscous terms there is sup-
port for a wide variety of Riemann solvers, including an exact
solution or a number of appproximate solvers such as HLLC,
Roe and Lax-Friedrichs solvers [23]. For the viscous terms, we
utilise a local discontinuous Galerkin method (or the equivalent
flux reconstruction version). Various versions of the discontin-
uous Galerkin method which are available throughout the lit-
erature, mostly relating to the choices of modal functions and
quadrature points, can also be readily selected by setting appro-
priate options in the session file.

Given the complexity and highly nonlinear form of these
equations, we adopt a fully explicit formulation to discre-
tise the equations in time, allowing us to use any of the ex-
plicit timestepping algorithms implemented through the gen-
eral linear methods framework [16], including 2nd and 4th order
Runge-Kutta methods. Finally, in order to stabilise the flow
in the presence of discontinuities we utilise a shock capturing
technique which makes use of artificial viscosity to damp os-
cillations in the solution, in conjunction with a discontinuity
sensor adapted from the approach taken in [24] to decide where
the addition of artificial viscosity is needed.

Figure 4 shows representative results from compressible flow
simulations of a number of industrially-relevant test cases. We
first highlight two simulations which utilise the Navier-Stokes
equations. Fig. 4(a) demonstrates the three-dimensional ver-
sion of the compressible solver by investigating the flow over a
cylinder at Re = 3,900. In this figure we visualise isocontours
of the pressure field and colour the field according to the den-
sity ⇢. To demonstrate the shock capturing techniques available
in the code, Fig. 4(b) shows the results of an Euler simulation
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Figure 5: Contours of the magnitude of velocity in a periodic hill simulation at
Re = 2800.

for flow over a NACA0012 aerofoil at a farfield Mach number
Ma1 = 0.8 and a 1.5� angle of attack. The transonic mach
number of this flow leads to the development of a strong and
weak shock along the upper and lower surfaces of the wing re-
spectively. This figure shows isocontours of the mach number
where the presence of the shocks are clearly identified. Finally,
In Fig. 4(c), we visualise the temperature field from flow pass-
ing over a T106C low-pressure turbine blade at Re = 80,000
to highlight applications to high Reynolds number flow simula-
tions.

4.2. Transitional turbulent flow dynamics

Transient problems in which turbulence dominates the flow
domain, or in which the transition to turbulence dominates the
simulation, remain some of the most challenging problems to
resolve in computational fluid simulations. Here, accurate nu-
merical schemes and high resolution of the domain is critical.
Moreover, any choice of scheme must be e�cient in order to ob-
tain results in computationally feasible time-scales. Tradition-
ally, highly resolved turbulence simulations, such as the Taylor-
Green vortex problem, lie firmly in the class of spectral meth-
ods. However, spectral methods typically lead to strong geom-
etry restrictions which limits the domain of interest to simple
shapes such as cuboids or cylinders.

Whilst spectral element methods may seem the ideal choice
for such simulations, particularly when the domain of interest
is geometrically complex, they can be more computationally
expensive in comparison to spectral methods. However, when
the domain of interest has a geometrically homogeneous com-
ponent – that is, the domain can be seen to be the tensor prod-
uct of a two-dimensional ‘complex’ part and a one-dimensional
segment – we can combine both the spectral element and tradi-
tional spectral methods to create a highly e�cient and spectrally
accurate technique [4].

We consider the application of this methodology to the prob-
lem of flow over a periodic hill, depicted in Fig. 5, where the
flow is periodic in both streamwise and spanwise directions.
This case is a well-established benchmark problem in the DNS
and LES communities [25], and is challenging to resolve due to
the smooth detachment of the fluid from the surface and recir-
culation region. Here we consider a Reynolds number of 2800,
normalised by the bulk velocity at the hill crest and the height
of the hill, with an appropriate body forcing term to drive the
flow over the periodic hill configuration.

The periodicity of this problem makes it an ideal candidate
for the hybrid technique described above. We therefore con-

struct a two-dimensional mesh of 3626 quadrilateral elements
at polynomial order P = 6, and exploit the domain symmetry
with a Fourier pseudospectral method consisting of 160 collo-
cation points in the spanwise direction to perform the simula-
tion. This yields a resolution of 20.9M degrees of freedom per
field variable and allows us to obtain excellent agreement with
the benchmark statistics.

