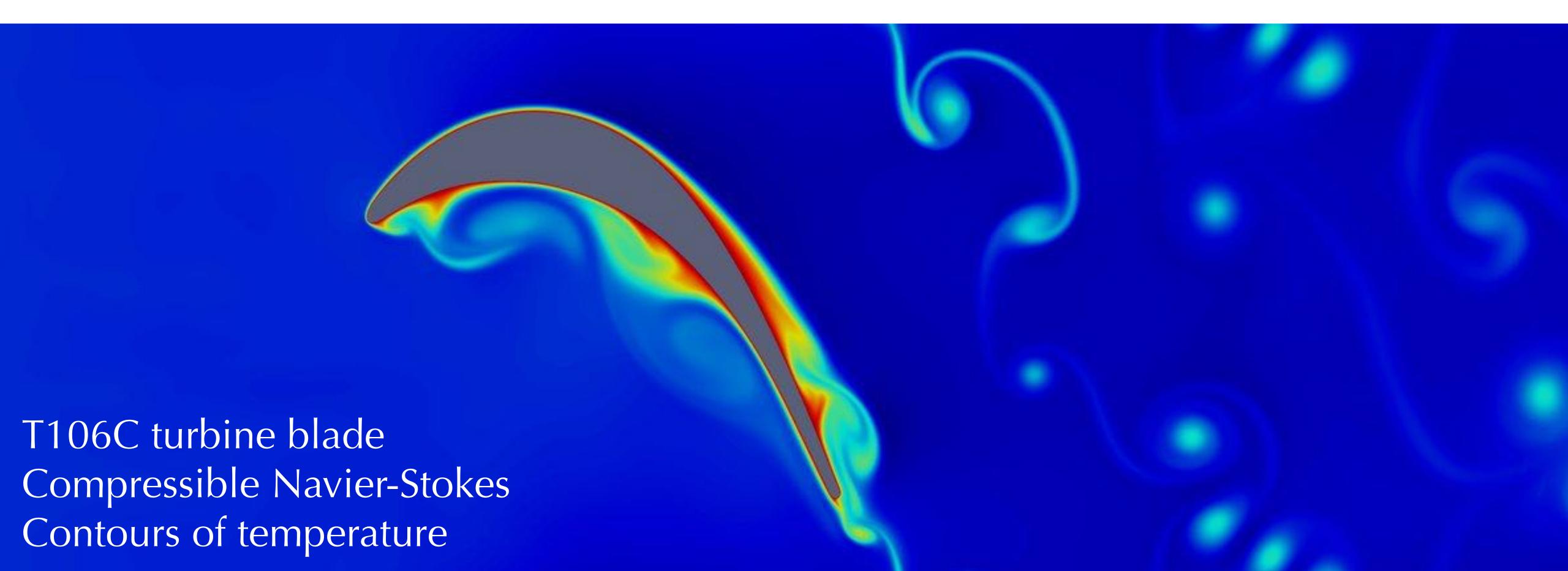
# Towards high-fidelity industrial fluid dynamics simulations at high order

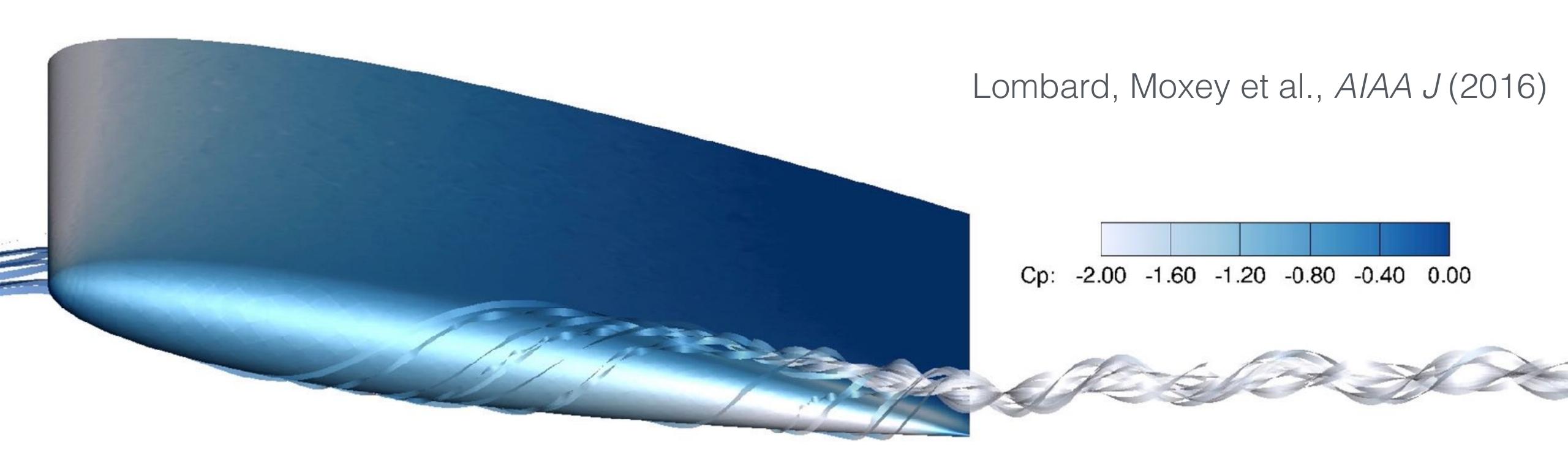
David Moxey

College of Engineering, Maths & Physical Sciences, University of Exeter



#### Outline

- Motivation
- What are high order methods and why are they useful?
- Challenges of higher order methods (and some solutions!)
- Nektar++: a spectral/hp element framework
- Applications



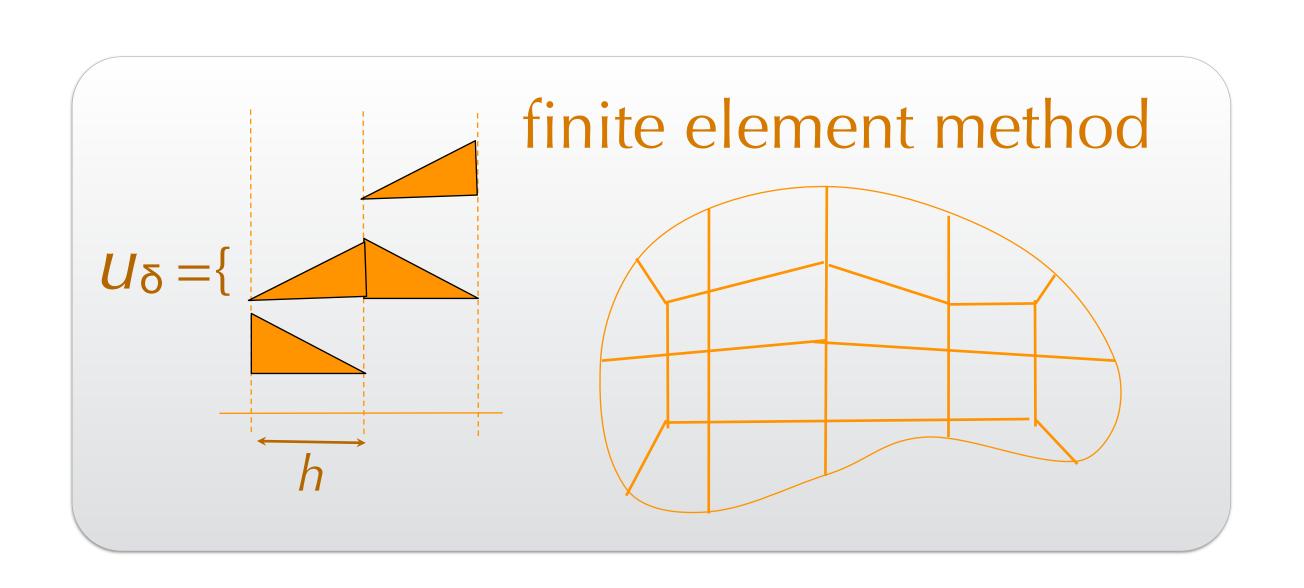
Increasing desire for **high-fidelity** simulation in high-end engineering applications.

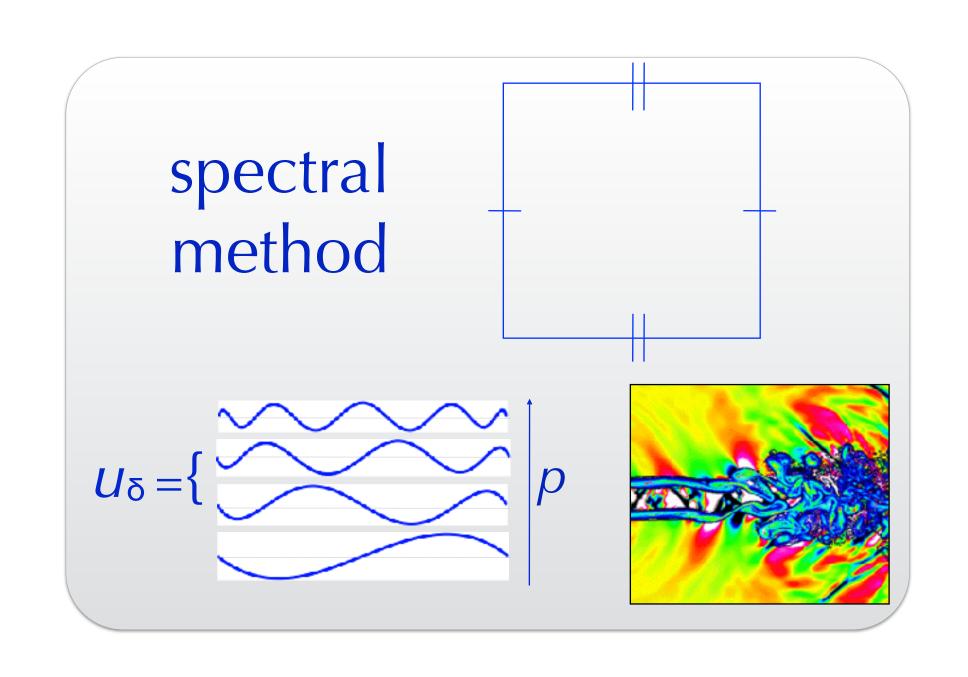
Want to accurately model difficult features:

- strongly separated flows
- feature tracking and prediction
- vortex interaction

My goal: develop methods and techniques for making LES affordable

#### What are high-order methods?





spatial flexibility (h)

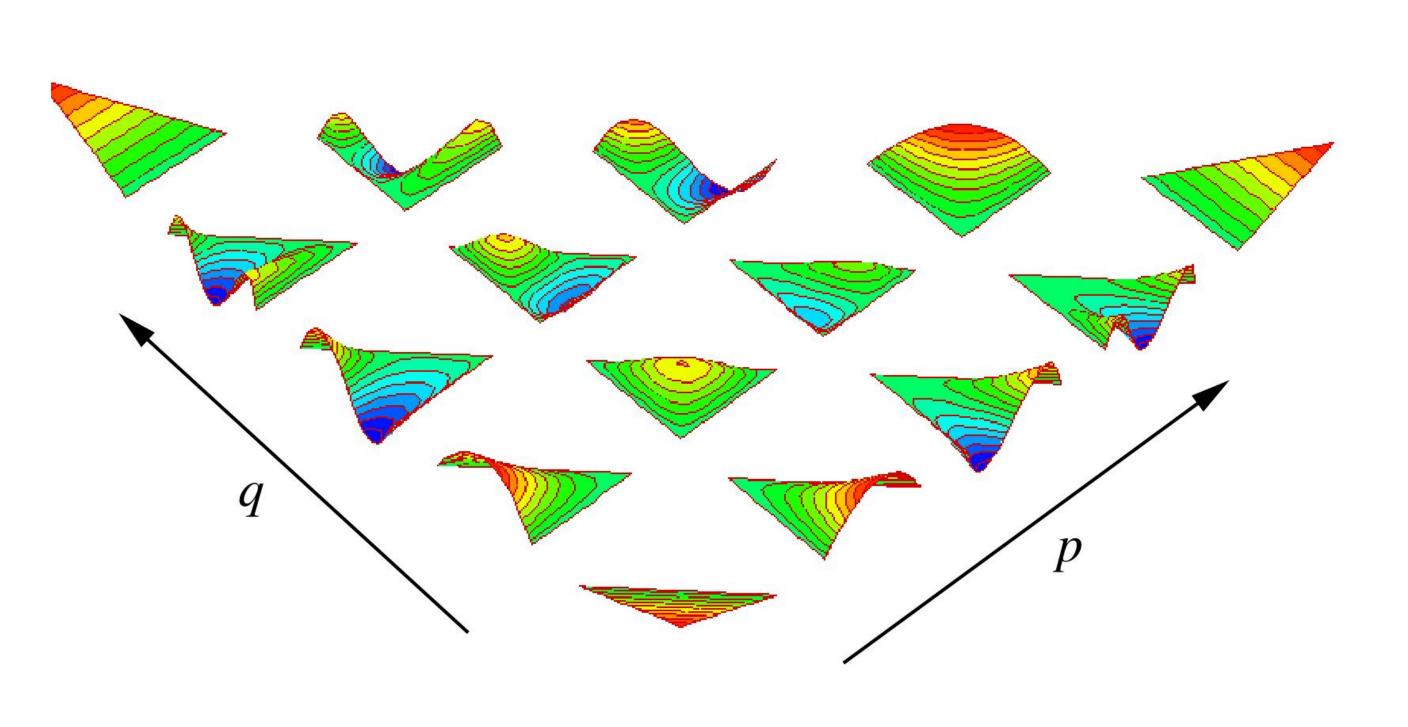
spectral/hp element

accuracy (p)

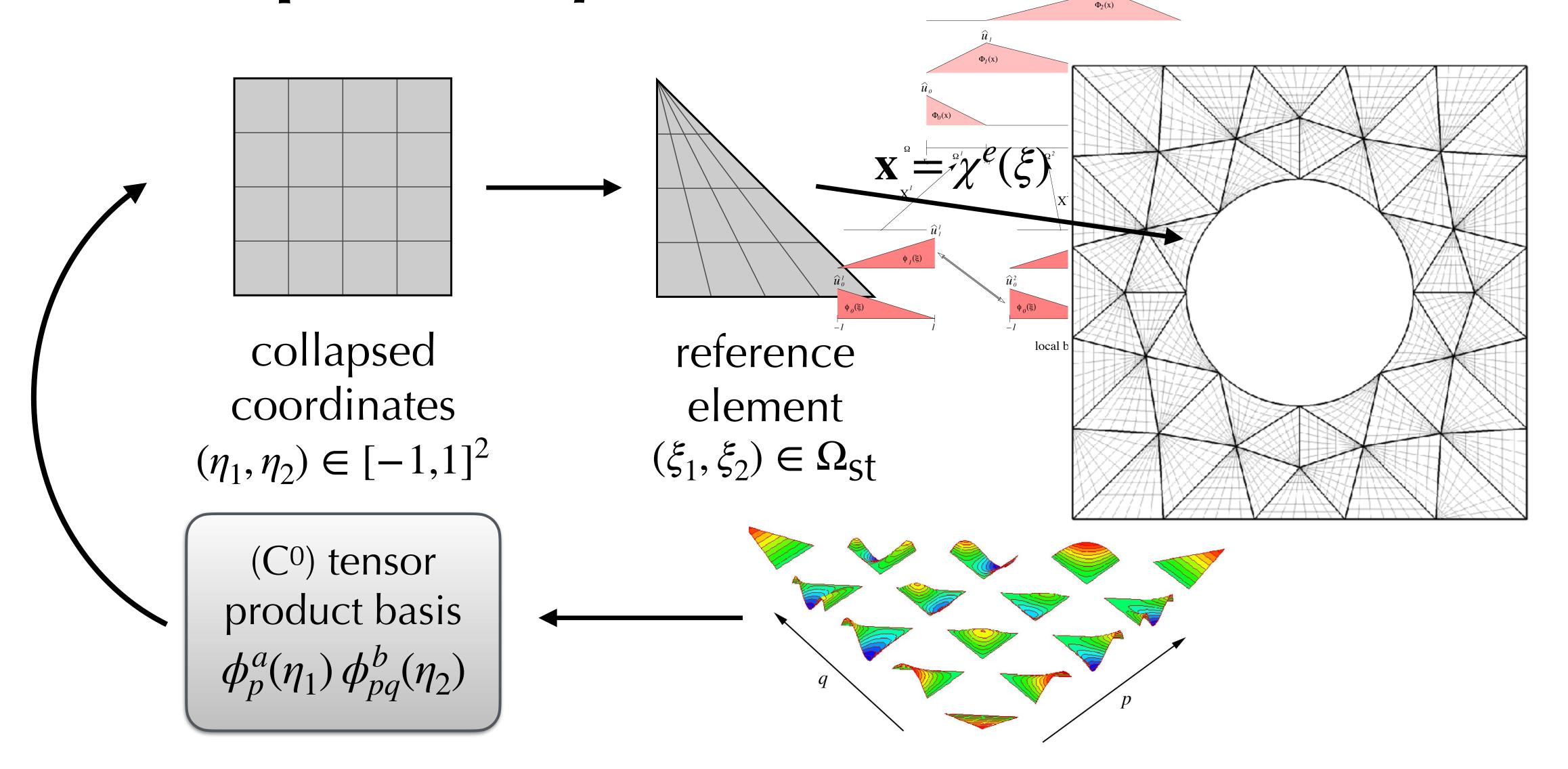
local bases

### Higher-order expansions

- Extend traditional FEM by adding higher order polynomials of degree *P* within each element.
- Traditional linear triangular elements have 3 degrees of freedom per element (each vertex).
- High-order has (P+1)(P+2)/2 at a given order P.