4.3. Flow stability
In addition to direct numerical simulation of the full

non-linear incompressible Navier-Stokes equations, the
IncNavierStokesSolver supports global flow stability
analysis through the linearised Navier-Stokes equations with
respect to a steady or periodic base flow. This process identifies
whether a steady flow is susceptible to a fundamental change
of state when perturbed by an infinitesimal disturbance. The
linearisation takes the form

@u0

@t
+ (u0 · r)U + (U · r)u0 = �rp0 + ⌫r2u0

r · u0 = 0,

where U is the base flow and u0 is now the infinitesimal pertur-
bation. The time-independent base flow is computed through
evolving Equs. 9 to steady-state with appropriate boundary con-
ditions. For time-period base flows, the flow is sampled at reg-
ular intervals and interpolated.

The linear evolution of a perturbation under Equs. 10 can be
expressed as

u0(t) = A(t)u00

for some initial state u00, and we seek, for some arbitrary time
T, the dominant eigenvalues and eigenmodes of the operator
A(T ), which are solutions to the equation

A(T )ũ j = � jũ j.

The sign of the leading eigenvalues � j are used to establish the
global stability of the flow. An iterative Arnoldi method [26]
is applied to a discretisation M of A(T ). Repeated actions
of M are applied to the initial state u0 using the same time-
integration code as for the non-linear equations [27]. The re-
sulting sequence of vectors spans a Krylov subspace of M and,
through a partial Hessenberg reduction, the leading eigenval-
ues and eigenvectors can be e�ciently determined. The same
approach can be applied to the adjoint form of the linearised
Navier-Stokes evolution operatorA⇤ to examine the receptivity
of the flow and, in combination with the direct mode, identify
the sensitivity of the flow to base flow modification and local
feedback. The direct and adjoint methods can also be combined
to identify convective instabilities over di↵erent time horizons
⌧ in a flow by computing the leading eigenmodes of (A⇤A)(⌧).
This is referred to as transient growth analysis.

To illustrate the linear analysis capabilities of Nektar++, we
use the example of two-dimensional flow past a circular cylin-
der at Re = 42, just below the critical Reynolds number for
the onset of the Bénard-von Kármán vortex street. This is a
well-established test case for which significant analysis is avail-
able in the literature. We show in Fig. 6 the leading eigen-
modes for the direct (A) and adjoint (A⇤) linear operators for
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(a)

(b)

(c)

(d)

Figure 7: Solitary wave impinging a cylinder. (a) t = 4.5 s; (b) t = 5.5 s; (c)
t = 8.5 s; (d) t = 12.5 s;

substrate modification to restore normal rhythm is often partic-
ularly challenging and may benefit from insight derived from
computer modelling.

The CardiacEPSolver models the conduction process us-
ing the monodomain equations

�

 
Cm
@u
@t
+ Iion

!
= r · �ru,

where the Iion term captures the complex movement of ions
in and out of cells and is itself modelled as a set of ordinary
di↵erential equations. Additionally, � captures the potentially
heterogeneous and anisotropic nature of the tissue which af-
fects the speed of electrical propagation. While full 3D simula-
tions of myocardium are traditionally performed, the left atrium
is su�ciently thin that it can be reasonably represented as a
two-dimensional manifold embedded in three dimensions and
solved at significantly reduced computational cost [32]. The
geometry of the left atrium is created through segmentation of
magnetic resonance images of the heart.

An example of a left atrium simulation is illustrated in Fig-
ure 8. Electrophysiological characteristics vary spatially, with
regions of scar and fibrosis more resistive to activation, re-

Figure 8: Illustrative simulation of a depolarising electrochemical wavefront
on a two-dimensional manifold representation of a human left atrium. Blue
areas denote regions of unexcited (polarised) tisue, while green denotes areas
of excited (depolarised) cells. The red areas highlight the wavefront.

sulting in more complex activation patterns. The geometry is
derived from segmented magnetic resonance imaging (MRI)
data, while tissue heterogeneity is prescribed based on late
gadolinium-enhanced MRI. A human atrial ionic model [33]
is used as the reactive term in the model and represents the ex-
changes of ions between the interior and exterior of the cell,
along with other cellular biophysics.