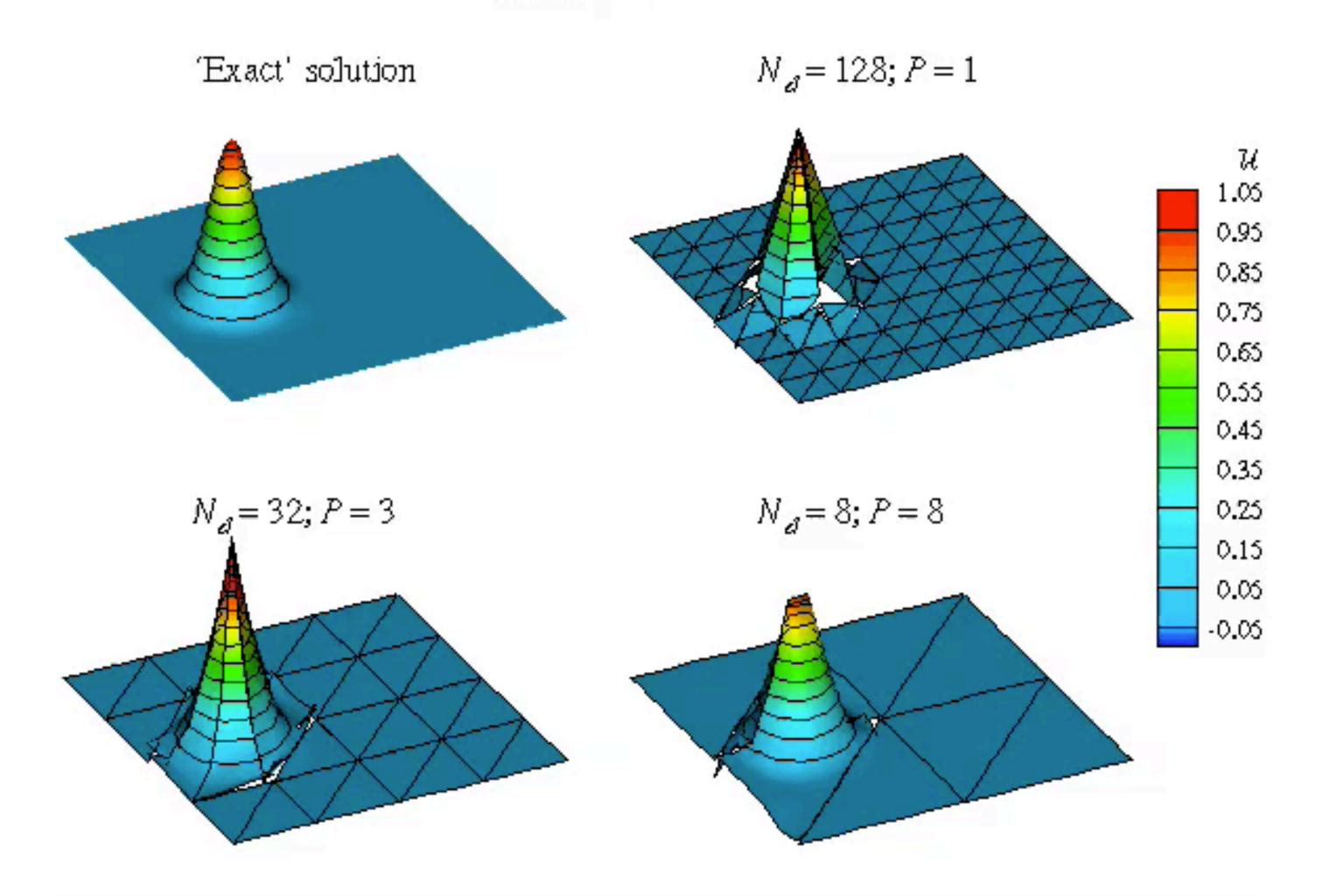


#### Spectral/hp element formulation

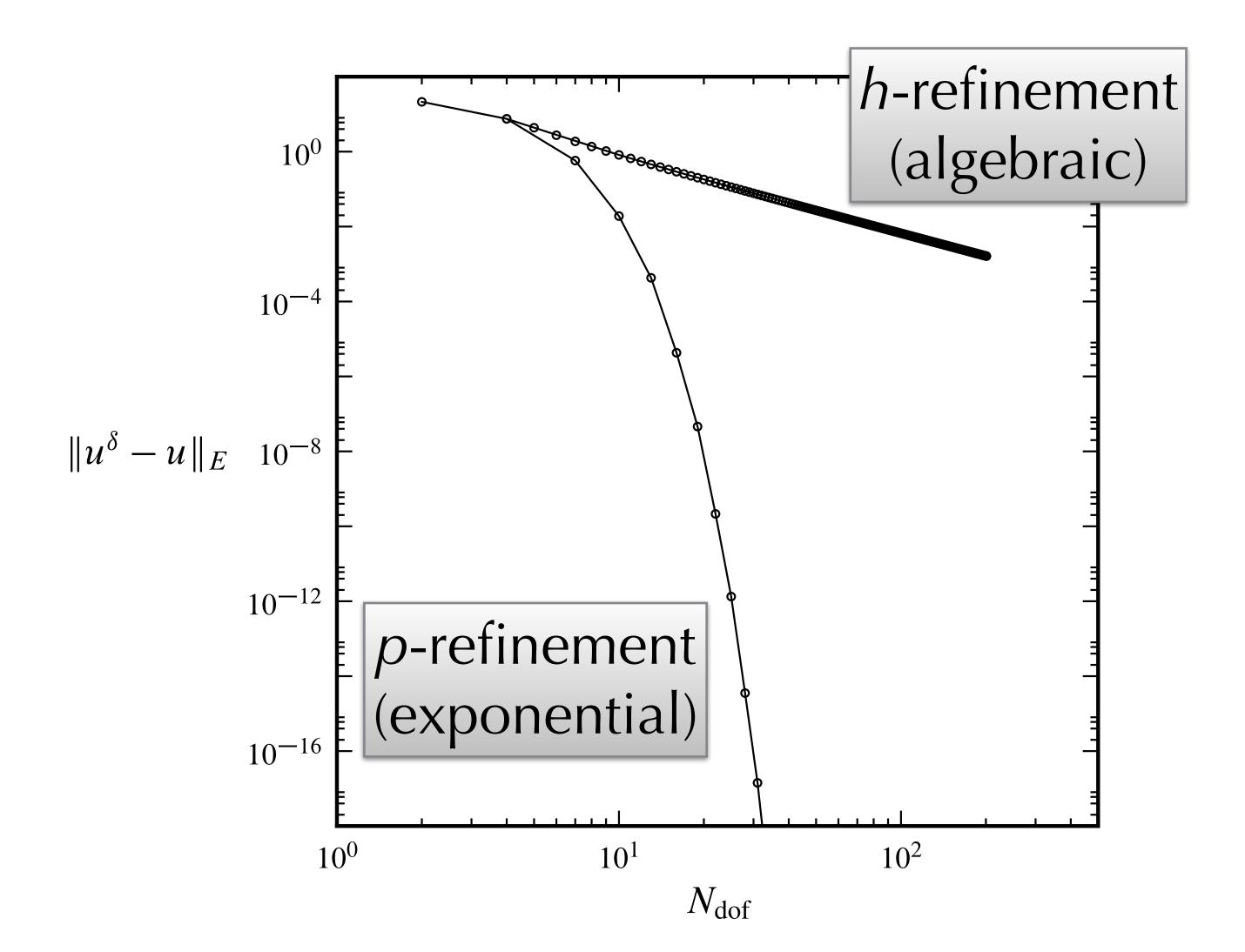


### Why use a high-order method?

Time = 0



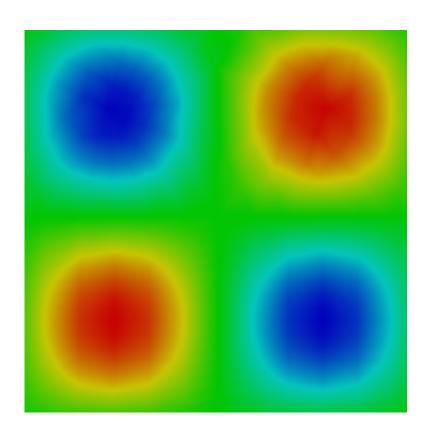
#### Why use a high-order method?



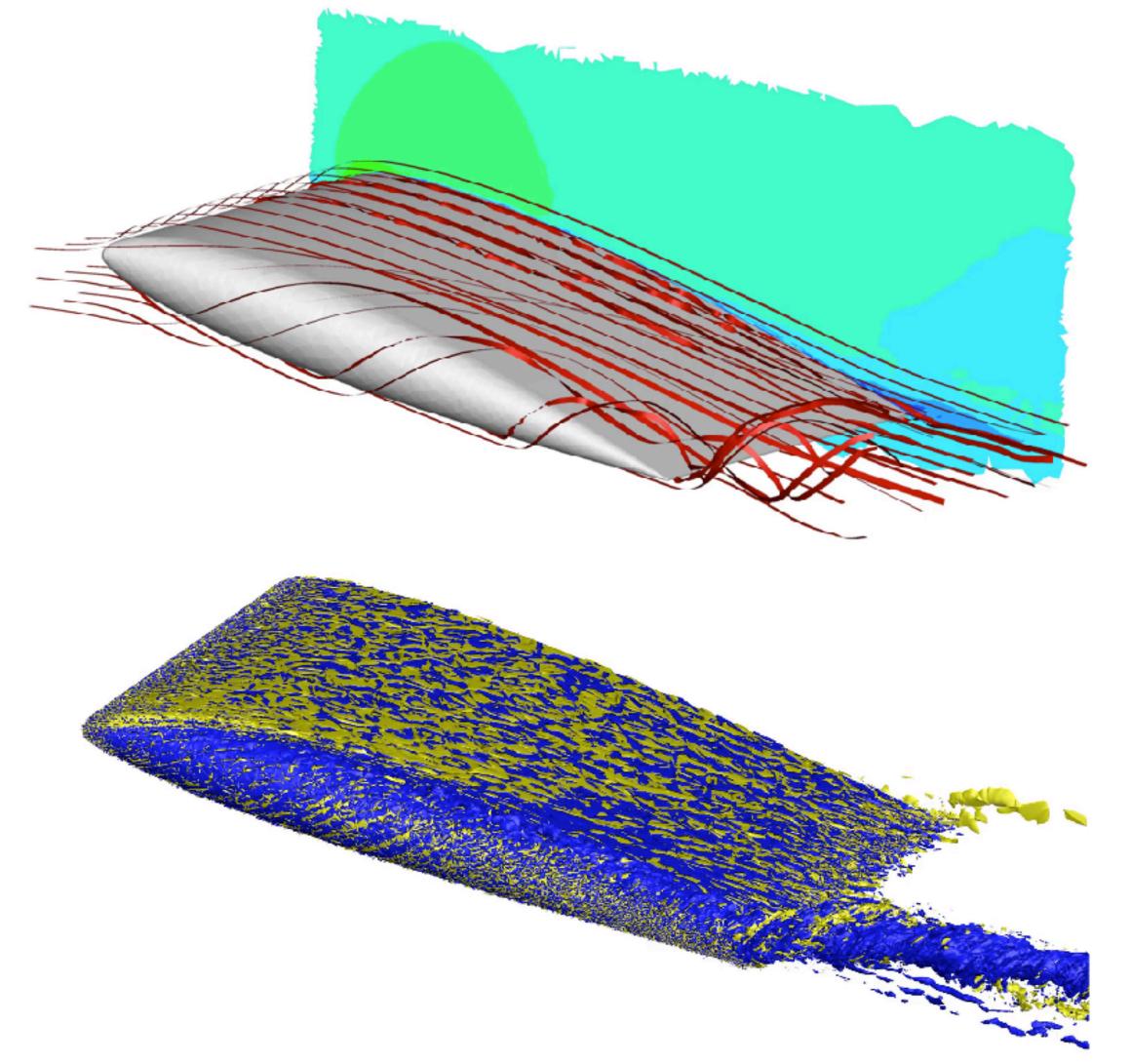
$$\nabla^2 u(x) - \lambda u(x) = -f(x)$$

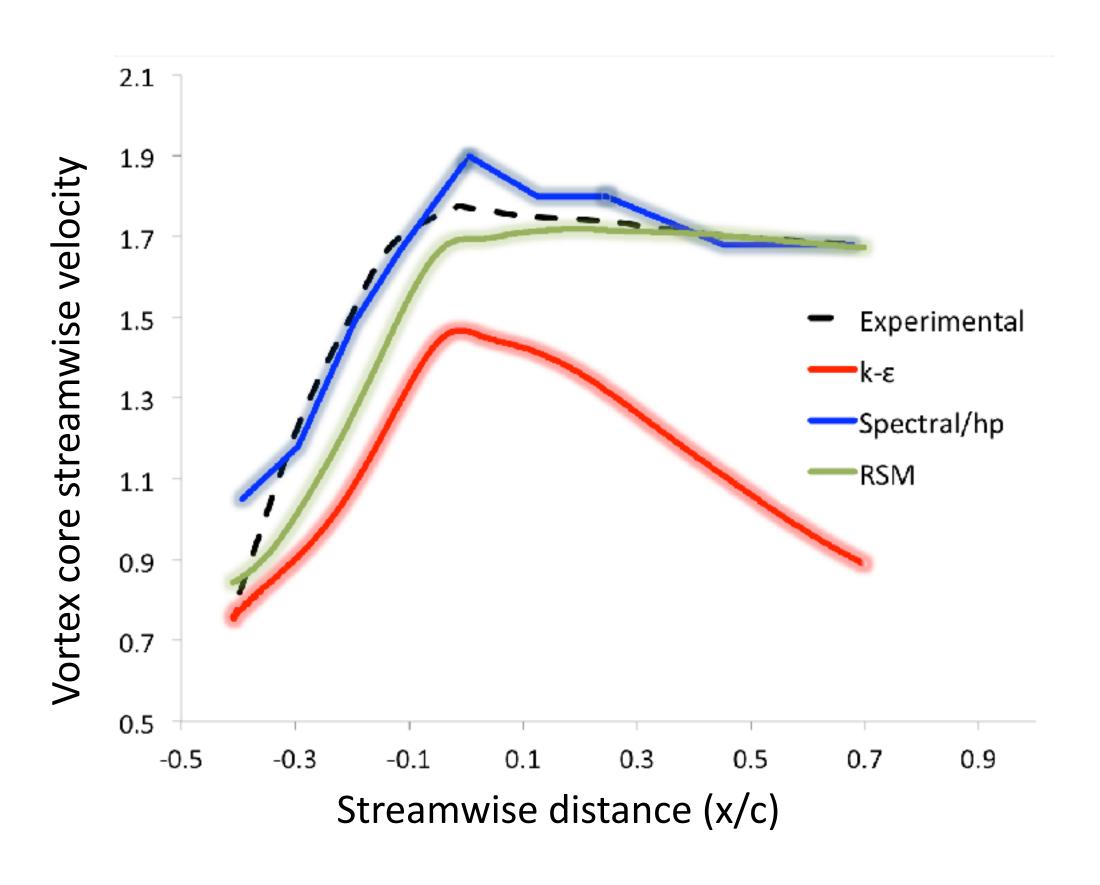
$$u(x) = \sin(\pi x)\sin(\pi y)$$

$$\Rightarrow f(x) = (\nabla^2 - \lambda)u(x)$$



#### NACA 0012 example





Lombard, Moxey, Hoessler, Dhandapani, Taylor and Sherwin *AIAA Journal (2016)* 

### So why doesn't everyone use high-order?

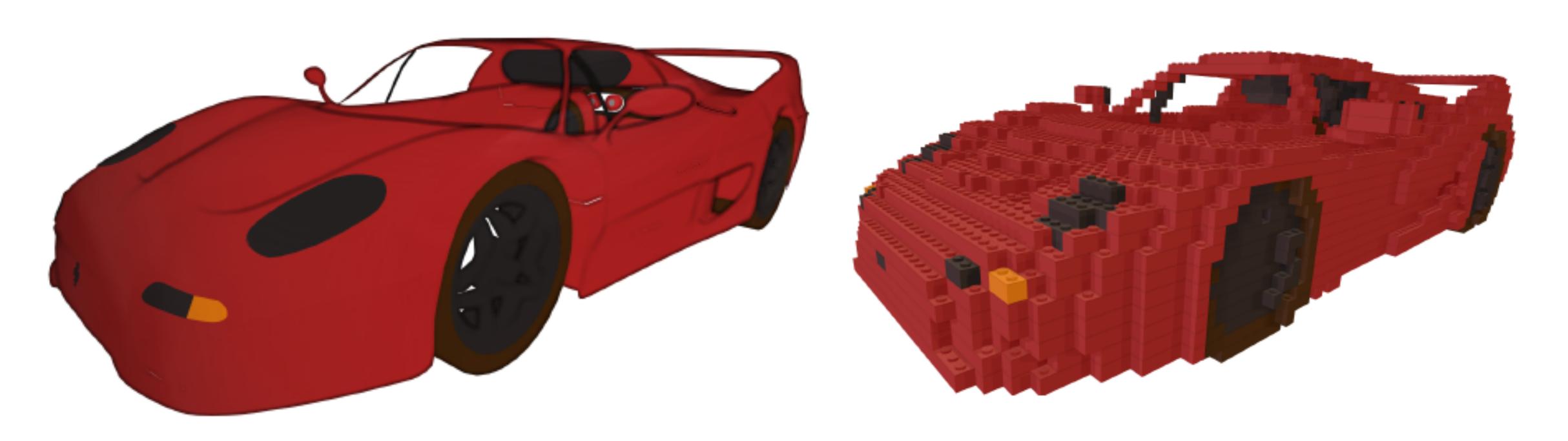
#### Things I'll discuss today:

- Pre-processing (mesh generation), particularly for complex geometries.
- Efficiency & cost: linear algebra techniques & operator implementations.
- Difficulty and effort of implementation.

#### Other issues:

• Post-processing and visualisation, stability and robustness, preconditioning...

### Challenge 1: high-order mesh generation

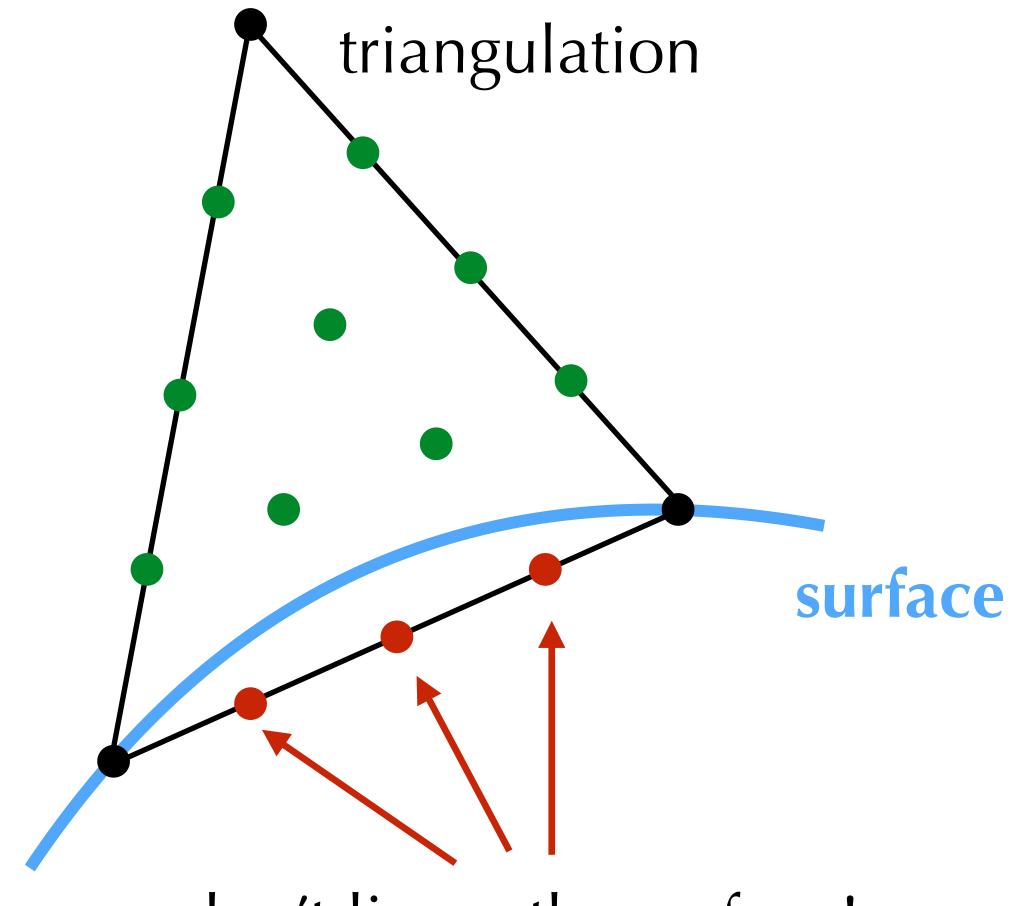


Complex geometries look like this

Not like this

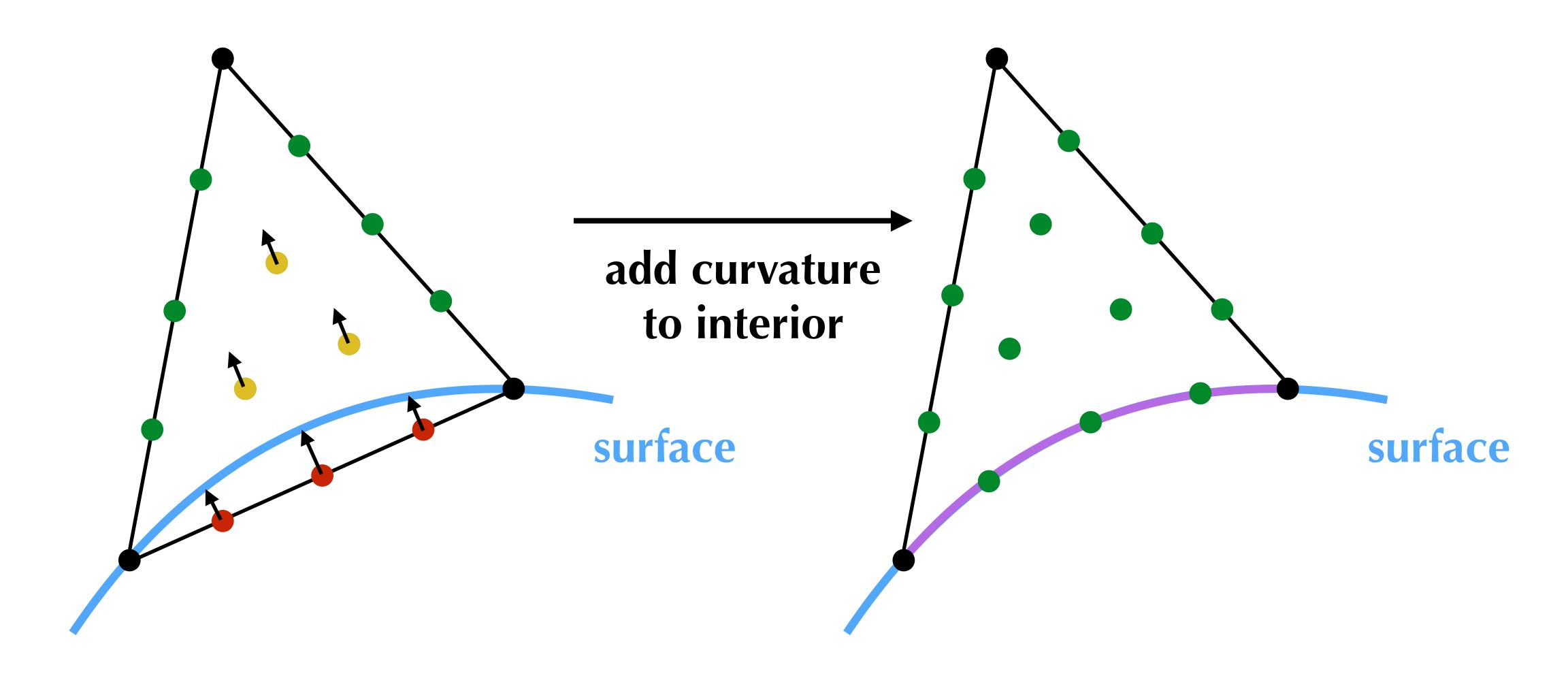
### High-order mesh generation

- Good quality meshes are **essential** to finite element and finite volume simulations.
- You can have a very fancy solver, but without a mesh you can't run your simulation!
- At high orders we have an additional headache, as we must curve the elements to fit the geometry.

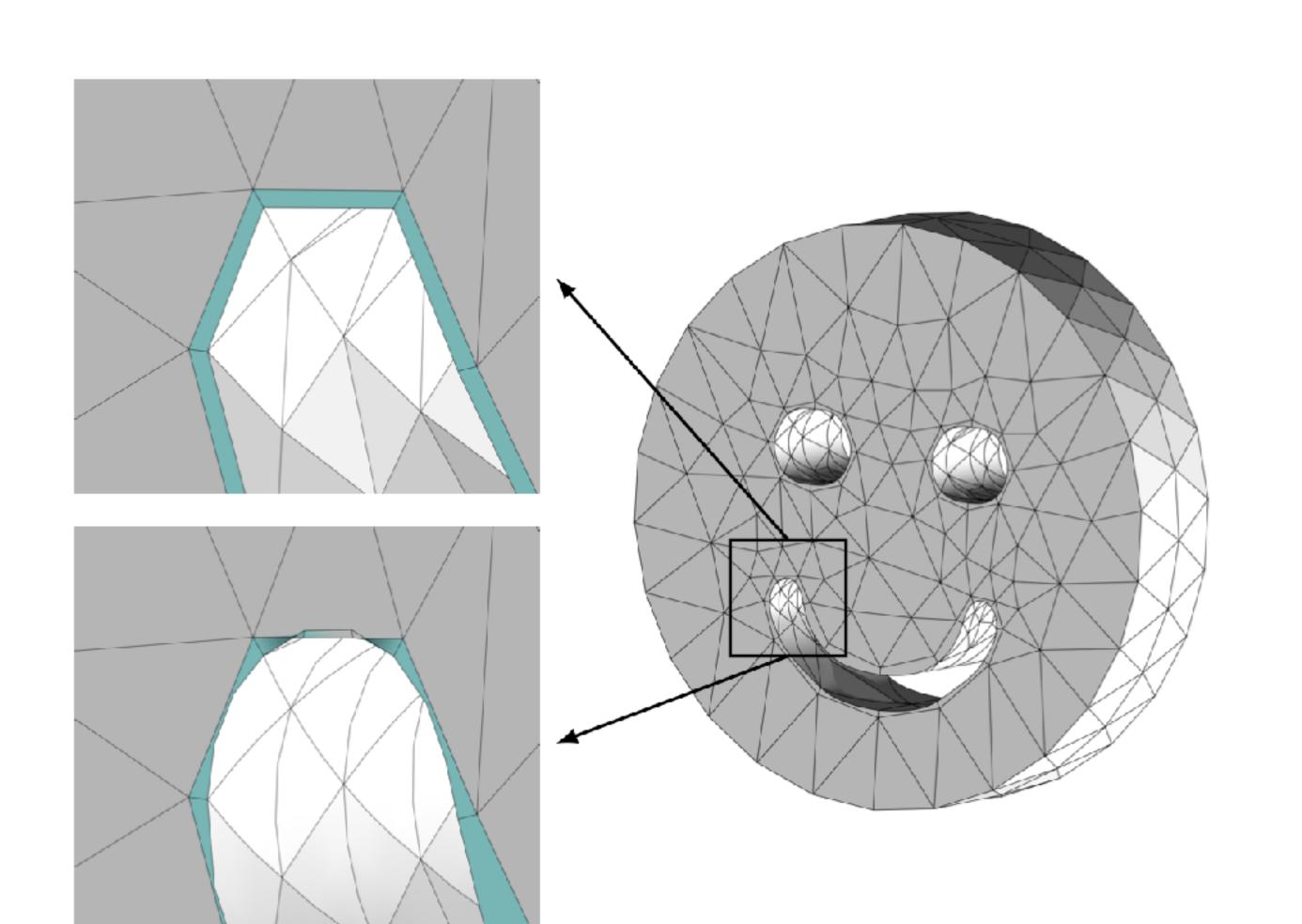


don't lie on the surface!

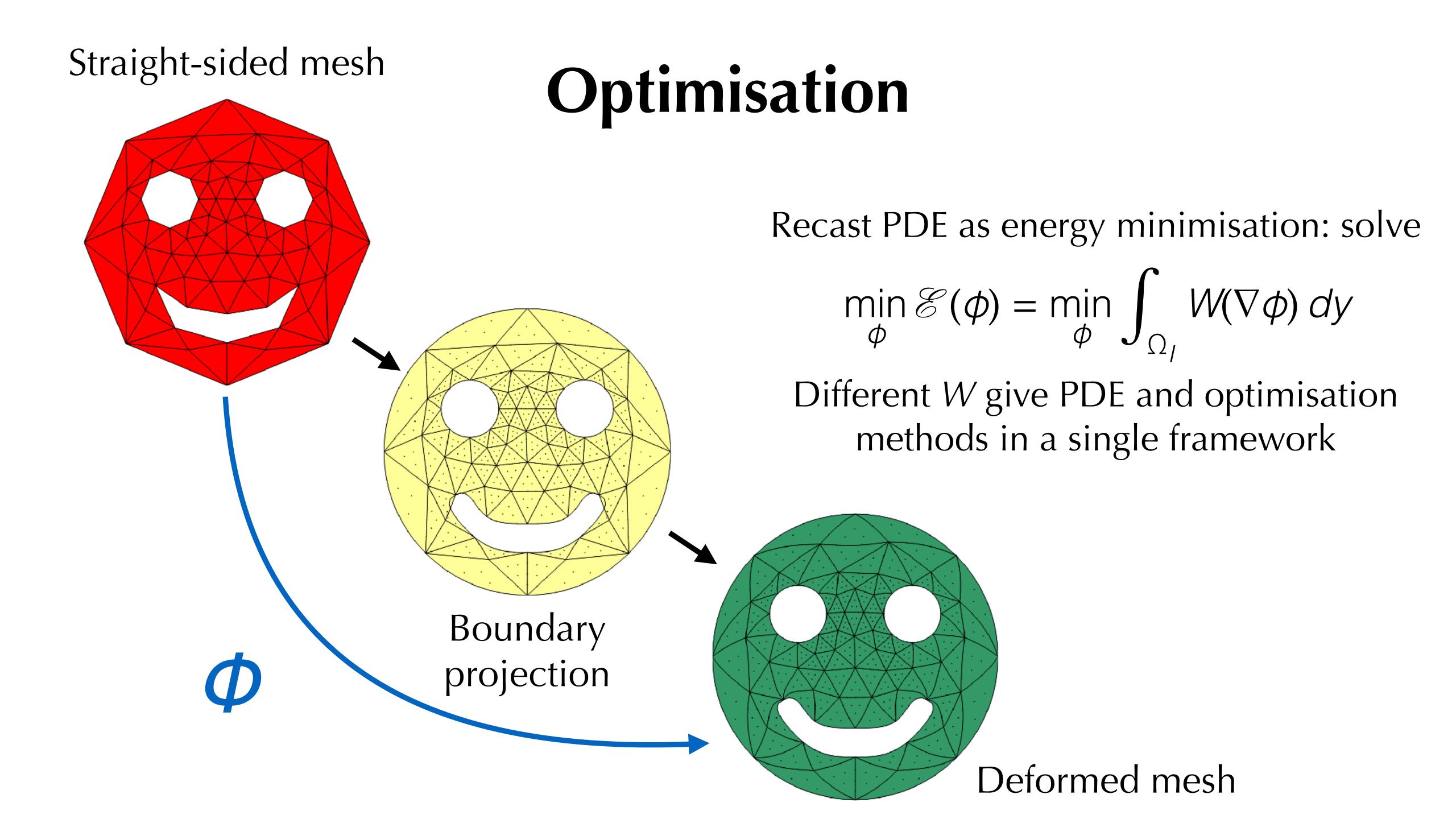
### High-order mesh generation



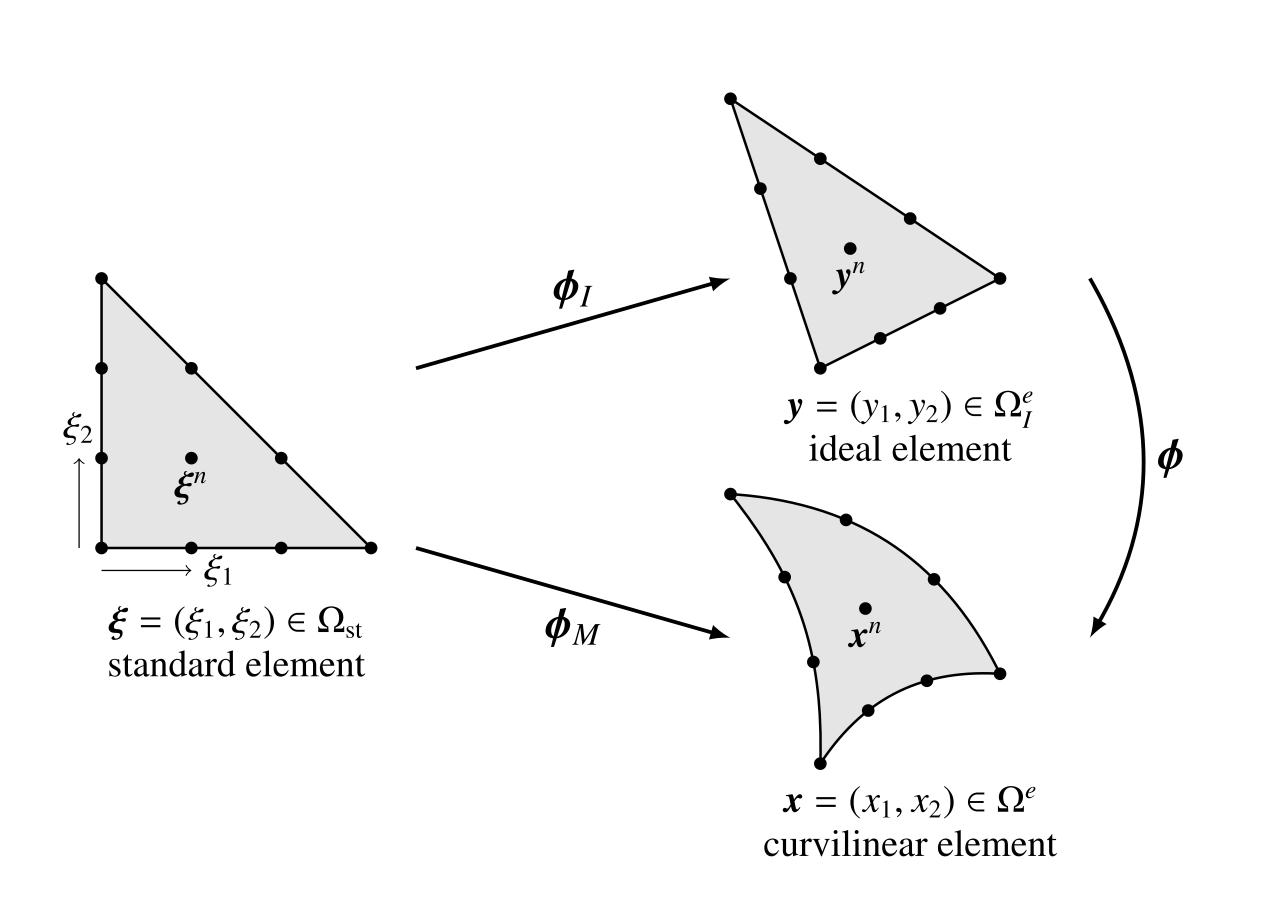
### High-order mesh generation



- Curving coarse meshes leads to invalid elements.
- Most existing mesh generation packages cannot deal with this.
- Involves non-trivial optimisation procedure.
- Therefore a need to develop new techniques.



#### Variational approach



$$\min_{\boldsymbol{\phi}} \mathcal{E}(\boldsymbol{\phi}) = \min_{\boldsymbol{\phi}} \int_{\Omega_{I}} W(\nabla \boldsymbol{\phi}) \, dy$$

$$W = \frac{\kappa}{2} (\ln J)^{2} + \mu \, \mathbf{E} : \mathbf{E}; \quad \mathbf{E} = \frac{1}{2} (\mathbf{F}^{t} \mathbf{F} - \mathbf{I})$$

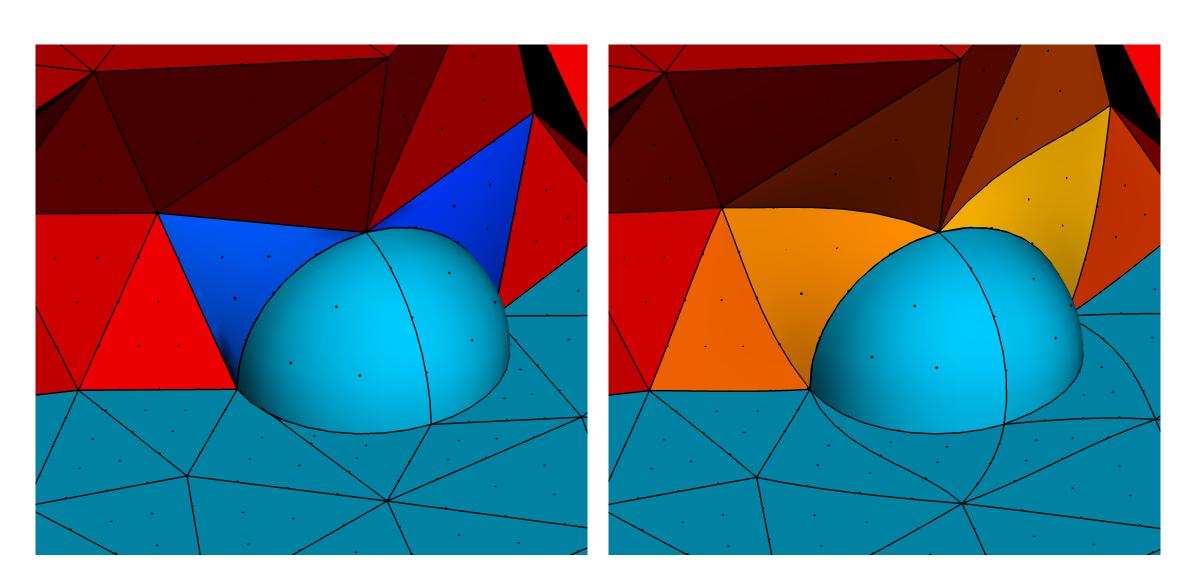
$$W = \frac{\mu}{2} (\mathbf{F} : \mathbf{F} - 3) - \mu \ln J + \frac{\lambda}{2} (\ln J)^{2}$$

$$W = J^{-1} (\mathbf{F} : \mathbf{F})$$

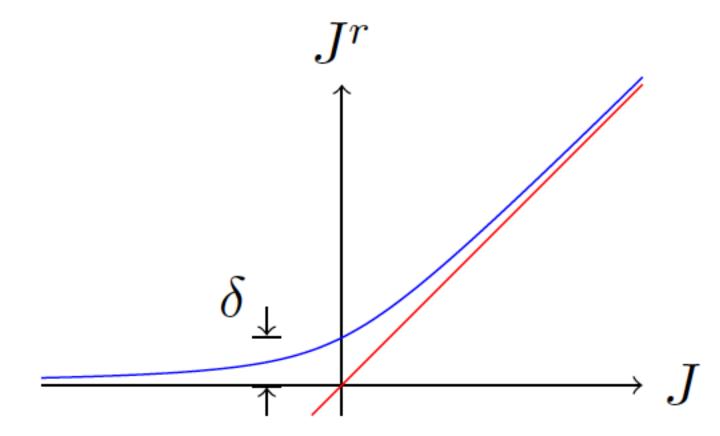
$$W = \frac{1}{2} |J|^{-d/2} (\mathbf{F} : \mathbf{F})$$

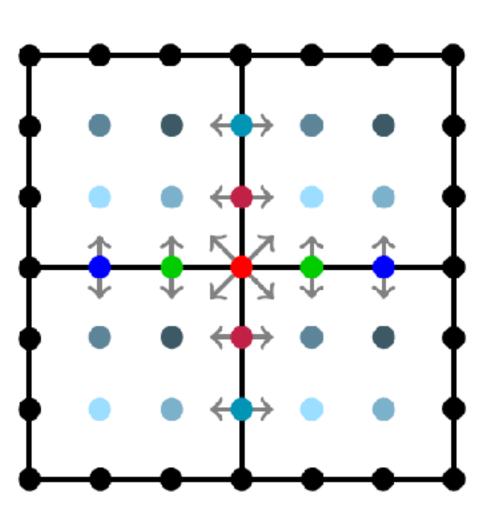
M. Turner, J. Peiró, D. Moxey, *Curvilinear mesh generation using a variational framework*Computer Aided Design **103** 73-91 (2018)

#### Benefits



**CAD** sliding

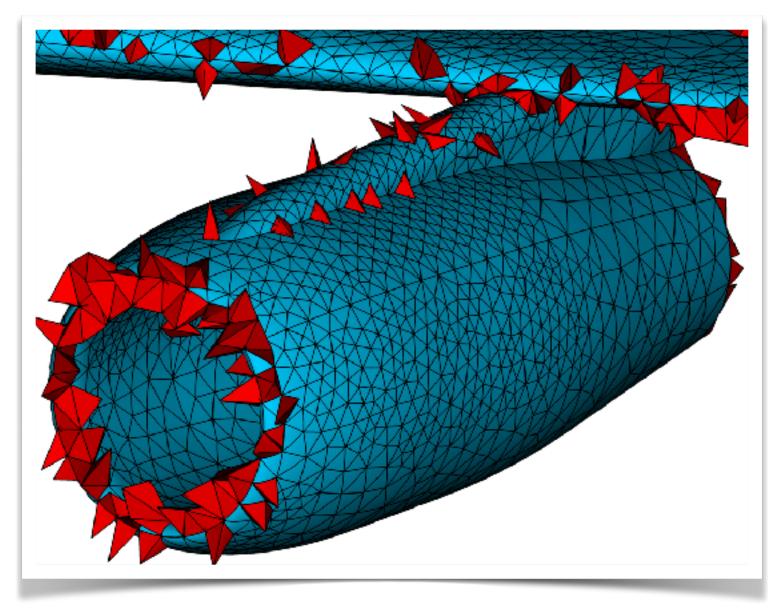


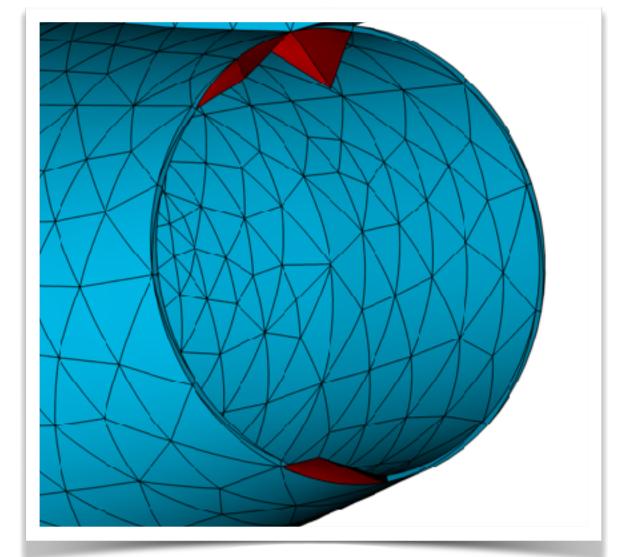


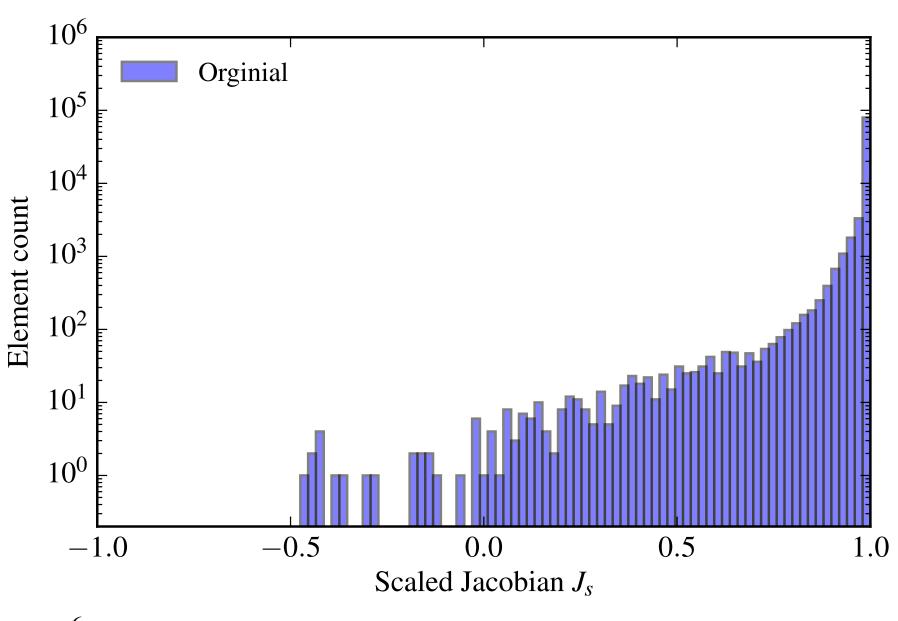
Multi-core parallelisation relaxation optimisation approach

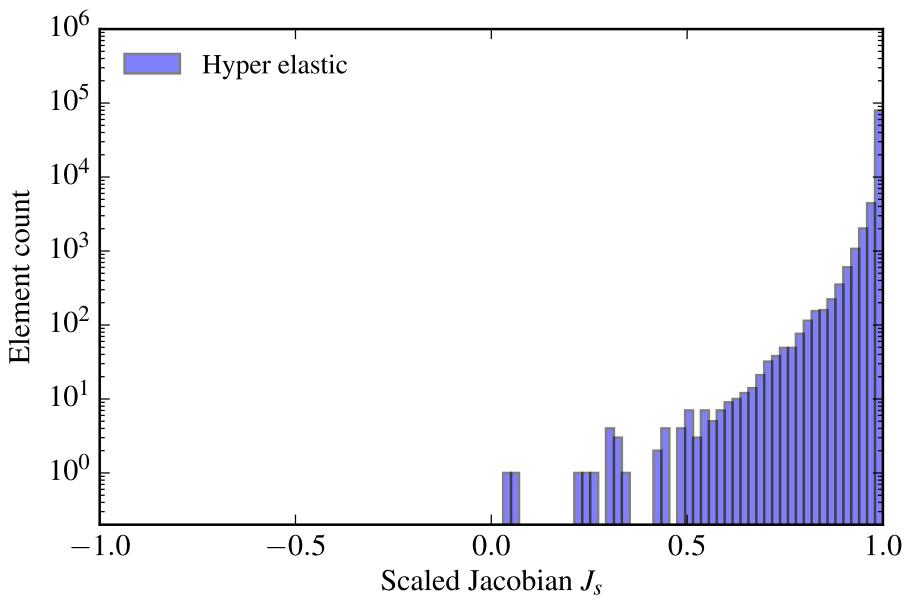
Untangles meshes using Jacobian regularisation