4.6. Biological flow
1D modelling of the vasculature (arterial network) represents

an insightful and e�cient tool for tackling problems encoun-
tered in arterial biomechanics as well as other engineering prob-
lems. In particular, 3D modelling of the vasculature is relatively
expensive. 1D modelling provides an alternative in which the
modelling assumptions provide a good balance between physi-
ological accuracy and computational e�ciency. To describe the
flow and pressure in this network we consider the conservation
of mass and momentum applied to an impermeable, deformable
tube filled with an incompressible fluid, the nonlinear system
of partial di↵erential equations presented in non-conservative
form is given by

@U
@t
+H@U
@x
= S (14)

U =
"
U
A

#
, H =

"
U A
⇢ @p
@A U

#
, S =

"
0

1
⇢

⇣
f
A � s

⌘
#

in which A is the Area (related to pressure), x is the axial coor-
dinate along the vessel, U(x, t) the axial velocity, P(x, t) is the
pressure in the tube, ⇢ is the density and finally f the frictional
force per unit length. The unknowns in equation 14 are u, A and
p; hence we must provide an explicit algebraic relationship to
close this system. Typically, closure is provided by an algebraic
relationship between A and p.

For a thin elastic tube this is given by

p = p0 + �
⇣p

A �
p

A0
⌘
, � =

p
⇡hE

(1 � ⌫2)A0
(15)

where p0 is the external pressure, A0 is the initial cross-
sectional area, E is the Young’s modulus, h is the vessel wall
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Figure 9: Geometry used for the simulation. Insets show how flow and pressure
vary with time and di↵erent locations in the geometry.

thickness and ⌫ is the Poisson’s ratio. Other more elaborate
pressure - area relationships are currently being implemented
into the framework. Application of Riemann’s method of char-
acteristics to Equations 14 and 15 indicates that velocity and
area are propagated through the system by forward and back-
ward travelling waves. These waves are reflected within the
network by appropriate treatment of interfaces and boundaries
(see for example [34, 35]). The final system of equations are
discretised in the Nektar++ framework using a discontinuous
Galerkin projection.

To illustrate the capabilities of the PulseWaveSolver, a 1D
geometry was created by extracting the centreline directly from
a 3D segmentation of a carotid bifurcation (the extracted cen-
treline with the segmented geometry overlaid is shown in Fig-
ure 9). At the inlet a half-sinusoidal flow profile was applied
during the systolic phase, whist during the diastolic phase a no-
flow condition was applied. Although this profile is not rep-
resentative of the carotid wave, it is useful for demonstrating
essential dynamics of the system e.g. reflection of backward
travelling waves only during the diastolic phase. At the outflow
RCR boundary conditions were utilised [35]. These boundary
conditions take into account the peripheral resistance and com-
pliance of the vasculature. The pressure and flow results are
shown in Figure 9. The insets demonstrate that the pressure
needs about 4 cycles to reach a periodic state.

To conclude this section, we illustrate the flexibility of the
software in combining two solvers to understand mass trans-
port in the aorta. We consider the simulation of blood-flow
through a pair of intercostal branches in the decending aorta.
The three-dimensional geometry is derived from CT scans and
is meshed using a combination of tetraheda and prismatic el-
ements. Prisms are used to better capture the boundary layer
close to the wall, while tetrahedra fill the remaining interior of
the domain. The embedded manifold discretisation code can
be used to compute boundary conditions for three-dimensional
simulations where the complexity of the geometry precludes the
use of analytic conditions.

The flow is modelled using the incompressible Navier-Stokes
equations (see Section 4.1). In this case, the inlet flow profile
f in Equ. 9 is the solution of the Poisson problem, computed
using the ADRSolver, on the two-dimensional inlet boundary

surface for a prescribed body force, as shown in Fig. 10(a).
The resulting profile is imposed on the three-dimensional flow
problem as illustrated. The steady-state velocity field from the
flow simulation at Reynolds number Re = 300 is shown in
Fig. 10(b). A single boundary layer of prismatic elements is
used for this simulation and both the prismatic and tetrahedral
elements use a polynomial expansion order of P = 4. This is
su�cient to capture the boundary layer at the walls.