### Example: DLR F6 engine





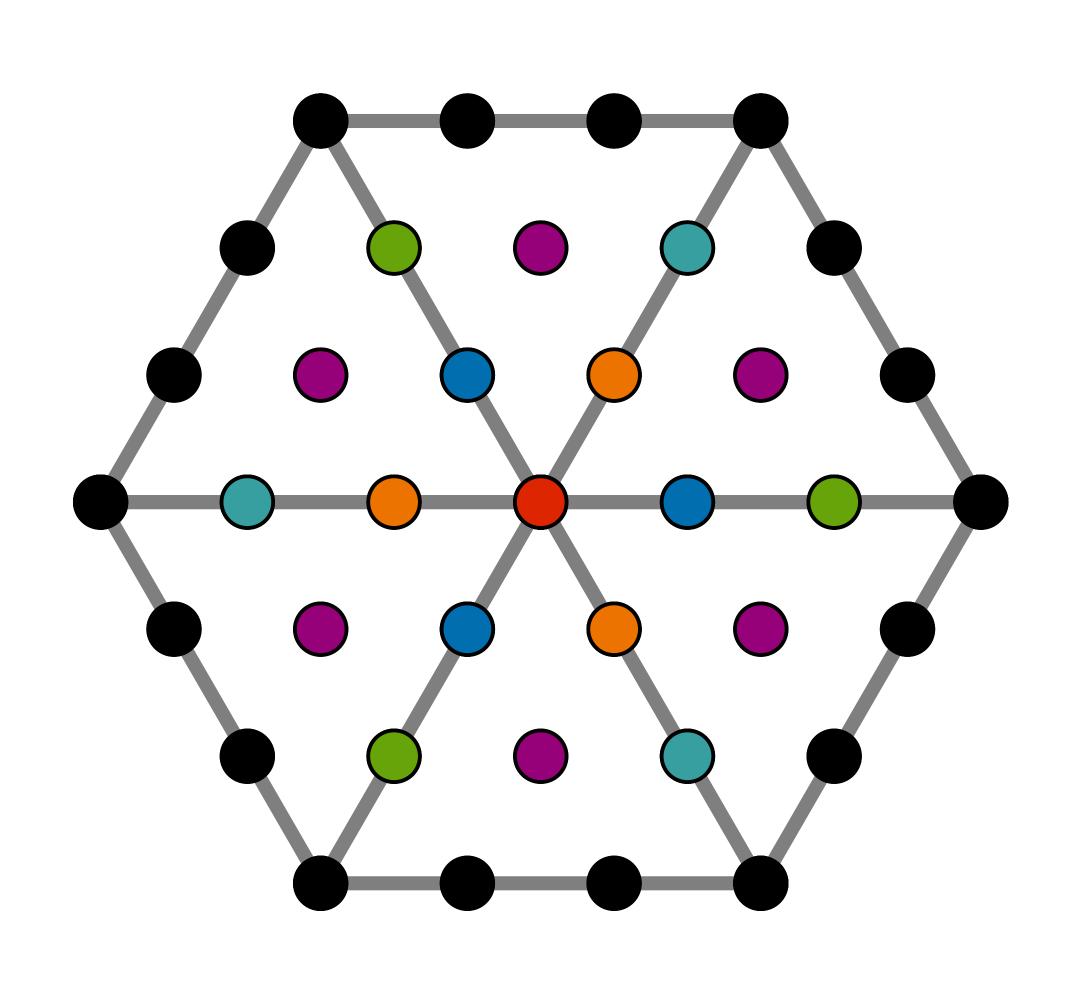




#### Speeding up optimisation

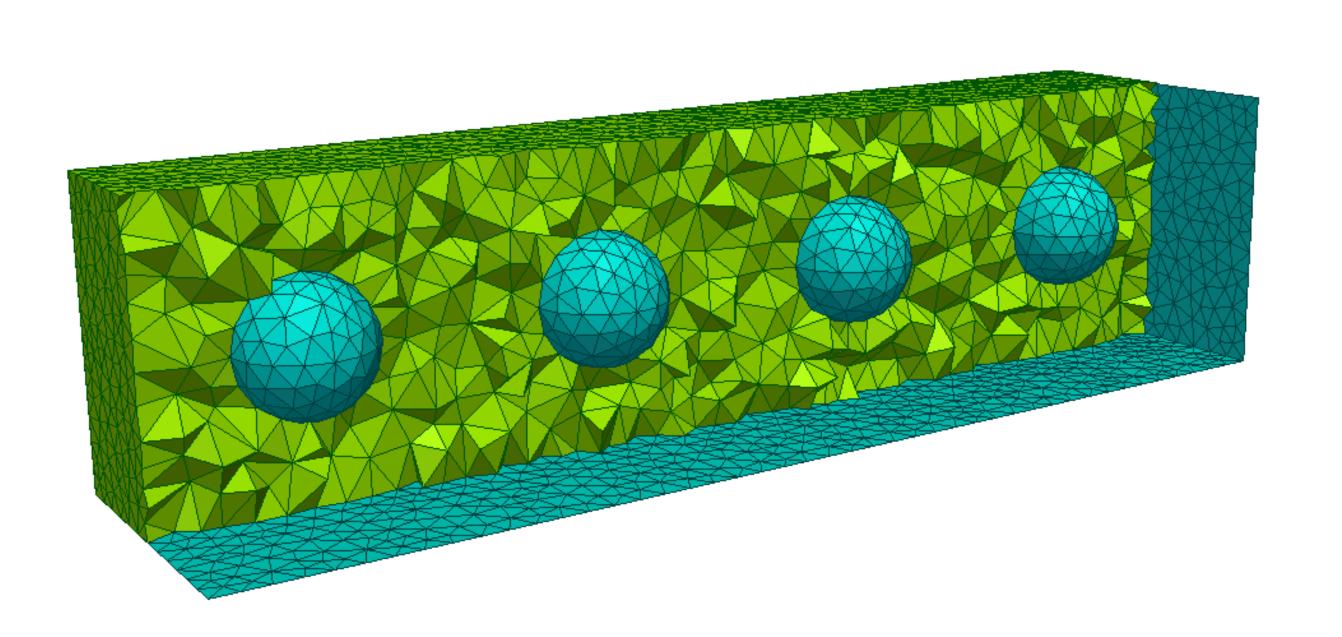
- Meshing usually accomplished on a single workstation, generally repeated as part of many design iterations.
- Optimisation process is resource intensive, but GPUs have lots of compute density.
- Can we leverage parallelism of the method effectively on a GPU?
- How do we do this in a code-friendly way?

### Node colouring

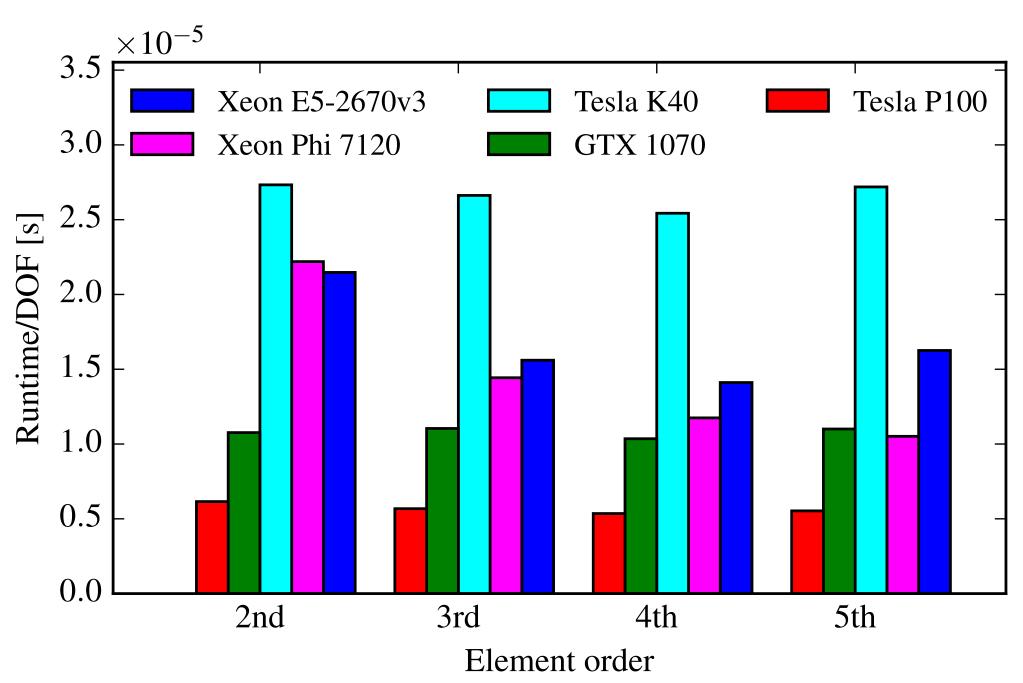


- For each node, solve local minimisation problem.
- Calculate functional + gradients analytically.
- Uses multi-level threading to exploit GPU hierarchy: use Kokkos.
- Iterate until global functional residual is small.

#### Results



Four spheres in a box, 33k tetrahedra,  $\sim 400k$  nodes at p = 5



Reasonably consistent runtimes per DoF across polynomial orders

### Challenge 2: efficient implementation

- Today's computational hardware: lots of FLOPS available, but really hard to use them.
- Algorithms will only use hardware effectively if they are **arithmetically intense:** i.e. high ratio of FLOPS per byte of memory transfer.
- This is one of the reasons that current industry-standard CFD codes often do not make best use of hardware on offer.
- High-order has potential in this area through **matrix-free formulation** of the underlying operators.

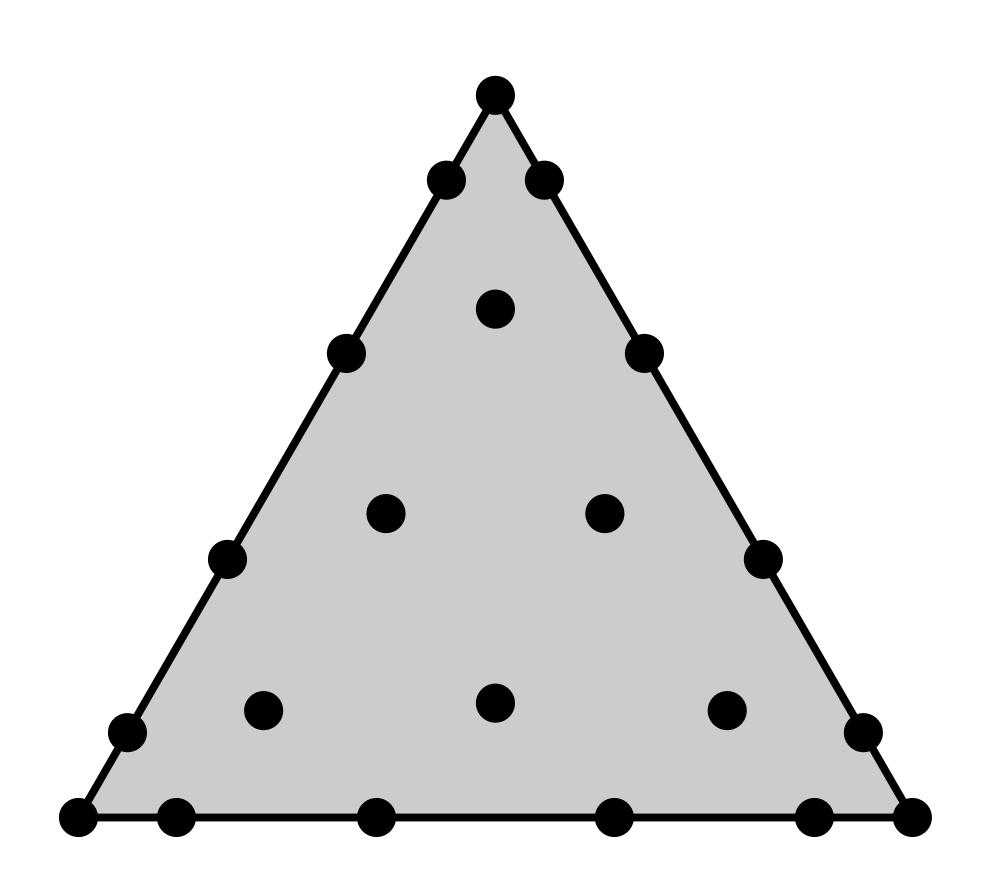
#### Matrix-free FEM

• Common in FEM to compute (local or global) mass & stiffness matrices, e.g.

$$\mathbf{M}_{ij} = \int_{\Omega^e} \phi_i(x_1) \phi_j(x_2) \, \mathrm{d}x \qquad \mathbf{S}_{ij} = \int_{\Omega^e} \nabla \phi_i(x_1) \cdot \nabla \phi_j(x_2) \, \mathrm{d}x$$

- For a hypercube: rank  $P^d$ , storage & multiplication cost  $O(P^{2d})$ .
- Entries computed using Gaussian quadrature: evaluation cost also  $O(P^{2d})$ ; but the constant is important!
- Idea of matrix-free: compute *action* of local matrix by evaluating summations corresponding to integrals above to avoid memory transfer.
- Further efficiency if we use a tensor product basis to enable sum-factorisation.

#### Unstructured elements



P5 triangle, Fekete points

- Typically unstructured elements make use of Lagrange basis functions (although not always).
- Combine this with a suitable set of quadrature (cubature) points: no tensor-product structure.
- However, spectral/hp does have a tensor product structure!

$$u^{\delta}(\eta_1, \eta_2) = \sum_{p=0}^{P} \sum_{q=0}^{Q-p} \hat{u}_{pq} \phi_p^a(\eta_1) \phi_{pq}^b(\eta_2)$$

#### Sum-factorisation

Key to performance at high polynomial orders: complexity  $O(P^{2d})$  to  $O(P^{d+1})$ !

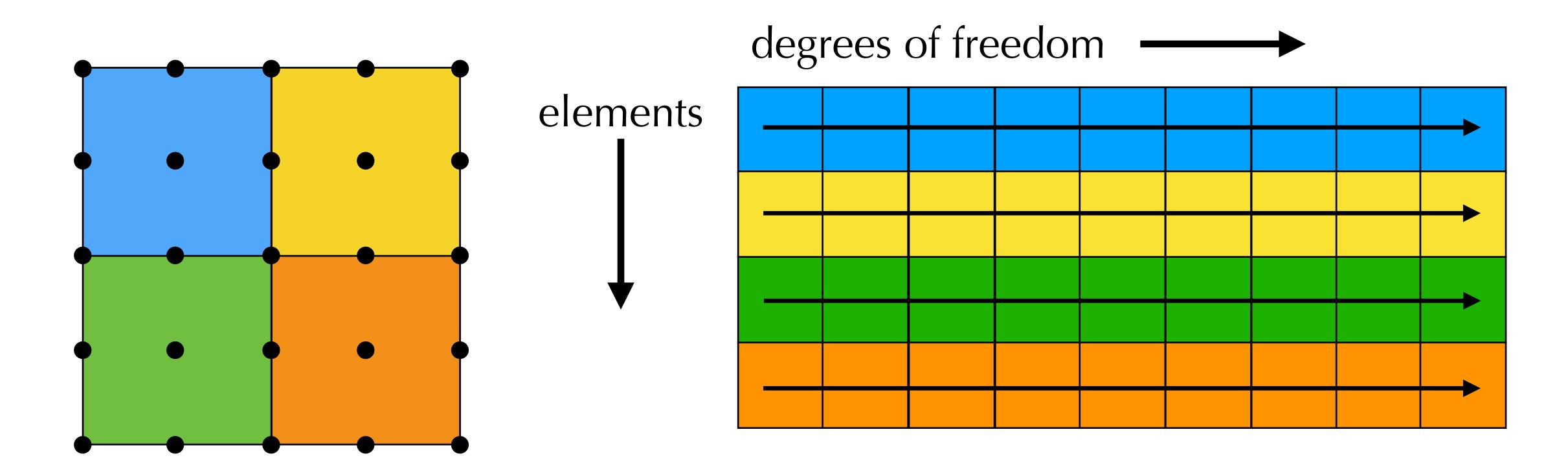
$$u(\xi_{1i}, \xi_{2j}) = \sum_{p=0}^{P} \sum_{q=0}^{Q} \hat{u}_{pq} \phi_{p}(\xi_{1i}) \phi_{q}(\xi_{2j}) = \sum_{p=0}^{P} \phi_{p}(\xi_{1i}) \left[ \sum_{q=0}^{Q} \hat{u}_{pq} \phi_{q}(\xi_{2j}) \right]$$
store this for each  $p$ 

This works in essentially the same way for more complex indexing:

$$\sum_{p=0}^{P} \sum_{q=0}^{Q-p} \hat{u}_{pq} \phi_{p}^{a}(\xi_{1i}) \phi_{pq}^{b}(\xi_{2j}) = \sum_{p=0}^{P} \phi_{p}^{a}(\xi_{1i}) \left[ \sum_{q=0}^{Q-p} \hat{u}_{pq} \phi_{pq}^{b}(\xi_{2j}) \right]$$
store this for each  $p$ 

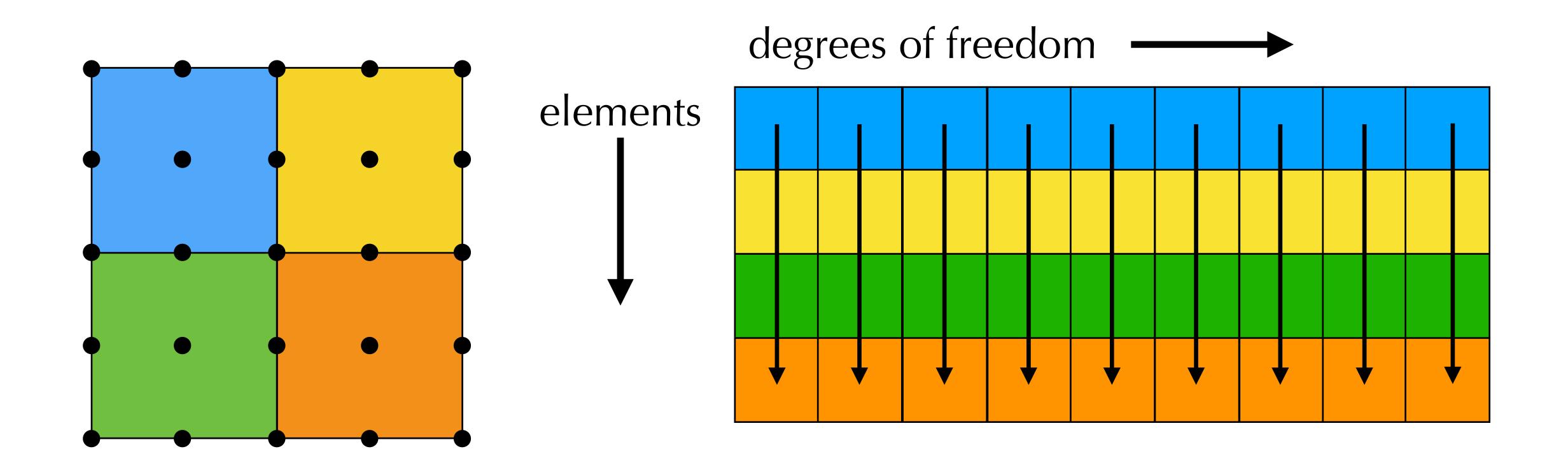
#### Data layout

To exploit hardware, need to consider data layout: natural to consider data element by element.



#### Data layout

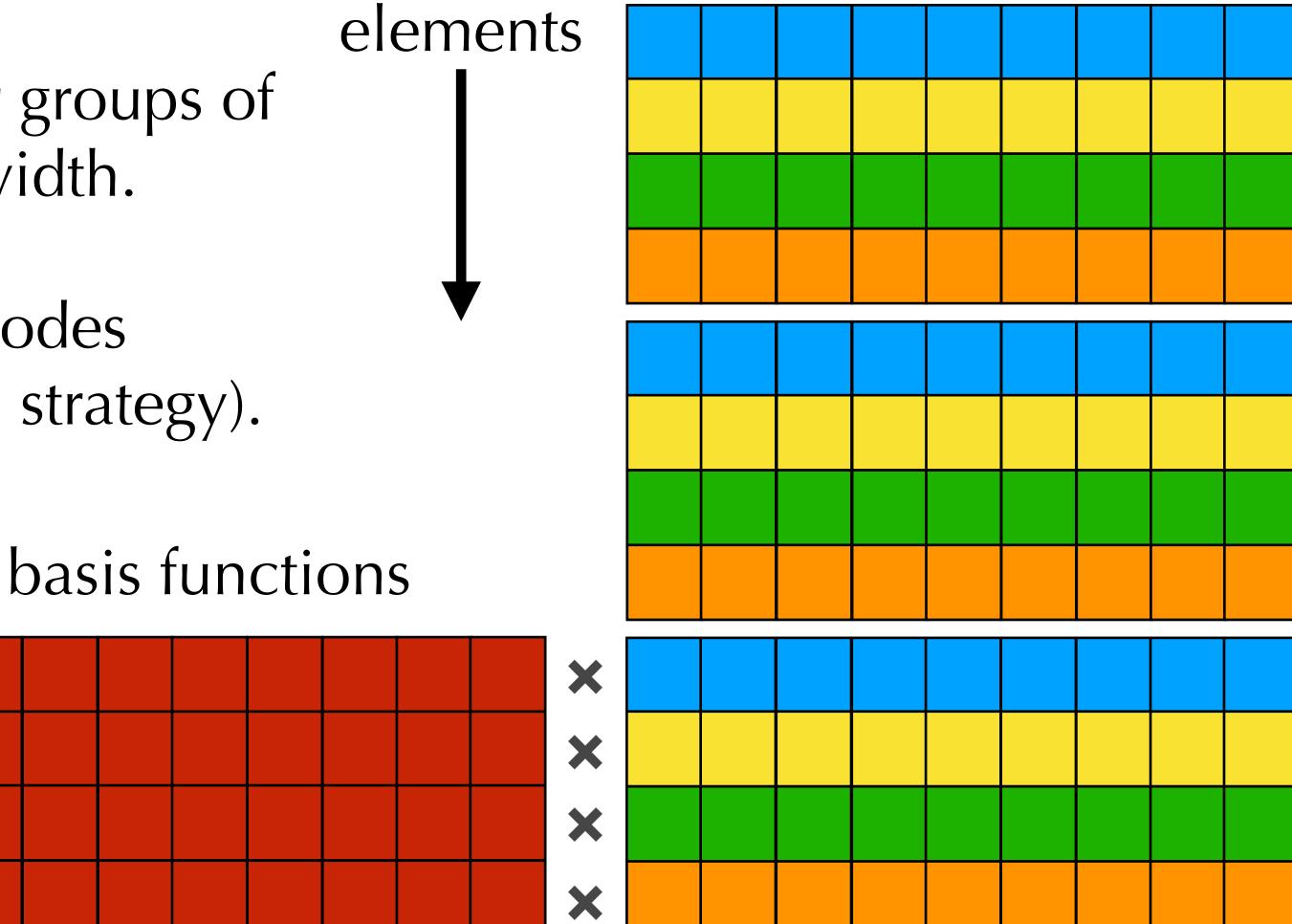
However, can exploit vectorisation by grouping DoFs by vector width.

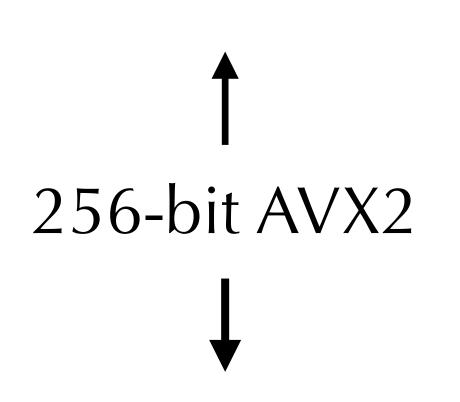


#### Data layout

 Operations then occur over groups of elements of size of vector width.

 Use C++ data type that encodes vector operations (common strategy).

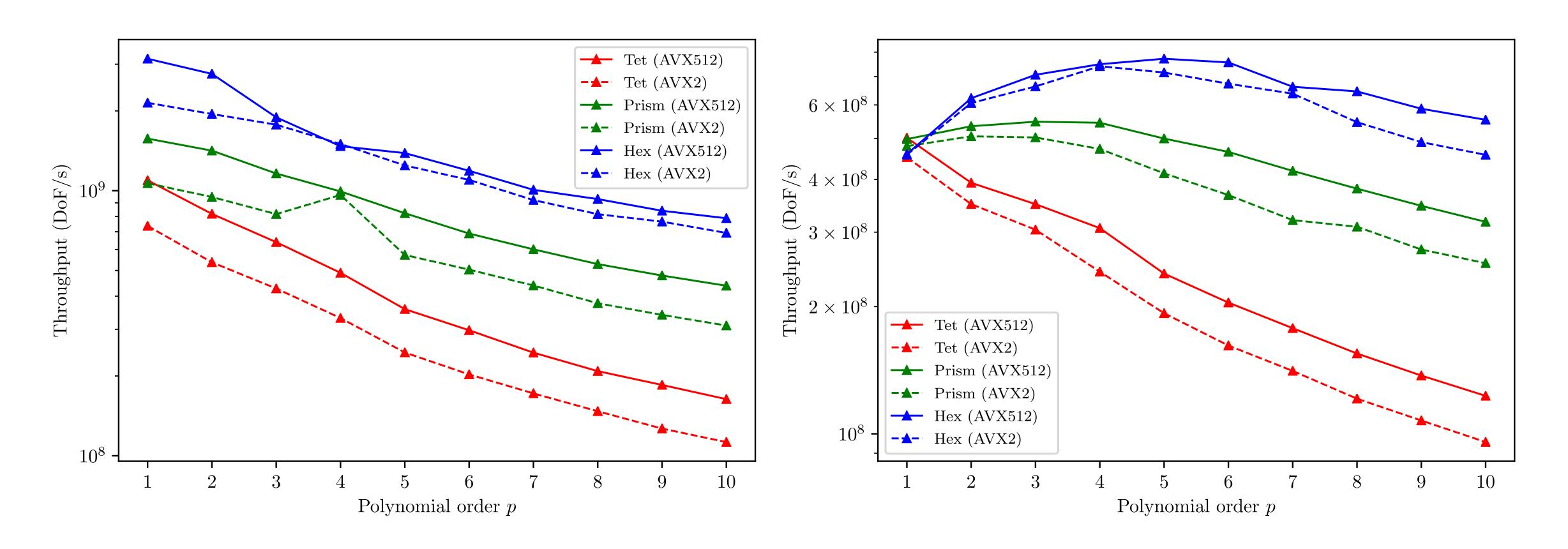




#### Assessing performance

- Various techniques used to assess kernel performance:
  - **Throughput**: number of local DoF/s processed, for a mesh whose sizes exceeds available cache.
  - GFLOP/s gives some indication of capabilities, provided we are not memory-bound.
  - Better is **roofline analysis**: where do we sit in terms of memory bandwidth to arithmetic intensity?
- Note all results for local elemental operation evaluation only.

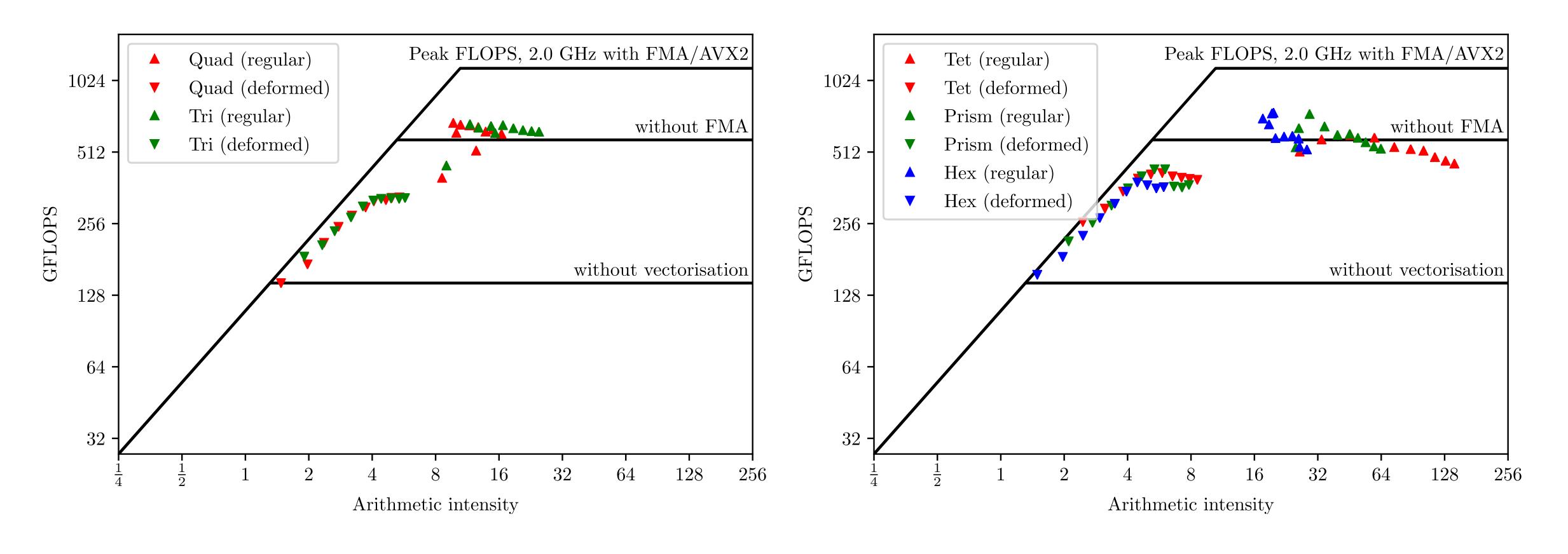
#### Throughput (AVX512/AVX2, Skylake)



3D: 'Regular' elements

3D: 'Deformed' elements

#### Roofline results



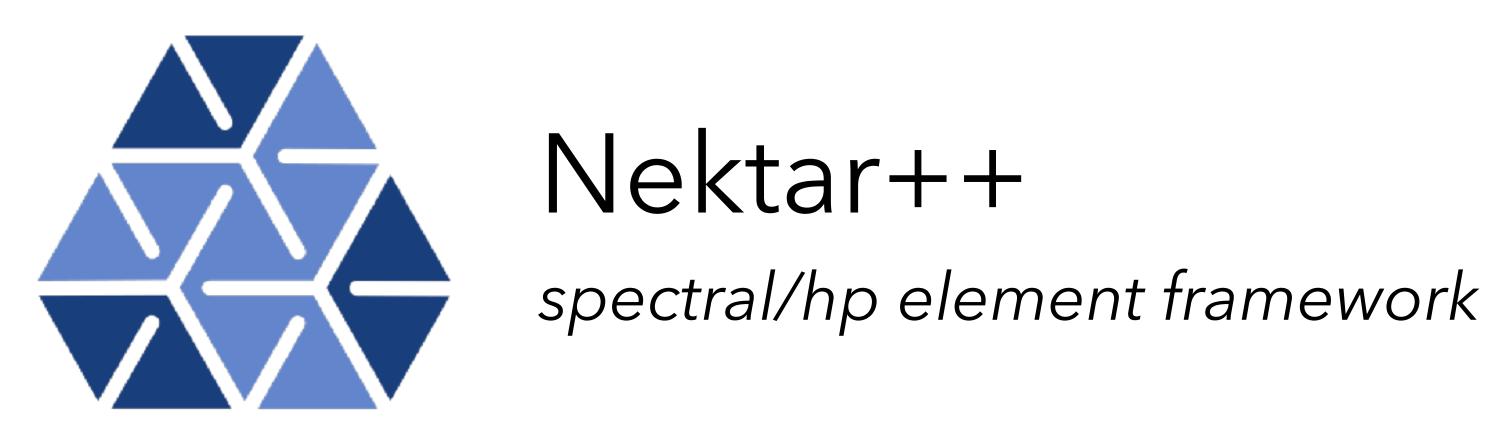
2D: Quads, triangles

3D: Hexahedra, prisms, tetrahedra

Use of ~50-70% peak FLOPS for regular elements

#### Challenge 3: implementation effort

- High-order methods have potential to bring some nice numerical and computational benefits to bear on complex problems.
- Offer high(er) fidelity at equivalent or lower costs, as they have good implementation characteristics.
- However, one of the main barriers to using high-order methods is that they are **difficult to implement**.





#### Nektar++

spectral/hp element framework

- Nektar++ is an open-source MIT-licensed framework for high-order methods.
- **Arbitrary order** curvilinear meshes to support complex geometries in a wide range of application areas including incompressible/compressible fluids.
- Wide range of discretisation choices: CG/DG/HDG, Fourier, modal/nodal expansions, 1/2/3D, embedded manifolds.
- Parallel MPI support, scalable to many thousands of cores.
- Modern C++11 API, extensive testing, CI & distributed source control.

#### Development team



Mike Kirby



Spencer Sherwin Chris Cantwell





David Moxey

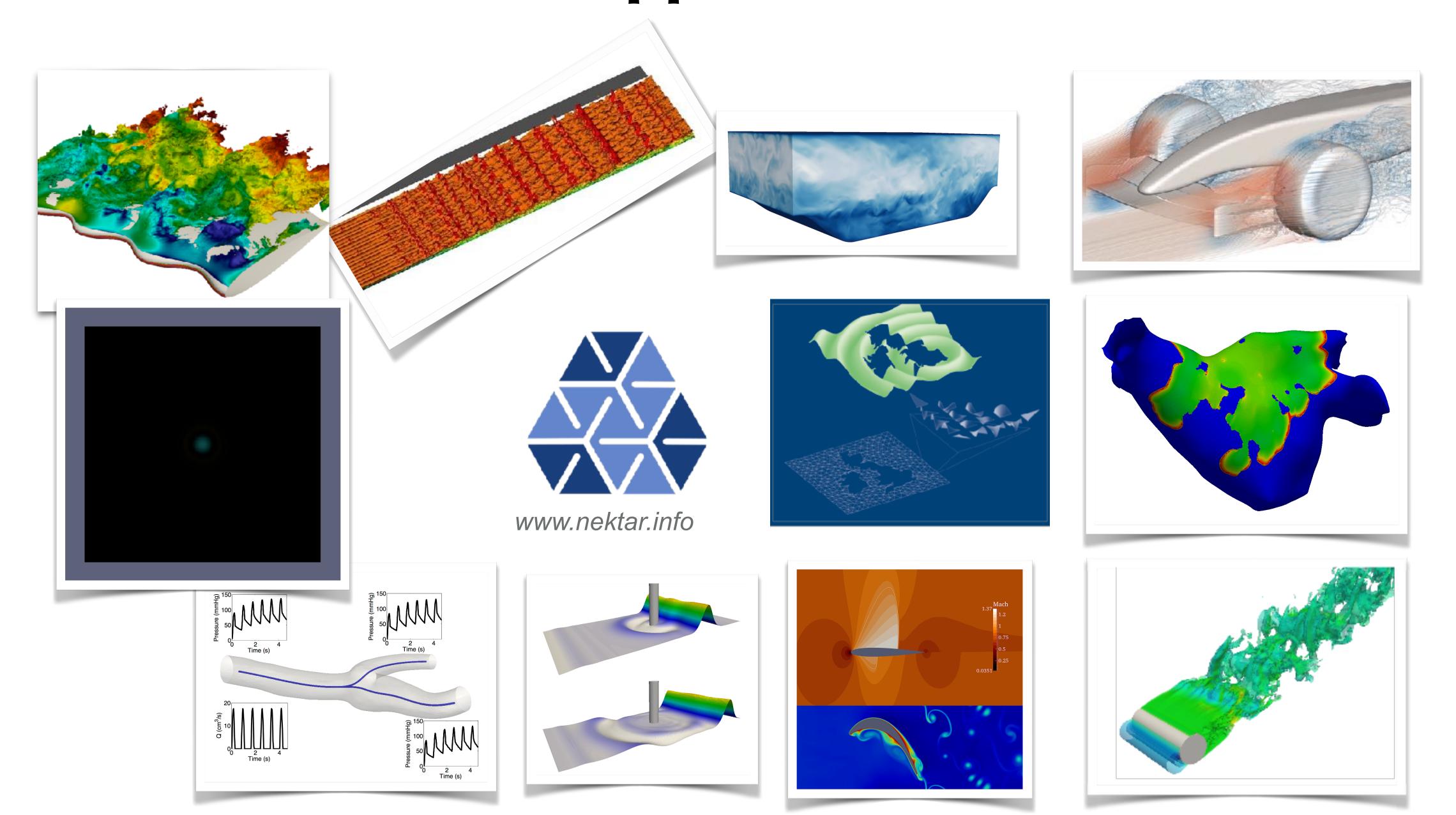


Imperial College London

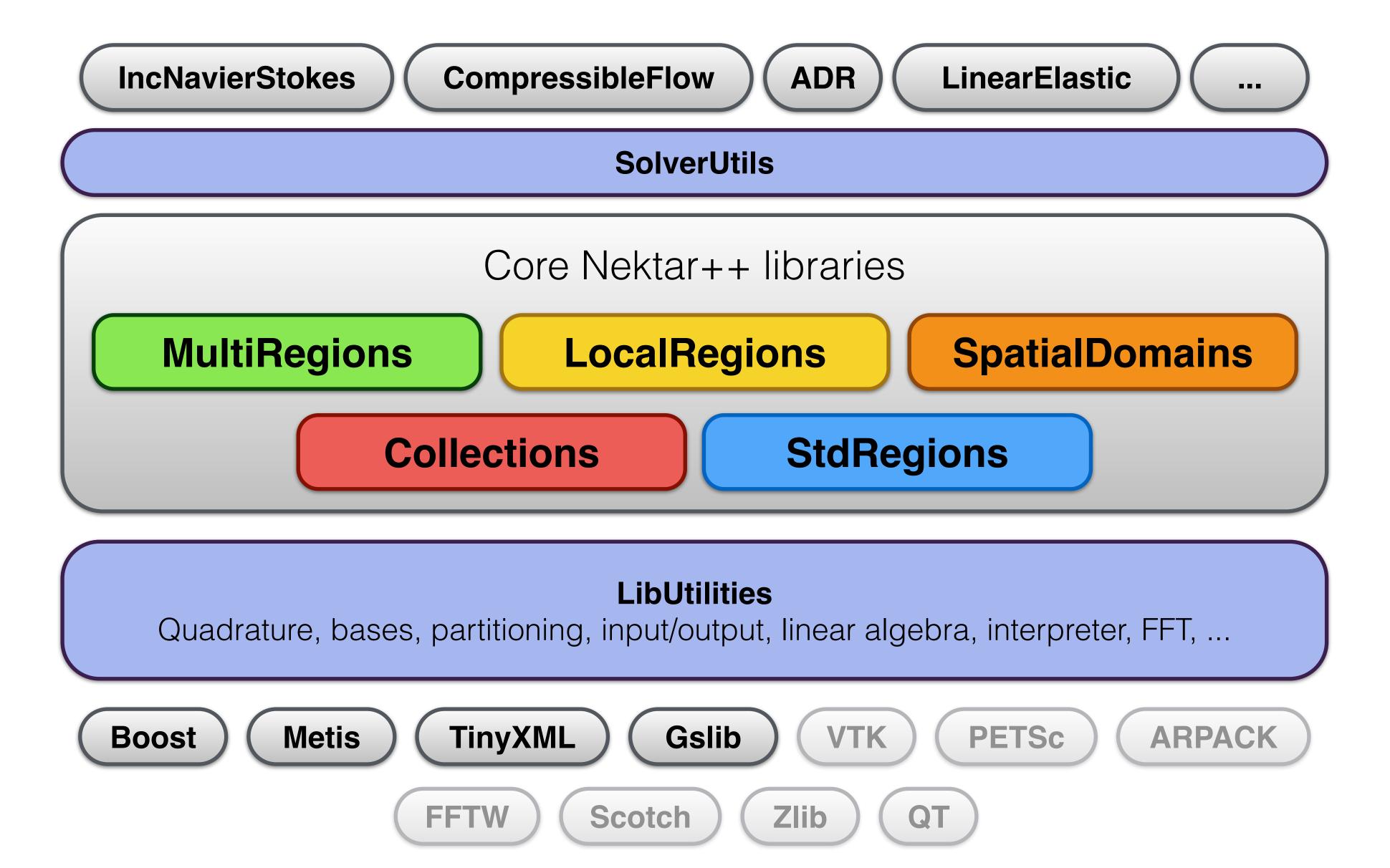


- Project coordinators: Joaquim Peiró, Gianmarco Mengaldo
- Senior developers: Kilian Lackhove, Douglas Serson, Giacomo Castiglioni