We now solve the advection-di↵usion equation,

r · (�Drc + cu) = 0,

to model transport of oxygen along the arterial wall. Here, c
is the concentration and u is the steady-state flow solution ob-
tained previously. D = 1/Pe is the di↵usivity of the species
considered (Pe = 7.5 ⇥ 105 for oxygen). For most of the do-
main, the non-dimensional concentration remains constant at
c = 1. However, a particularly high gradient in concentration
forms at the wall. It is this gradient which is of particular inter-
est and needs to be captured accurately. The existing mesh used
for the flow simulation is unable to resolve the gradients close
to the wall. We therefore refine the boundary layer in the wall-
normal direction using element heights following a geometric
progression. To reduce computational cost, we also exploit the
spectral/hp discretisation and reduce the polynomial order of
the prisms in the directions parallel to the wall, since the con-
centration shows negligible variation in these directions. Fur-
thermore, the domain-interior tetrahedra may also be discarded
and a dirichlet c = 1 condition imposed on the resulting interior
prism boundary.

Fig. 10(c) shows the resulting concentration gradient field on
the surface of the arterial wall. Regions of low concentration
gradient are observed upstream of the branches, while high con-
centration gradients are observed downstream. Fig.10(d) shows
close-ups of the branches to illustrate this.

5. Discussion & Future Directions

The Nektar++ framework provides a feature-rich platform
with which to develop numerical methods and solvers in the
context of high-order finite element methods. It has been de-
signed in such a way that the libraries reflect the mathematical
abstractions of the method, to simplify uptake for new users,
as well as being written in a modular way to improve the ro-
bustness of the code, minimise duplication of functionality and
promote sustainability.

Development
The development of a complex and extensive software

project such as Nektar++ necessitates the adoption of certain
development practices to enable developers to easily write new
code for their features without breaking the code for other peo-
ple. The code is managed using the git distributed version
control system [36] due to its performance, enhanced support
for branching, as well as supporting o↵-line development. All
development is performed in branches and only after rigor-
ous multi-architecture testing and internal peer-review is new
code merged into the main codebase, thereby always maintain-
ing a stable distribution. Any new bugs or feature requests
are tracked using the Trac issue-management system, which
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Figure 7: Solitary wave impinging a cylinder. (a) t = 4.5 s; (b) t = 5.5 s; (c)
t = 8.5 s; (d) t = 12.5 s;

substrate modification to restore normal rhythm is often partic-
ularly challenging and may benefit from insight derived from
computer modelling.

The CardiacEPSolver models the conduction process us-
ing the monodomain equations
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where the Iion term captures the complex movement of ions
in and out of cells and is itself modelled as a set of ordinary
di↵erential equations. Additionally, � captures the potentially
heterogeneous and anisotropic nature of the tissue which af-
fects the speed of electrical propagation. While full 3D simula-
tions of myocardium are traditionally performed, the left atrium
is su�ciently thin that it can be reasonably represented as a
two-dimensional manifold embedded in three dimensions and
solved at significantly reduced computational cost [32]. The
geometry of the left atrium is created through segmentation of
magnetic resonance images of the heart.

An example of a left atrium simulation is illustrated in Fig-
ure 8. Electrophysiological characteristics vary spatially, with
regions of scar and fibrosis more resistive to activation, re-

Figure 8: Illustrative simulation of a depolarising electrochemical wavefront
on a two-dimensional manifold representation of a human left atrium. Blue
areas denote regions of unexcited (polarised) tisue, while green denotes areas
of excited (depolarised) cells. The red areas highlight the wavefront.

sulting in more complex activation patterns. The geometry is
derived from segmented magnetic resonance imaging (MRI)
data, while tissue heterogeneity is prescribed based on late
gadolinium-enhanced MRI. A human atrial ionic model [33]
is used as the reactive term in the model and represents the ex-
changes of ions between the interior and exterior of the cell,
along with other cellular biophysics.