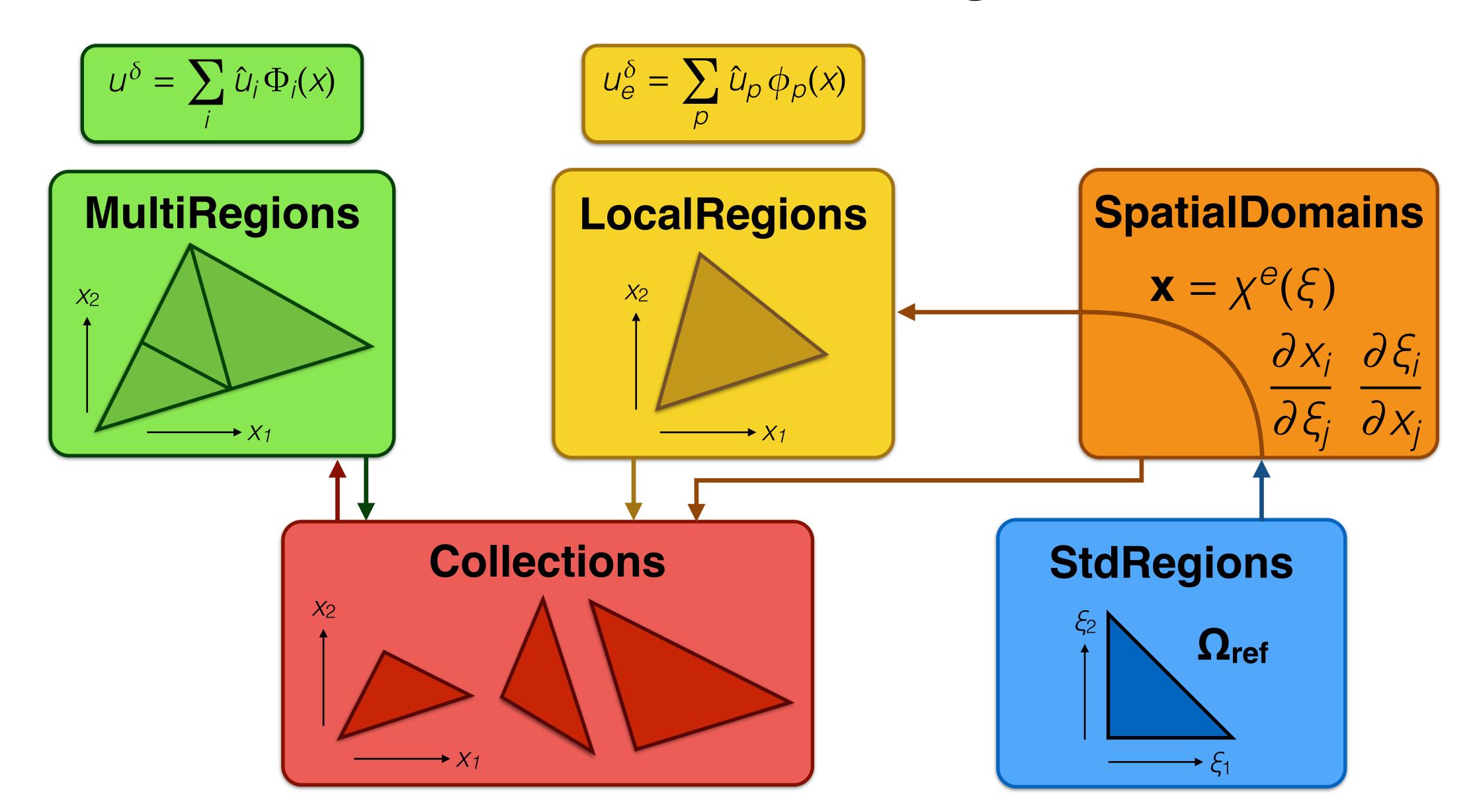
## Some application areas



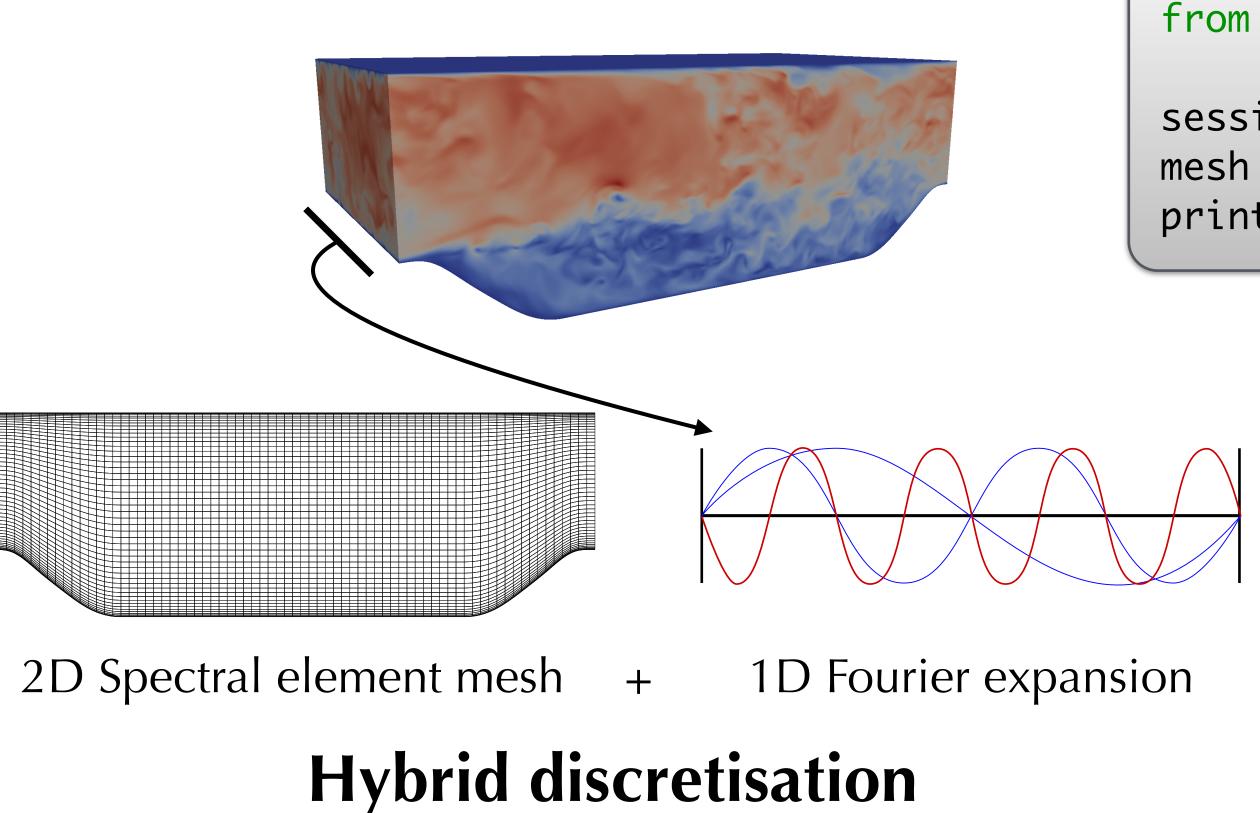
## Framework design



## Framework design



## Highlights from v5



Moxey, Cantwell et al, arXiv 1906.03489

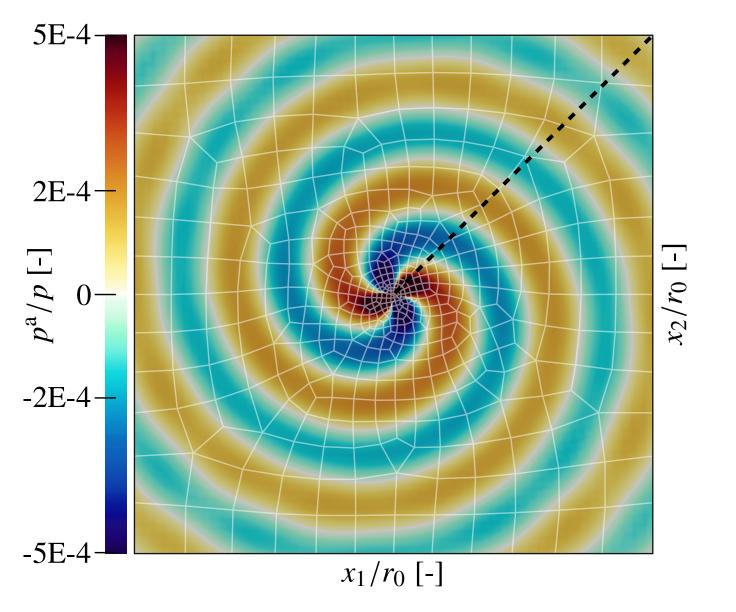
from NekPy.LibUtilities import SessionReader from NekPy.SpatialDomains import MeshGraph

session = SessionReader.CreateInstance(sys.argv)

mesh = MeshGraph.Read(session)

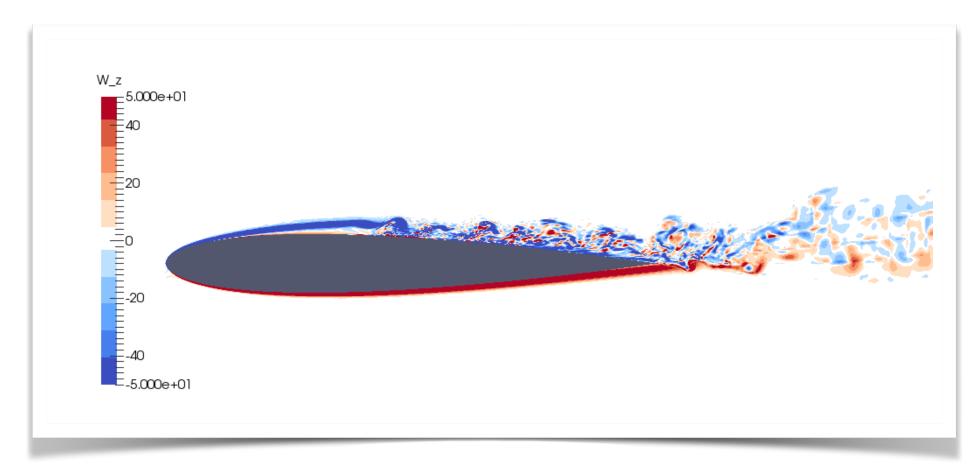
print(mesh.GetMeshDimension())

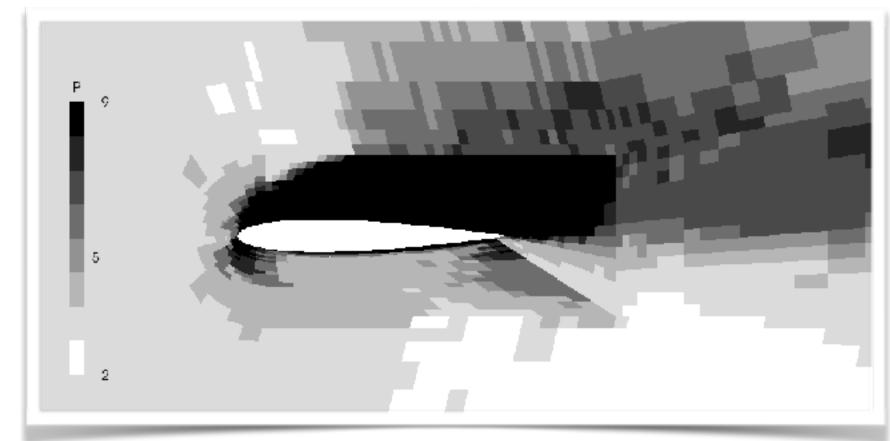
#### Python interface



**Acoustic** solver

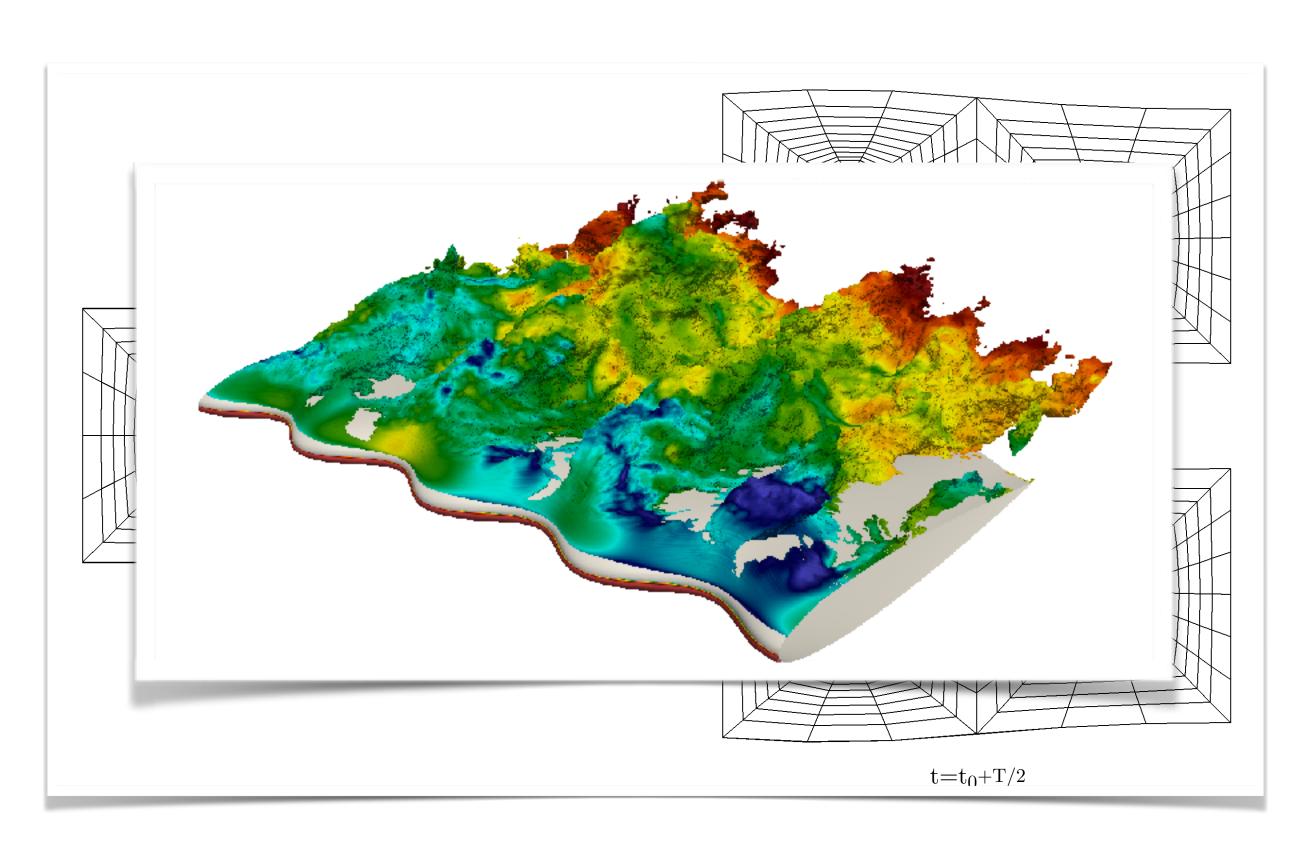
## Highlights from v5





#### Spatially varying polynomial orders

D. Moxey et al, Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2016, pp. 63–79



#### Coordinate mapping

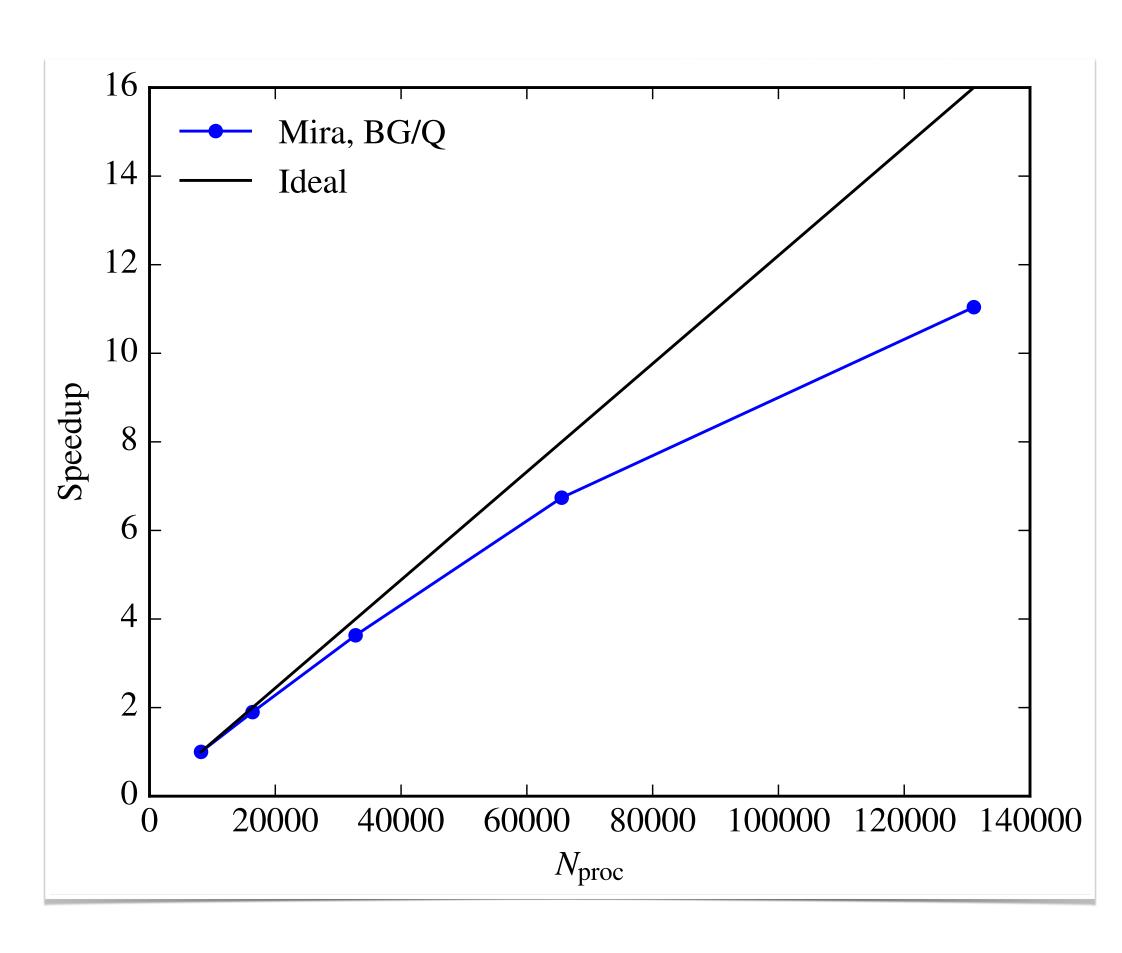
D. Serson, J. Meneghini, and S. Sherwin, J. Comp. Phys. **316**, 243-254 (2016)

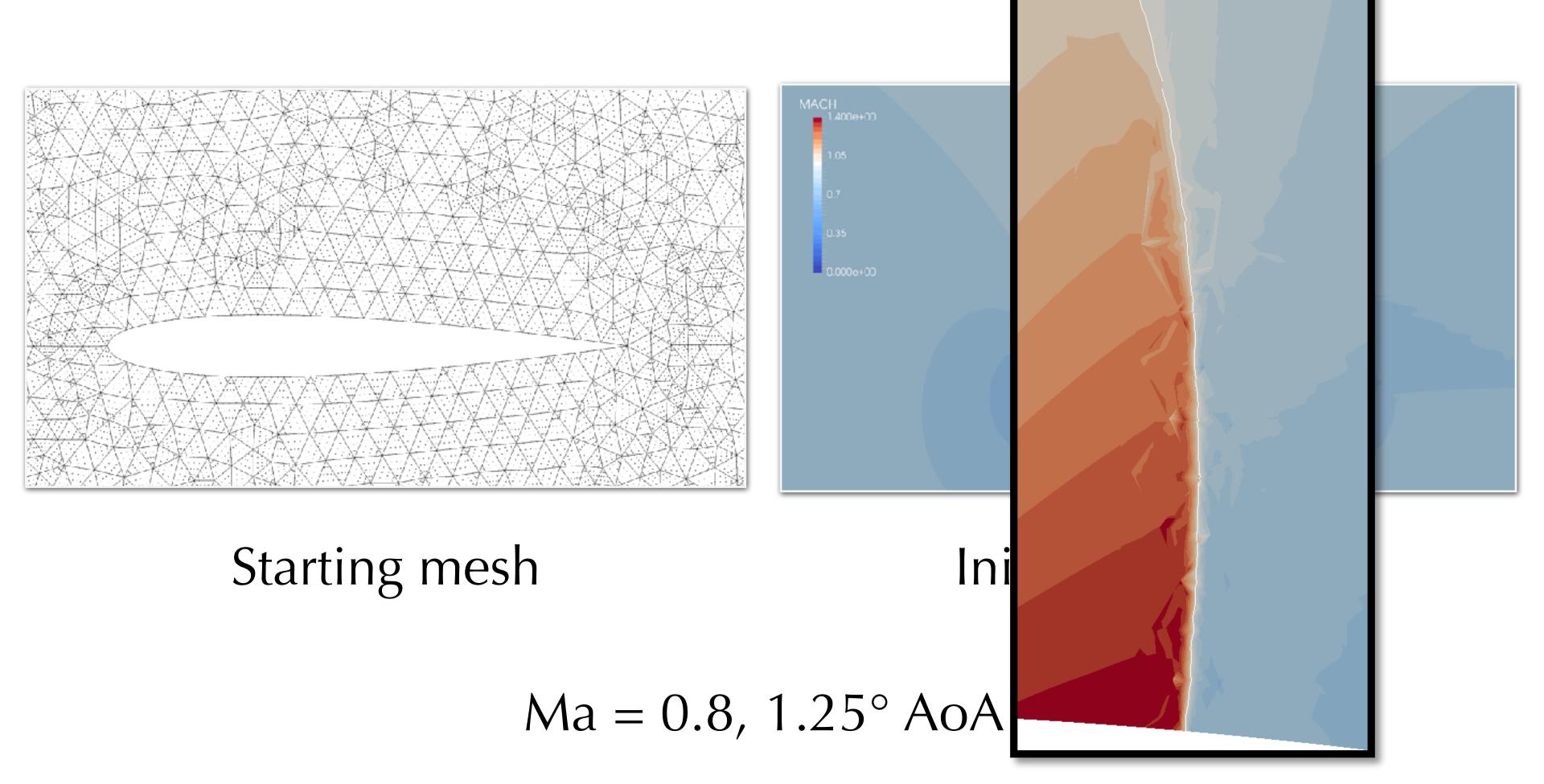
### High-order fluid simulations

- Heavy development of both **compressible** and **incompressible flow** solvers and, with a particular focus on **high-fidelity** simulations.
- Consider inherently unsteady flows: investigate use of implicit LES.
- Our message: still computationally expensive & requires HPC, but should not be prohibitive and should scale with high-order simulations.

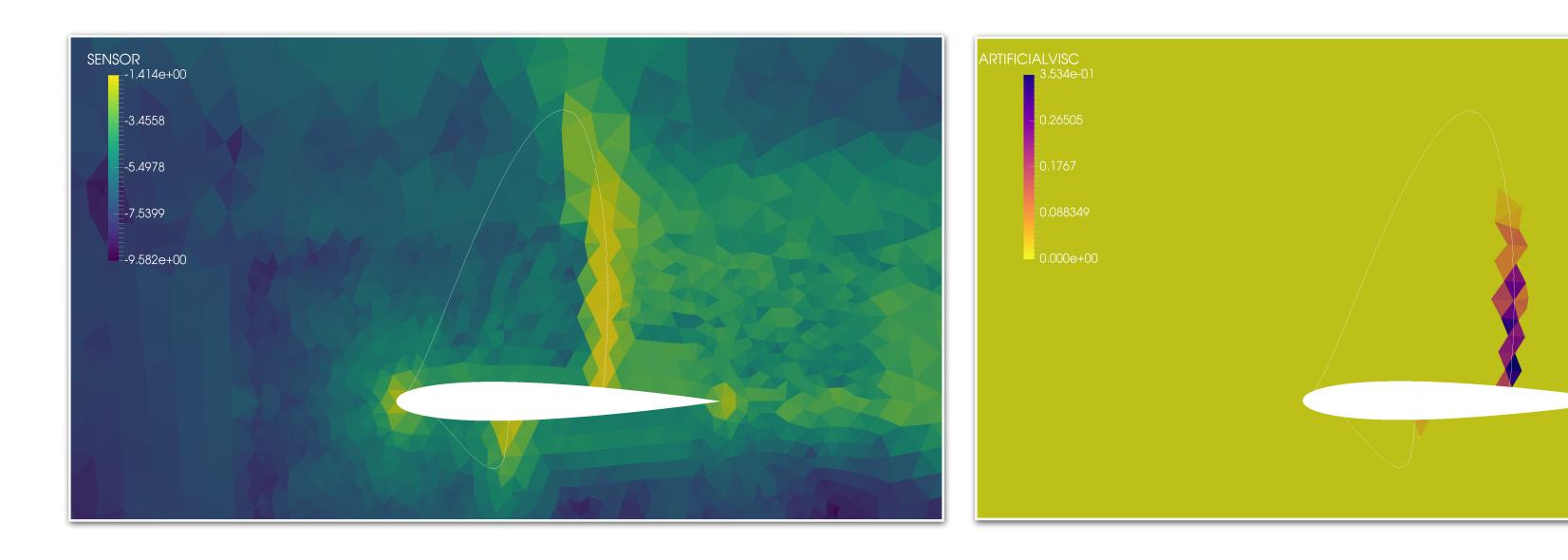
## Solving at scale

- Relying on HPC means we need efficient and scalable linear solvers.
- Mesh is decomposed across processors; local dense matrices formed for each element, communication with gslib.
- Core of the code scales well on Mira: test case of a ~5m element F1 geometry at fifth order.
- However still some work to do on scalable preconditioning!