4.6. Biological flow
1D modelling of the vasculature (arterial network) represents

an insightful and e�cient tool for tackling problems encoun-
tered in arterial biomechanics as well as other engineering prob-
lems. In particular, 3D modelling of the vasculature is relatively
expensive. 1D modelling provides an alternative in which the
modelling assumptions provide a good balance between physi-
ological accuracy and computational e�ciency. To describe the
flow and pressure in this network we consider the conservation
of mass and momentum applied to an impermeable, deformable
tube filled with an incompressible fluid, the nonlinear system
of partial di↵erential equations presented in non-conservative
form is given by
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in which A is the Area (related to pressure), x is the axial coor-
dinate along the vessel, U(x, t) the axial velocity, P(x, t) is the
pressure in the tube, ⇢ is the density and finally f the frictional
force per unit length. The unknowns in equation 14 are u, A and
p; hence we must provide an explicit algebraic relationship to
close this system. Typically, closure is provided by an algebraic
relationship between A and p.

For a thin elastic tube this is given by

p = p0 + �
⇣p

A �
p

A0
⌘
, � =

p
⇡hE

(1 � ⌫2)A0
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where p0 is the external pressure, A0 is the initial cross-
sectional area, E is the Young’s modulus, h is the vessel wall
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Highlights from v5

2D Spectral element mesh

Symmetry
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1D Fourier expansion+

Hybrid discretisation

from NekPy.LibUtilities import SessionReader
from NekPy.SpatialDomains import MeshGraph

session = SessionReader.CreateInstance(sys.argv)
mesh    = MeshGraph.Read(session)
print(mesh.GetMeshDimension())

Python interface

three dimensions. It implements the operators of the linearized
Euler Equations (LEE) and the Acoustic Perturbation Equations
1 and 4 (APE-1/4) [83], both of which describe the evolution
of perturbations around a base flow state. For the APE-1/4
operator, the system is defined by the hyperbolic equations

@pa

@t
+ c2r ·

 
⇢ua + u

pa

c2

!
= !̇c, (4a)

@ua

@t
+ r �

u · ua� + r
 

pa

⇢

!
= !̇m, (4b)

where u denotes the flow velocity, ⇢ its density, p its pressure
and c corresponds to the speed of sound. The quantities ua and
pa refer to the irrotational acoustic perturbation of the flow veloc-
ity and its pressure, with overline quantities such as u denoting
the time-averaged mean. The right-hand-side acoustic source
terms terms !̇c and !̇m are specified in the session file. This
allows for the implementation of any acoustic source term for-
mulation so that, for example, the full APE-1 or APE-4 can be
obtained. In addition to using analytical expressions, the source
terms and base flow quantities can be read from disk or trans-
ferred from coupled applications, enabling co-simulation with a
driving flow solver. Both, LEE and APE support non-quiescent
base flows with inhomogeneous speed of sounds. Accordingly,
the Lax-Friedrichs and upwind Riemann solvers used in the
AcousticSolver employ a formulation which is valid even for
strong base flow gradients. The numerical stability can be fur-
ther improved by optional sponge layers and suitable boundary
conditions, such as rigid wall, farfield or white noise.

A recurring test case for APE implementations is the “spin-
ning vortex pair” [84]. It is defined using two opposing vortices,
that are each located at r0 from the center x1 = x2 = 0 of a square
domain with edge length �100 r0  x1,2  100 r0. The vortices
have a circulation of � and rotate around the center at the an-
gular frequency ! = �/4⇡r2

0 and circumferential Mach number
Mar = �/4⇡r0c. The resulting acoustic pressure distribution is
shown in Figure 10a and was obtained on an unstructured mesh
of 465 quadrilateral elements with a fifth order modal expansion
(P = 5). The session files used to generate this example can
be found in Example A.19. Along the black dashed line, the
acoustic pressure shown in Figure 10b exhibits minor deviations
from the analytical solution defined in [84], but is in excellent
agreement with the results of the original simulation in [83]. The
latter was based on a structured mesh with 19,881 nodes and
employed a sponge layer boundary condition and spatial filtering
to improve the stability. Due to the flexibility and numerical
accuracy of the spectral/hp method, a discretization with only
16,740 degrees of freedom was su�cient for this simulation, and
no stabilization measures (e.g. SVV or filtering) were necessary
to reproduce this result.

5.3. Fluid-Structure Interaction (FSI) and Vortex-Induced Vi-
bration (VIV)

Fluid-structure interaction (FSI) modelling poses a great chal-
lenge for the accurate prediction of vortex-induced vibration
(VIV) of long flexible bodies, as the full resolution of turbulent
flow along their whole span requires considerable computational
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(a) Normalized acoustic pressure distribution at t = 1s with the mesh shown in light gray
and the sampling line in a black dashed line.
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(b) Normalized acoustic pressure along sample line, obtained with the AcousticSolver and
analytical solution [84].

Figure 10: Normalized acoustic pressure for �/(cr0) = 1.0 and Mar = 0.0795 at
t = 1s.

resources. This is particularly true in the case of large aspect-
ratio bodies. Although 2D strip-theory-based modelling of such
problems is much more computationally e�cient, this approach
is unable to resolve the e↵ects of turbulent fluctuations on dy-
namic coupling of FSI systems [85, 86]. A novel strip model,
which we refer to as ‘thick’ strip modelling, has been developed
using the the Nektar++ framework in [87], whose implementa-
tion is supported within the incompressible Navier-Stokes solver.
In this approach, a three-dimensional DNS model with a local
spanwise scale is constructed for each individual strip. Coupling
between strips is modelled implicitly through the structural dy-
namics of the flexible body.

In the ‘thick’ strip model, the flow dynamics are governed
by a series of incompressible Navier-Stokes equations. The
governing equations over a general local domain ⌦n associated
with the n-th strip are written as

@un

@t
+ (un · r)un = �rpn +

1
Re
r2

un on ⌦n (5)

r · un = 0 on ⌦n, (6)

where the vector un = (un, vn,wn) denotes the fluid velocity in-
side the n-th strip, with pn being the corresponding dynamic
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Highlights from v5

Spatially varying polynomial orders

Computational domain

Physical domain

t=t0

t=t0+T/2
Coordinate mapping

D. Serson, J. Meneghini, and S. Sherwin, J. Comp. Phys. 
316, 243-254 (2016)

D. Moxey et al, Spectral and High Order 
Methods for Partial Differential Equations 

ICOSAHOM 2016, pp. 63–79

108

Figure 8.11: Time-averaged contours of spanwise velocity at z = 0.125 for L05h10 wing
with ↵ = 6� and Re = 50, 000.

(a) baseline

(b) L05h10, trough

(c) L05h10, peak

Figure 8.12: Slices with contours of instantaneous spanwise vorticity (on the left) and of
turbulence kinetic energy (on the right) for simulations with ↵ = 6�.



High-order fluid simulations

• Heavy development of both compressible and incompressible flow solvers 
and, with a particular focus on high-fidelity simulations.


• Consider inherently unsteady flows: investigate use of implicit LES.


• Our message: still computationally expensive & requires HPC, but should 
not be prohibitive and should scale with high-order simulations.
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Solving at scale

• Relying on HPC means we need efficient and 
scalable linear solvers.


• Mesh is decomposed across processors; local 
dense matrices formed for each element, 
communication with gslib.


• Core of the code scales well on Mira: test case 
of a ~5m element F1 geometry at fifth order.


• However still some work to do on scalable 
preconditioning!
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Example: NACA 0012 transonic

Starting mesh Initial simulation

Ma = 0.8, 1.25° AoA

Marcon, Castiglioni, Moxey, Sherwin & Peiró, arXiv 1909.10973



Example: NACA 0012 transonic

Discontinuity sensor Artificial viscosity

Marcon, Castiglioni, Moxey, Sherwin & Peiró, arXiv 1909.10973



Example: NACA 0012 transonic

Calculate target size

& do r-adaptation

Pressure plots

Missing

figure

Figure 4: Pressure plots in the vicinity of the shocks before and after r -adaptation.

Figure 5: Magnified view of boundary elements with CAD sliding enabled nodes: suction
side (left) and pressure side (right).
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Use of CAD sliding

Marcon, Castiglioni, Moxey, Sherwin & Peiró, arXiv 1909.10973



Example: NACA 0012 transonic

Translate to variable p Improved shock capturing

Marcon, Castiglioni, Moxey, Sherwin & Peiró, arXiv 1909.10973



Supersonic example

Supersonic intake

Ma = 1.0



High-order splitting scheme

⇥tu + N(u) = �⇥p + �⇥2u
Navier–Stokes:

Velocity correction scheme (aka stiffly stable):

Orszag, Israeli, Deville (90), Karnaidakis Israeli, Orszag (1991), Guermond & Shen (2003)
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Meshing for F1 applications
Spectral/hp element methods Sec. 4: Spectral/hp elements in 2D