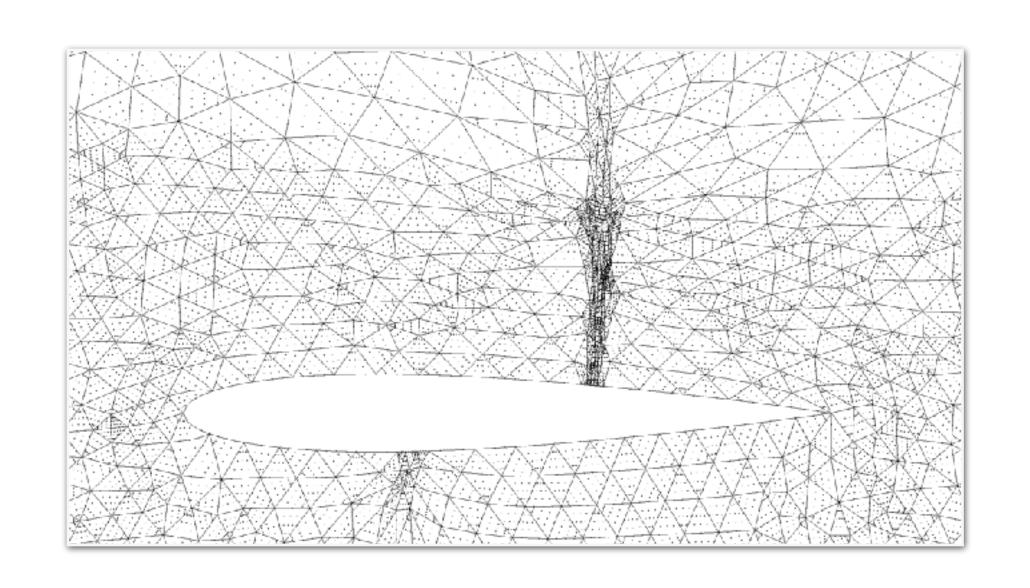


Marcon, Castiglioni, Moxey, Sherwin & Peiró, arXiv 1909.10973

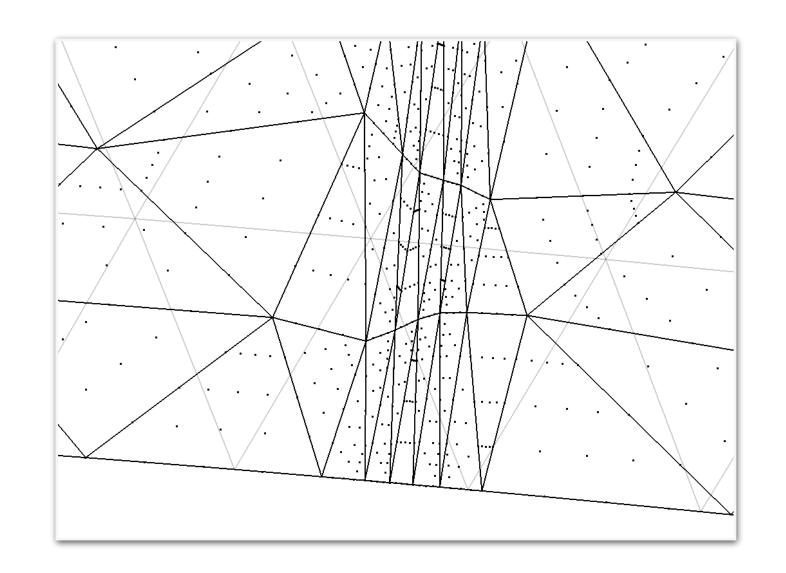


Discontinuity sensor

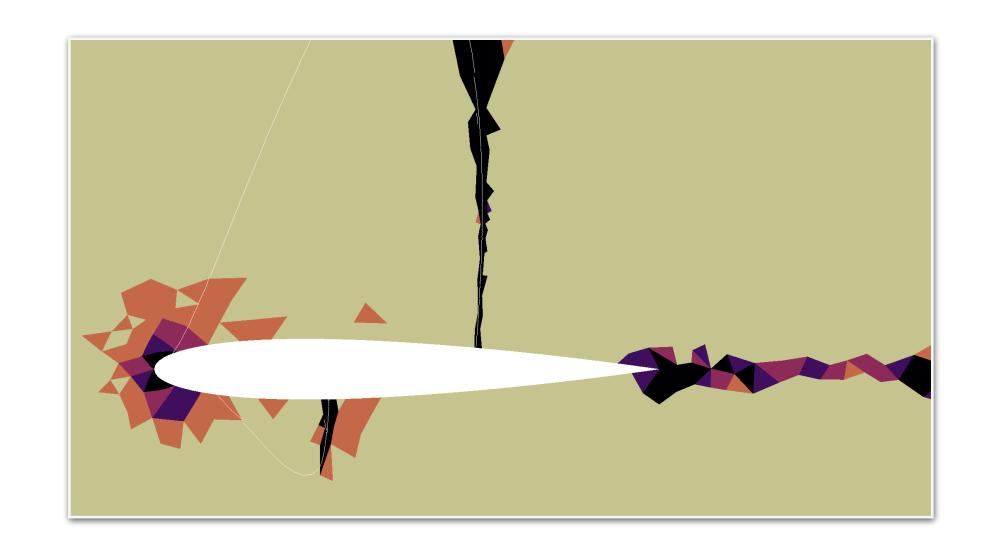
Artificial viscosity



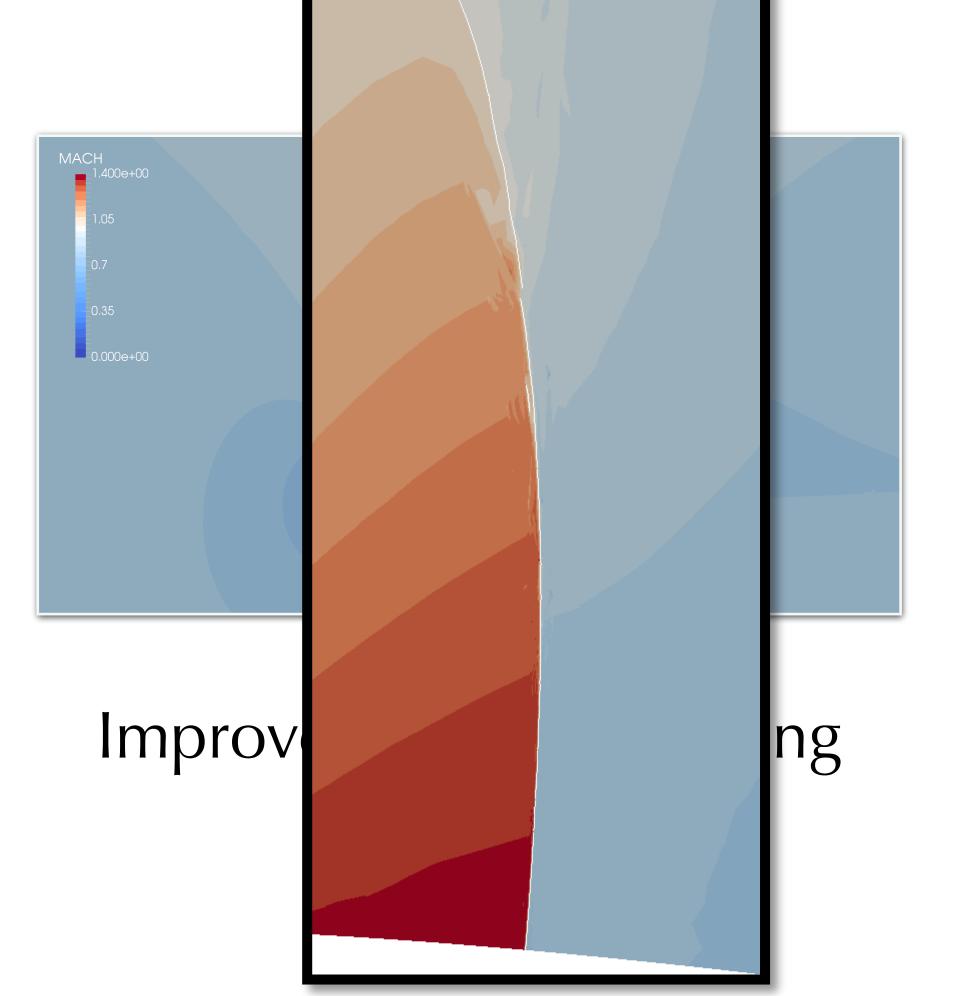
Calculate target size & do r-adaptation



Use of CAD sliding

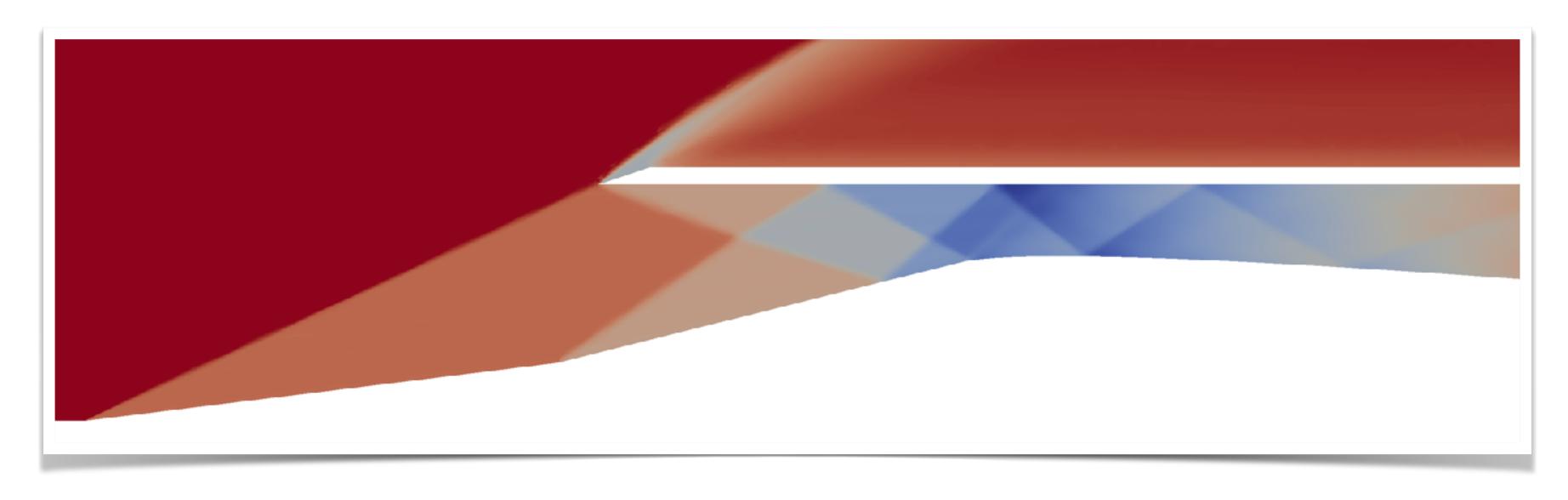


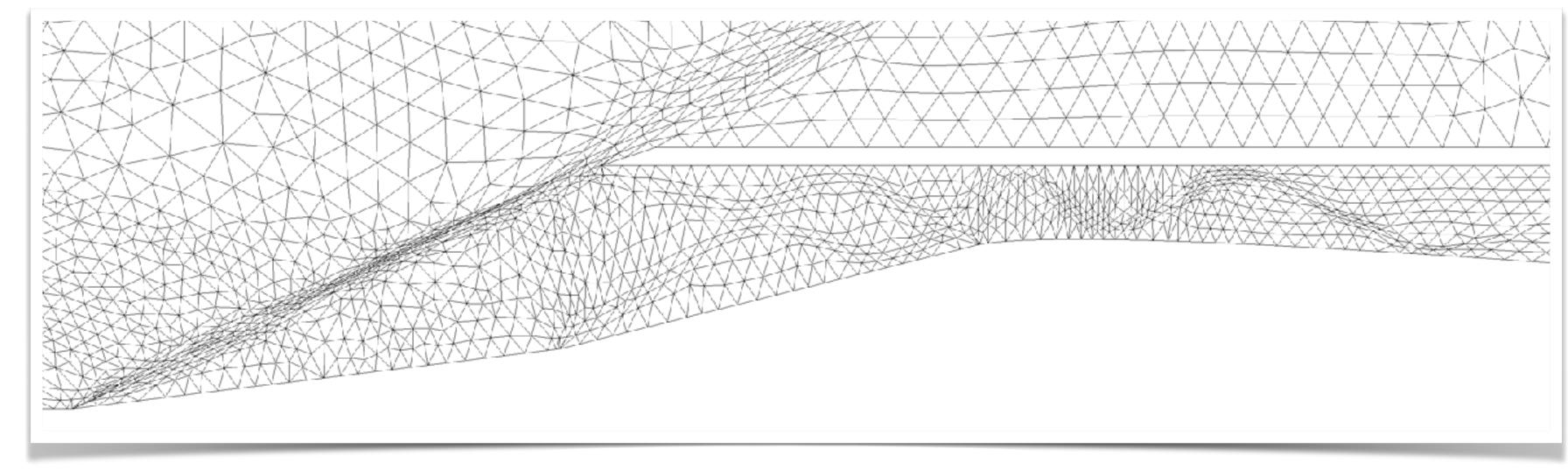
Translate to variable p



Marcon, Castiglioni, Moxey, Sherwin & Peiró, arXiv 1909.10973

## Supersonic example





Supersonic intake Ma = 1.0

## High-order splitting scheme

Navier–Stokes: 
$$\partial_t \mathbf{u} + \mathbf{N}(\mathbf{u}) = -\nabla p + \nu \nabla^2 \mathbf{u}$$
  
 $\nabla \cdot \mathbf{u} = 0$ 

Velocity correction scheme (aka stiffly stable):

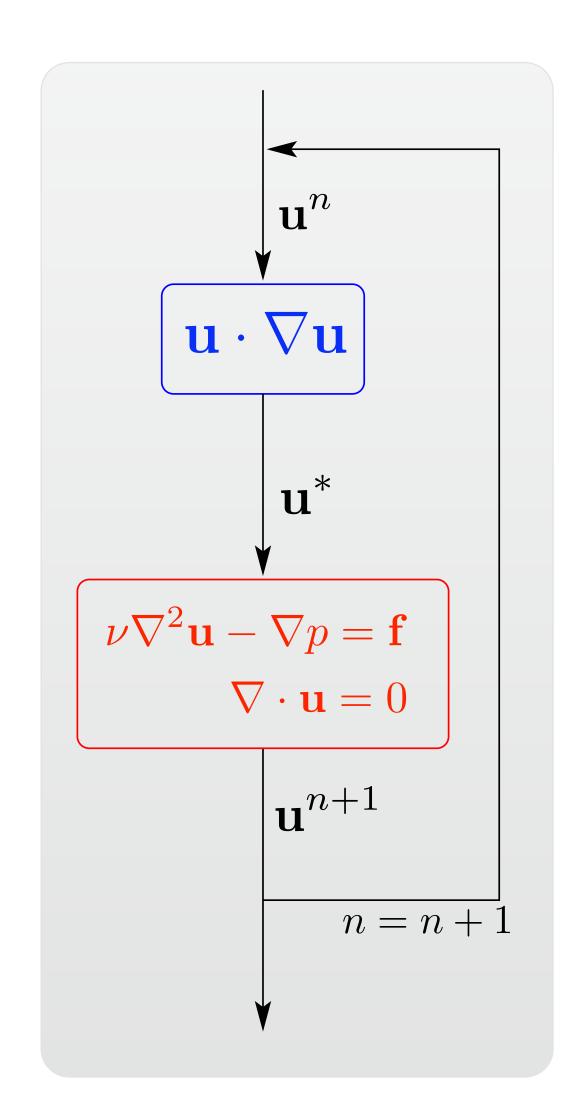
Orszag, Israeli, Deville (90), Karnaidakis Israeli, Orszag (1991), Guermond & Shen (2003)

Advection: 
$$u^* = -\sum_{q=1}^{J} \alpha_q \mathbf{u}^{n-q} - \Delta t \sum_{q=0}^{J-1} \beta_q \mathbf{N}(\mathbf{u}^{n-q})$$

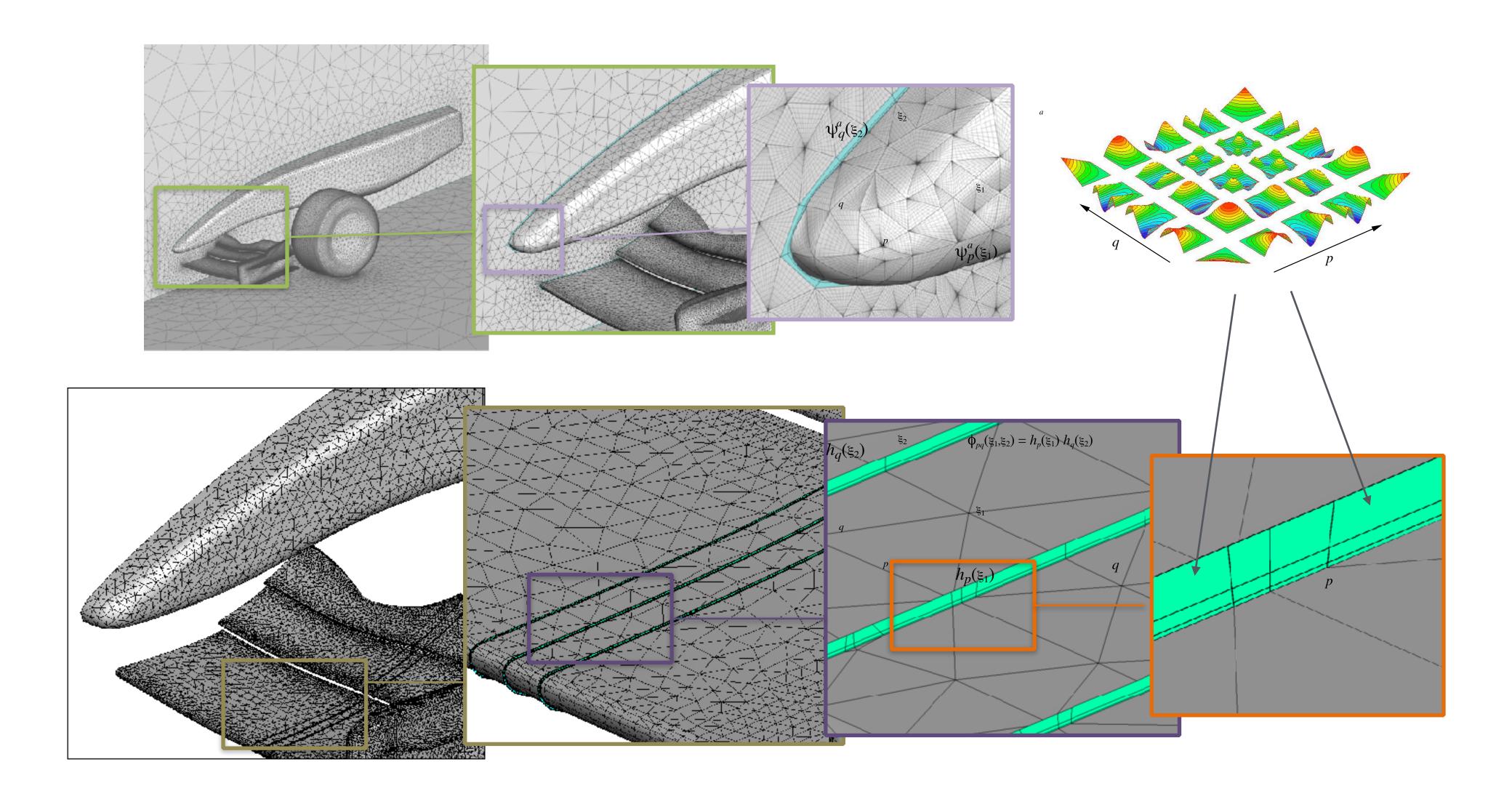
Pressure Poisson:

$$\nabla^2 p^{n+1} = \frac{1}{\Delta t} \nabla \cdot \mathbf{u}^*$$

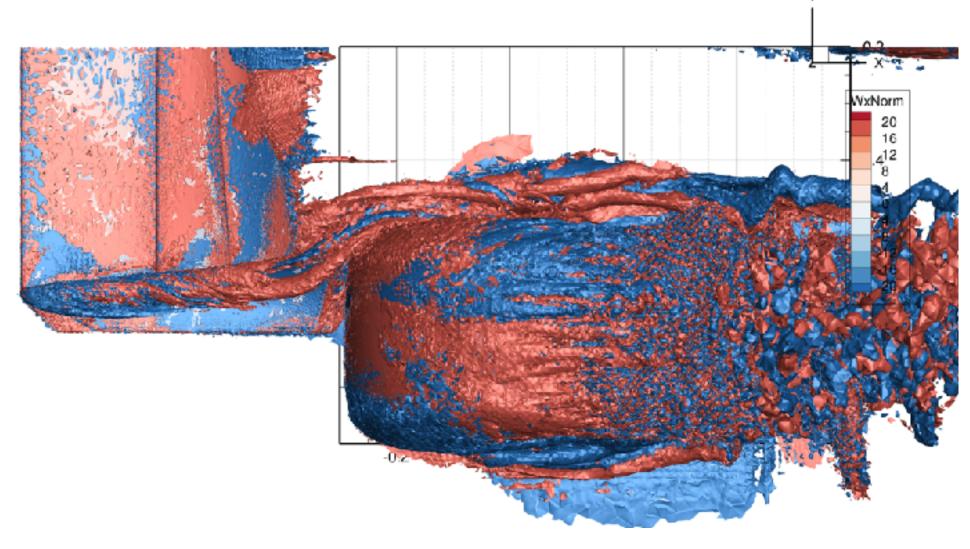
Helmholtz: 
$$\nabla^2 \mathbf{u}^{n+1} - \frac{\alpha_0}{\nu \Delta t} \mathbf{u}^{n+1} = -\frac{\mathbf{u}^*}{\nu \Delta t} + \frac{1}{\nu} \nabla p^{n+1}$$