 φpq(ξ1,ξ2) = ψp(ξ1) ψq(ξ2)
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Figure 17: Construction of a two-dimensional expansion basis from the tensor product of two
one-dimensional expansions of order P = 4. A modal expansion (top) and a nodal
expansion (bottom) are shown.

expansion. Since a large part of the efficiency of the quadrilateral expansion (particu-
larly at larger polynomial orders) arises from the tensor product construction, we would
like to use a similar procedure to construct expansions within the triangular domains.
Therefore, to extend the tensor product expansion to simplex regions such as a triangle
we need to generalise the tensor product expansion concept, which can be achieved by
using a collapsed coordinate system.

4.1.3 Collapsed coordinate system

In this section we will focus on 2D expansions defined on the standard triangle Tst,
defined as

Tst = {(ξ1 , ξ2)|− 1 ≤ ξ1 , ξ2 ; ξ1 + ξ2 ≤ 0} .

In the quadrilateral expansions discussed in section 4.1.1 we generated a multidi-
mensional expansion by forming a tensor product of one-dimensional expansions based
on a Cartesian coordinate system. The one-dimensional expansion was defined between
constant limits and therefore an implicit assumption of the tensor extension was that the
coordinates in the two-dimensional region were bounded between constant limits. How-
ever this is not the case in the standard triangular region as the bounds of the Cartesian
coordinates (ξ1, ξ2) are dependent upon each other.

4-2



More complex geometries
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FIGURE 5 Imperial Front Wing geometry and selected PIV planes.

4 SPECTRAL/HP UDNS/ILES SIMULATION

High fidelity numerical simulation were performed using the implicit LES formulation based on a spectral/hp element discretisa-
tion provided in the Nektar++ open source software5. In the spectral/hp method, the domain is first divided into non-overlapping
elements, similar to a finite volume or finite element methods, o�ering geometric flexibility and allowing for local refinement.
The solution in each element is then approximated by high order polynomial expansion.

All simulations were performed using the incompressible Navier-Stokes solver which employs a velocity correction scheme7.
The elliptic operators were discretised using a classical continuous Galerkin (CG) formulation whereas the advection operator
on the formulation used a discontinuous Galerkin (DG) projection to allow for a sub-stepping algorithm as proposed by8. For
well-resolved simulations, it is often possible to discretise the pressure and velocity space using the same polynomial order; how-
ever this problem formulation does not satisfy the Ladyzhenskaya-Babu�ka-Brezzi (LBB) or inf-sup condition, thus numerical
stability and convergence are not guaranteed9.

It is more appropriate to specify an equivalent of the Taylor-Hood approximation and use one polynomial order higher for the
velocity fields than the pressure field with a continuous expansion. Therefore in what follows, our results are named using two
digits to quantify both the polynomial order of velocity and pressure. For example, a simulation referred to as NM43 will have
a polynomial order of 4 for velocity and 3 for pressure. In addition, when solely referring to the simulation expansion order, we
will typically mean the order related to the velocity variable.

At higher Reynolds numbers, where the flow is typically only marginally resolved, we regularly observe numerical instabilities
related to wave interaction and wave trapping. To mitigate these e�ects, we employ both dealiasing and Spectral Vanishing
Viscosity (SVV) stabilization techniques. For the SVV operator in this study, we run the simulation using a novel CG-SVV
scheme with a DG Kernel as proposed in10. This is the first time results using this formulation have been verified and validated
against experimental data for 3D simulations at high Reynolds number. The fundamental idea is based on fixing the Péclet
number, which can be understood as a numerical Reynolds number based on local velocity and mesh spacing for the whole
domain. This is achieved by making the viscosity coe�cient of the SVV operator proportional to both a representative velocity
and a local measure of mesh spacing. Once the Péclet number is the same for the domain,10 proposed a SVV kernel operator for

Plane Number X [mm] X_c [-]

1 -294 -1.176
2 -250 -1.000
3 -150 -0.600
4 -24 -0.096
5 150 0.600

TABLE 1 Plane locations for PIV measurements

Recent F1 simulations
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• F1 simulations highlight complex 
vortex interaction cases: ideal 
candidates for LES.


• Front wing simulations with 
experimental PIV datasets as new 
proposed benchmark case.