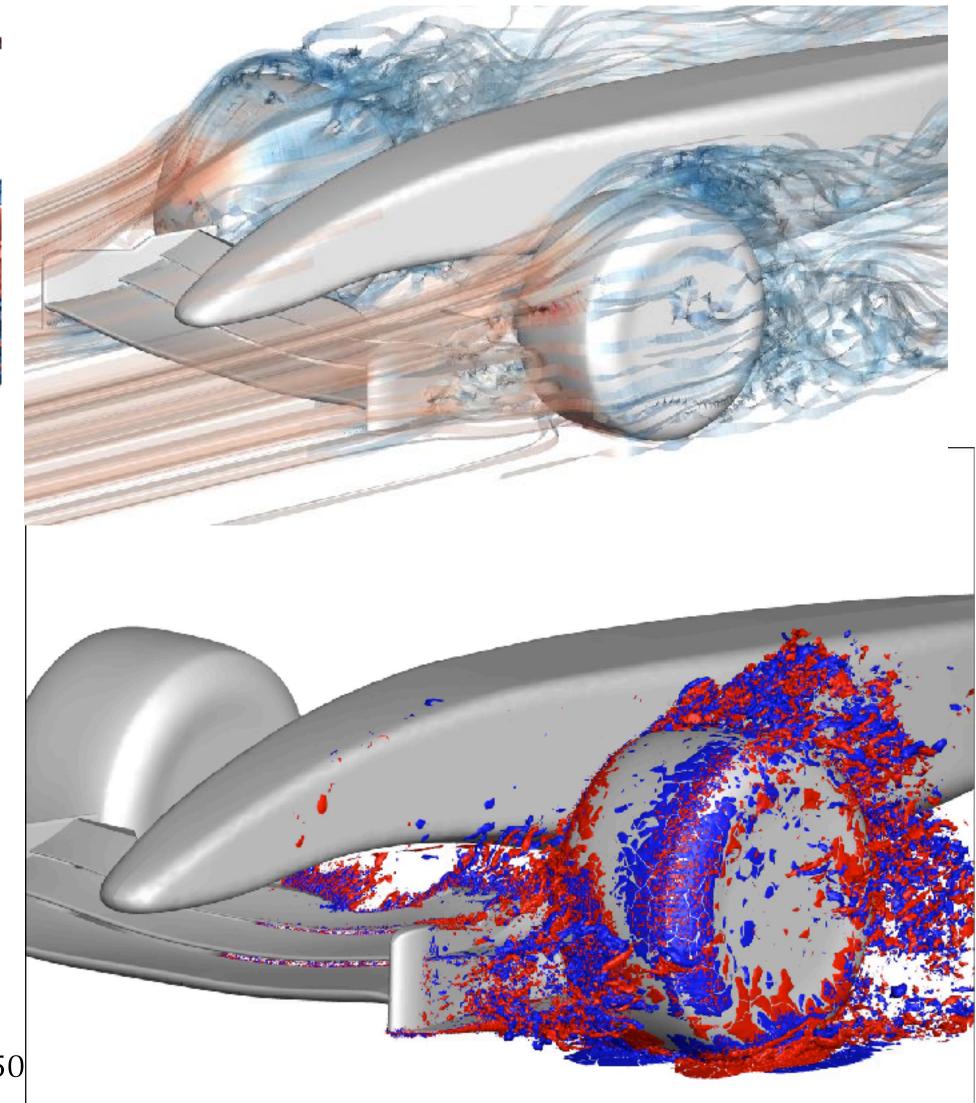
# Meshing for F1 applications



## More complex geometries

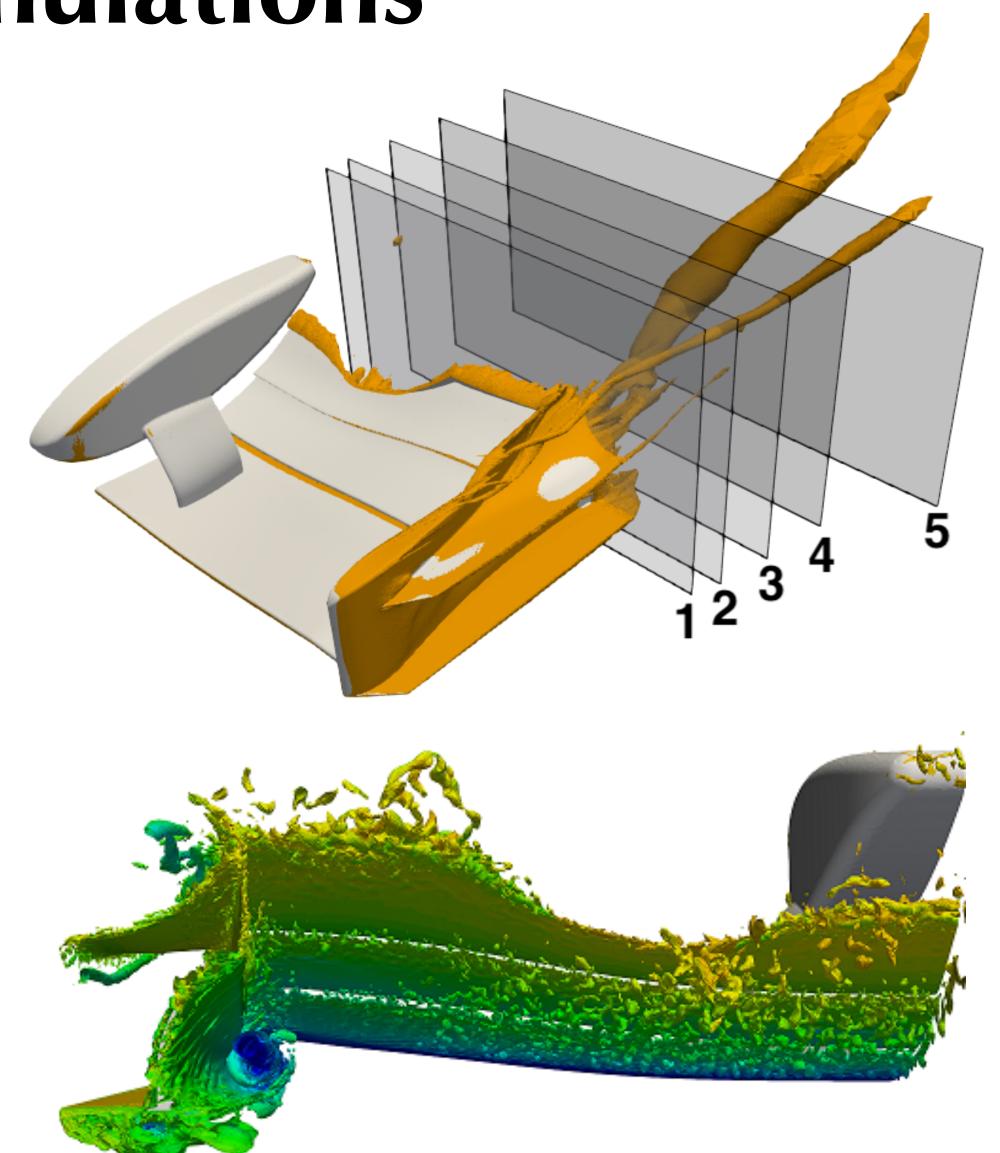


Supported by ARCHER leadership award (20m CPU hours)

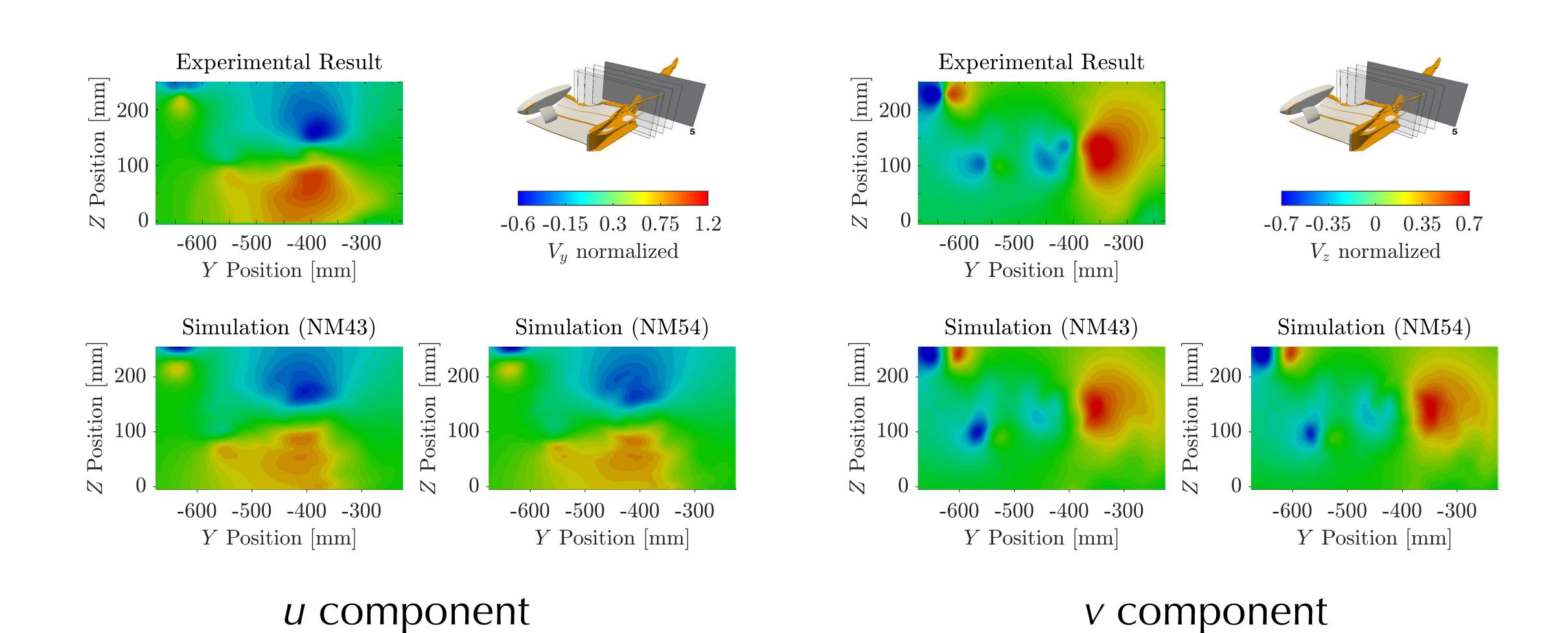


Recent F1 simulations

- F1 simulations highlight complex vortex interaction cases: ideal candidates for LES.
- Front wing simulations with experimental PIV datasets as new proposed benchmark case.
- Analysis found in Buscariolo, Hoessler, Moxey et al, arXiv 1909.06701.
- Datasets in DOI: 10.14469/hpc/6049

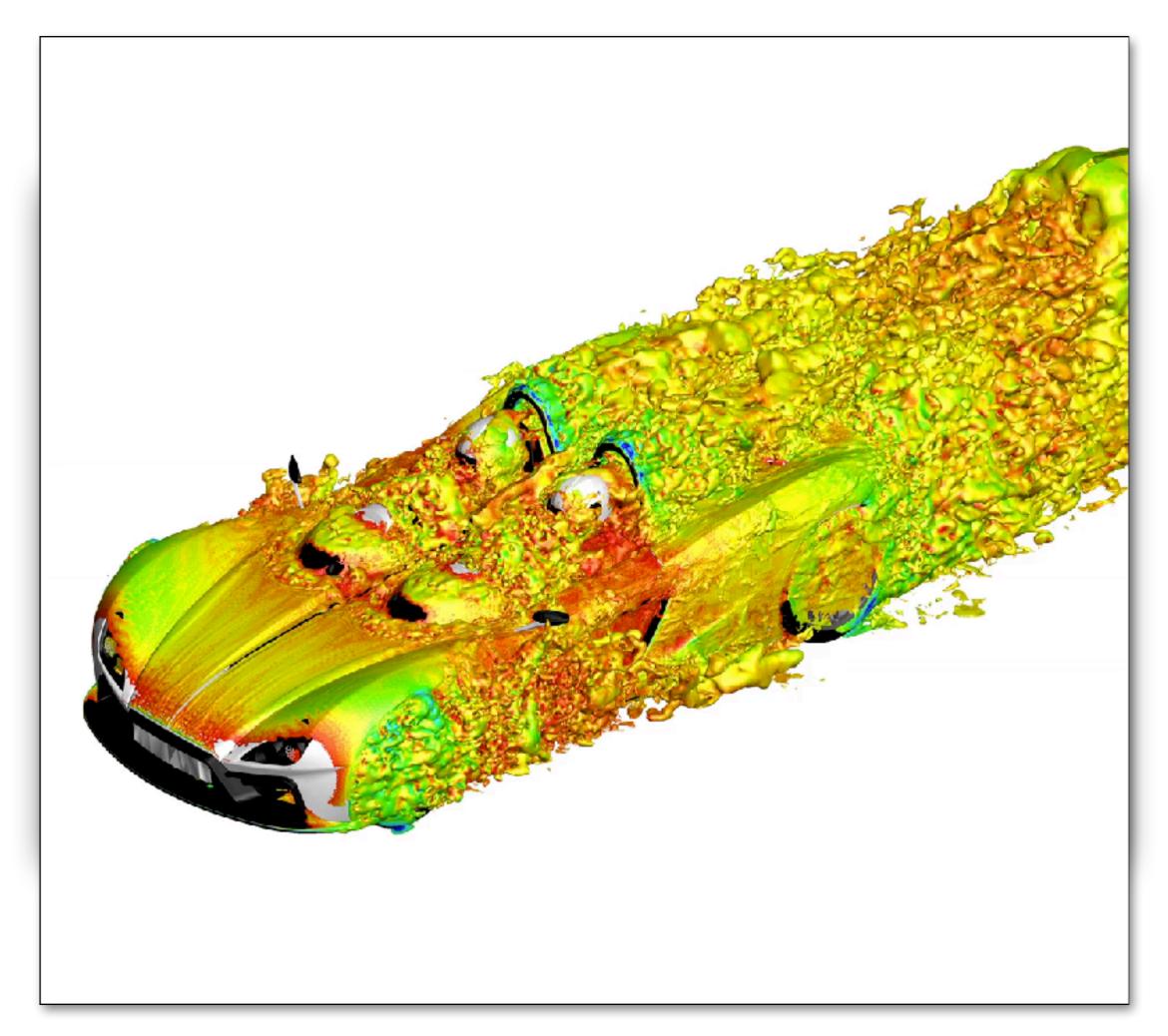


## Comparison with experiment

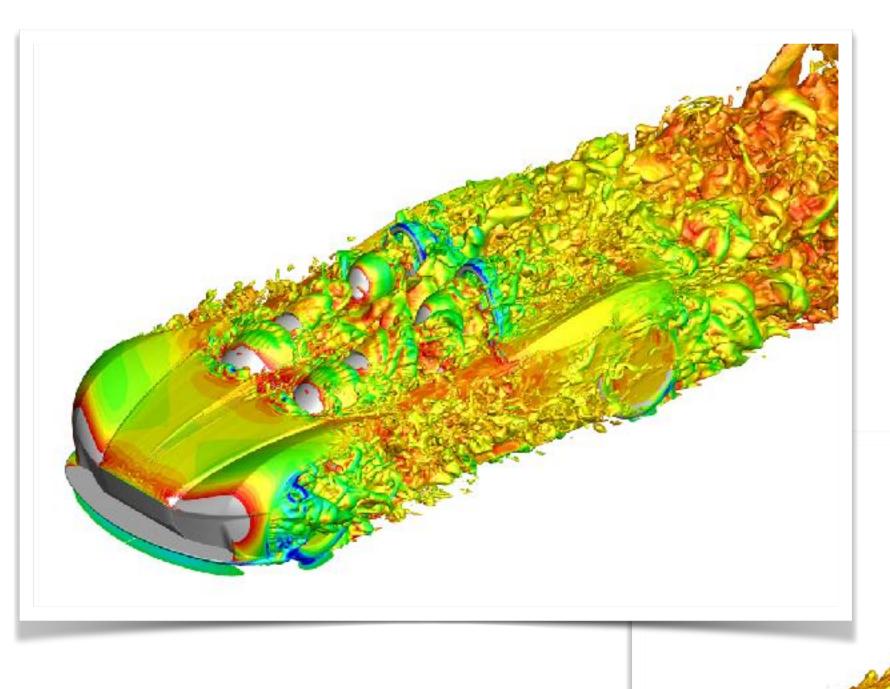


### Elemental road racing car

- Most challenging case undertaken with Nektar++ to date (that I know of!)
- Re ~ 1m, around 1bn dof.
- Simulated at P = 5 with a matching high-order mesh and SVV-LES.
- Aim to identify aerodynamic issues and refine design.



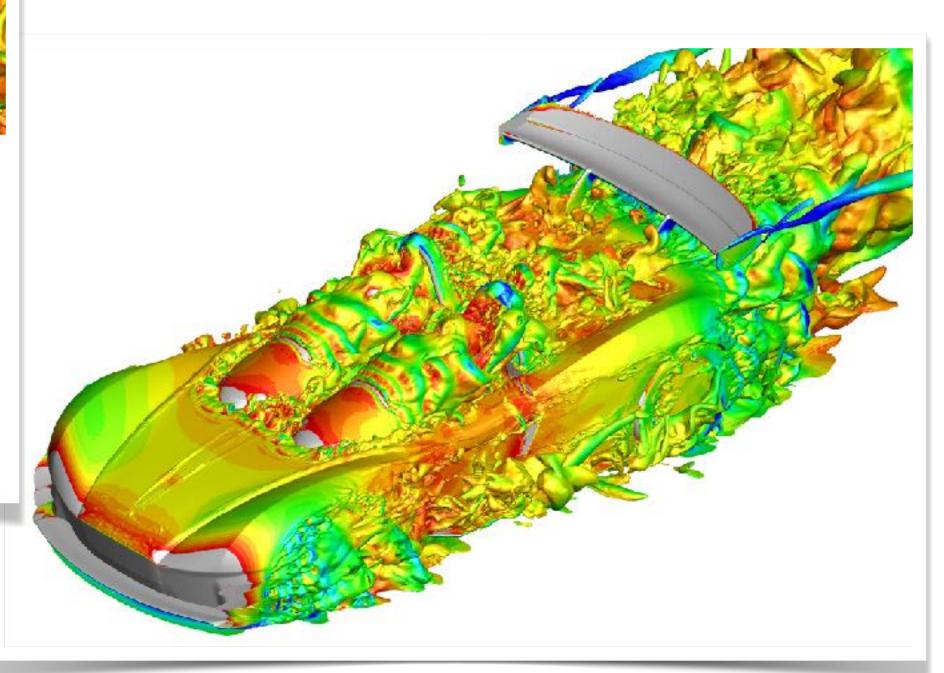
#### Elemental road race car



 $5th \ order$ Re = 1m



Design 2: +33% Downforce



Moxey, Turner, Jassim, Taylor, Peiro & Sherwin

Design 3: +270% Downforce

#### Summary

- We can certainly spectral/*hp* element techniques to challenging industrial flow problems and succeed!
- Accurate, transient flow modelling is an **enabling technology** for high-end engineering/physics.
- But... there is still a way to go yet!
  - Meshing for 3D geometries is a specialist skill.
  - Robustness still requires more analysis.

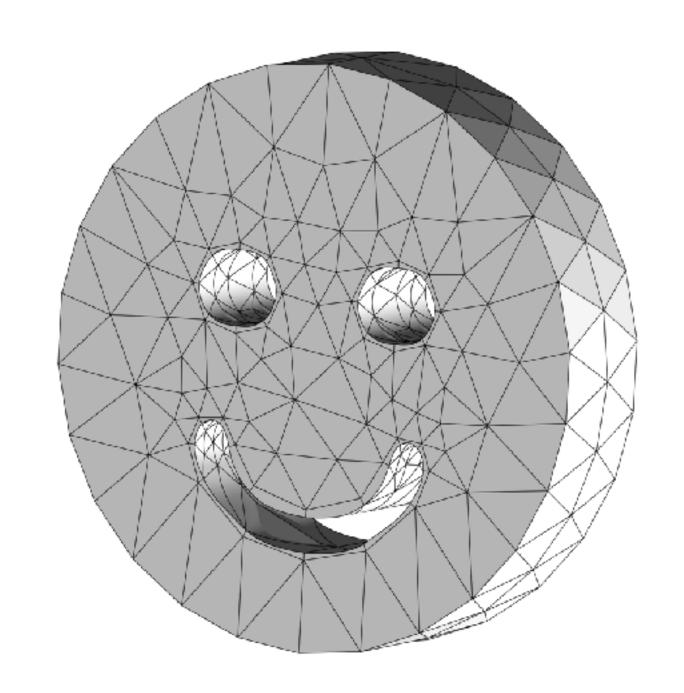
#### Thanks for listening!

https://davidmoxey.uk/

d.moxey@exeter.ac.uk

www.nektar.info

https://prism.ac.uk/





Nektar++: enhancing the capability and application of high-fidelity spectral/hp element methods

David Moxey<sup>1</sup>, Chris D. Cantwell<sup>2</sup>, Yan Bao<sup>3</sup>, Andrea Cassinelli<sup>2</sup>, Giacomo Castiglioni<sup>2</sup>, Sehun Chun<sup>4</sup>, Emilia Juda<sup>2</sup>, Ehsan Kazemi<sup>4</sup>, Kilian Lackhove<sup>6</sup>, Julian Marcon<sup>2</sup>, Gianmarco Mengaldo<sup>7</sup>, Douglas Serson<sup>2</sup>, Michael Turner<sup>2</sup>, Hui Xu<sup>5,2</sup>, Joaquim Peiró<sup>2</sup>, Robert M. Kirby<sup>8</sup>, Spencer J. Sherwin<sup>2</sup>