• Analysis found in Buscariolo, Hoessler, 
Moxey et al, arXiv 1909.06701.


• Datasets in DOI: 10.14469/hpc/6049 
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FIGURE 19 Average normalized V and W velocity results from Nektar++ for 4th (NM43) and 5th (NM54) order polynomial
expansion compared with experimental results for plane 5.

FIGURE 20 Comparison of instantaneous iso-contours of CP0 = 0 coloured by pressure, with instantaneous plane 1 (left) and
instantaneous full (right) views, for both NM43 (top) and NM54 (bottom) simulations

6 CONCLUSIONS

This study presents a new test case for the automotive fluid dynamics community supported by experimental data, the Imperial
Front Wing (IFW). The IFW geometry includes multiple wing elements under ground e�ect as well as other aerodynamic
features such as gurney flaps, canard and foot plates, all of which are commonly used in present-day front wing designs.

In terms of the locations of the vortex cores for the main, endplate and canard vortices, induced movements in both the span-
wise and vertical directions were observed, as the vortices travel downstream and interact with each other. This type of complex
geometry therefore leads to relatively intricate flow features that can be challenging to simulate and therefore obtain accurate



Comparison with experiment
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Elemental road racing car

• Most challenging case undertaken with 
Nektar++ to date (that I know of!)


• Re ~ 1m, around 1bn dof.


• Simulated at P = 5 with a matching 
high-order mesh and SVV-LES.


• Aim to identify aerodynamic issues and 
refine design.
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Elemental road race car

Moxey, Turner, Jassim, Taylor, Peiro & Sherwin

Design 2: +33% Downforce 

Design 3:   +270% Downforce 

5th order 

Re = 1m



Summary

• We can certainly spectral/hp element techniques to challenging industrial 
flow problems and succeed!


• Accurate, transient flow modelling is an enabling technology for high-end 
engineering/physics.  


• But… there is still a way to go yet!


- Meshing for 3D geometries is a specialist skill.


- Robustness still requires more analysis.
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Thanks for listening!

https://davidmoxey.uk/


d.moxey@exeter.ac.uk


www.nektar.info 
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Nektar++: enhancing the capability and application of high-fidelity spectral/hp element
methods

David Moxey1, Chris D. Cantwell2, Yan Bao3, Andrea Cassinelli2, Giacomo Castiglioni2, Sehun Chun4, Emilia Juda2,
Ehsan Kazemi4, Kilian Lackhove6, Julian Marcon2, Gianmarco Mengaldo7, Douglas Serson2, Michael Turner2, Hui Xu5,2,

Joaquim Peiró2, Robert M. Kirby8, Spencer J. Sherwin2

Abstract

Nektar++ is an open-source framework that provides a flexible, performant and scalable platform for the development of solvers
for partial di↵erential equations using the high-order spectral/hp element method. In particular, Nektar++ aims to overcome the
complex implementation challenges that are often associated with high-order methods, thereby allowing them to be more readily
used in a wide range of application areas. In this paper, we present the algorithmic, implementation and application developments
associated with our Nektar++ version 5.0 release. We describe some of the key software and performance developments, including
our strategies on parallel I/O, on in situ processing, the use of collective operations for exploiting current and emerging hardware, and
interfaces to enable multi-solver coupling. Furthermore, we provide details on a newly developed Python interface that enable more
rapid on-boarding of new users unfamiliar with spectral/hp element methods, C++ and/or Nektar++. This release also incorporates a
number of numerical method developments – in particular: the method of moving frames (MMF), which provides an additional
approach for the simulation of equations on embedded curvilinear manifolds and domains; a means of handling spatially variable
polynomial order; and a novel technique for quasi-3D simulations (which combine a 2D spectral element and 1D Fourier spectral
method) to permit spatially-varying perturbations to the geometry in the homogeneous direction. Finally, we demonstrate the new
application-level features provided in this release, namely: a facility for generating high-order curvilinear meshes called NekMesh; a
novel new AcousticSolver for aeroacoustic problems; our development of a ‘thick’ strip model for the modelling of fluid-structure
interaction (FSI) problems in the context of vortex-induced vibrations (VIV). We conclude by commenting on some lessons learned
and by discussing some directions for future code development and expansion.
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