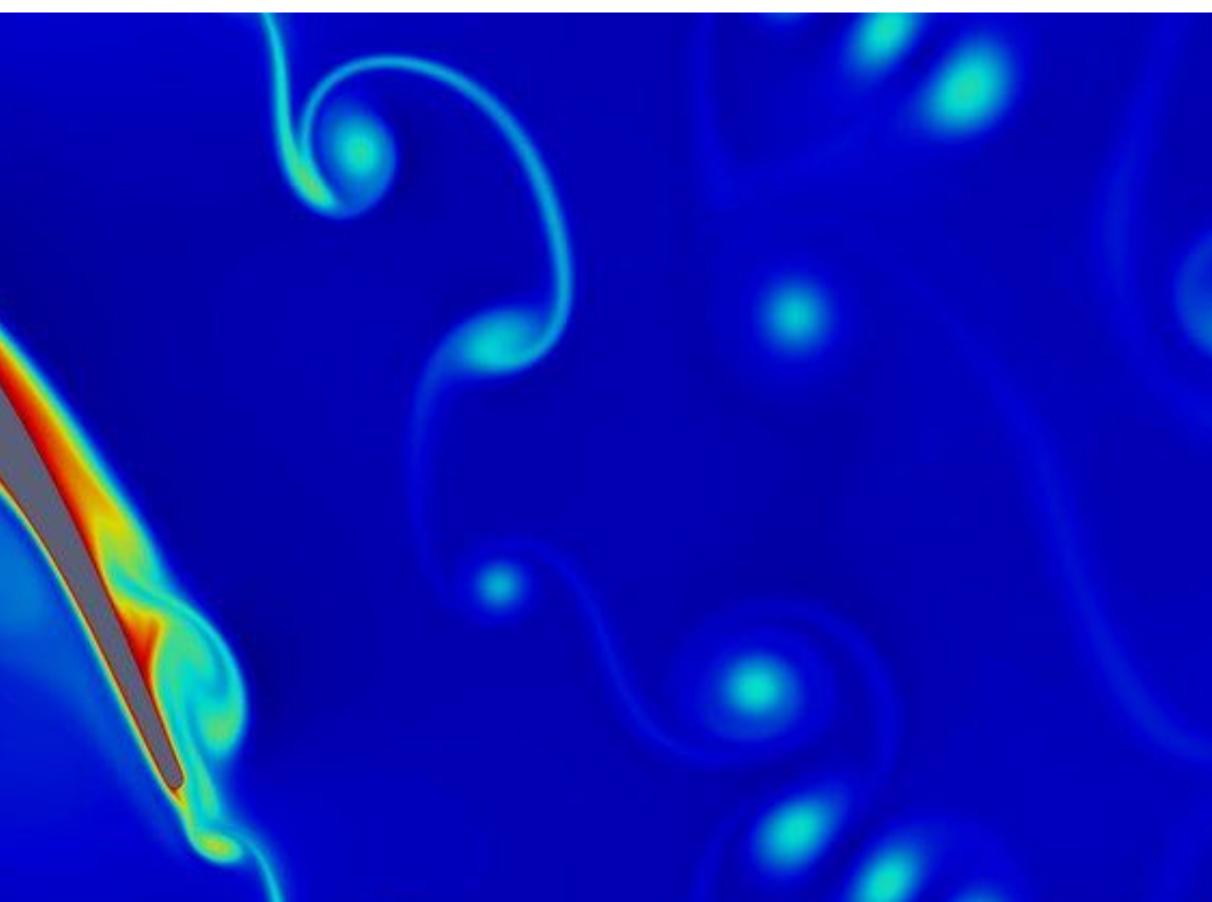
High-fidelity CFD with the Nektar++ spectral/hp element framework David Moxey

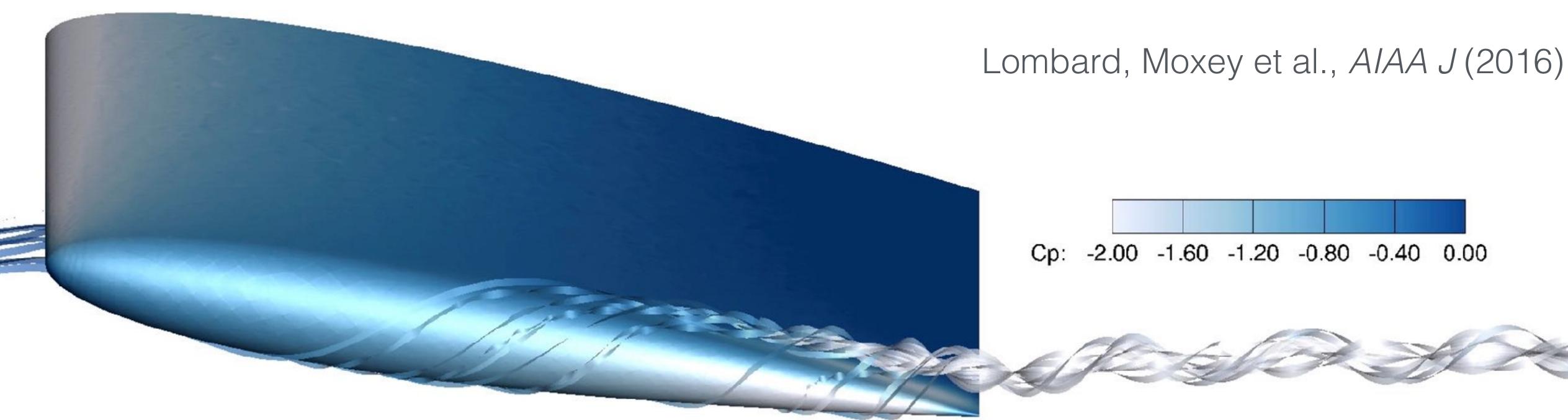
T106C turbine blade Compressible Navier-Stokes Contours of temperature

College of Engineering, Maths & Physical Sciences, University of Exeter



- Motivation
- What are high order methods and why are they useful?
- Nektar++: a spectral/hp element framework
- Challenges (and some solutions!)
- Applications

Outline



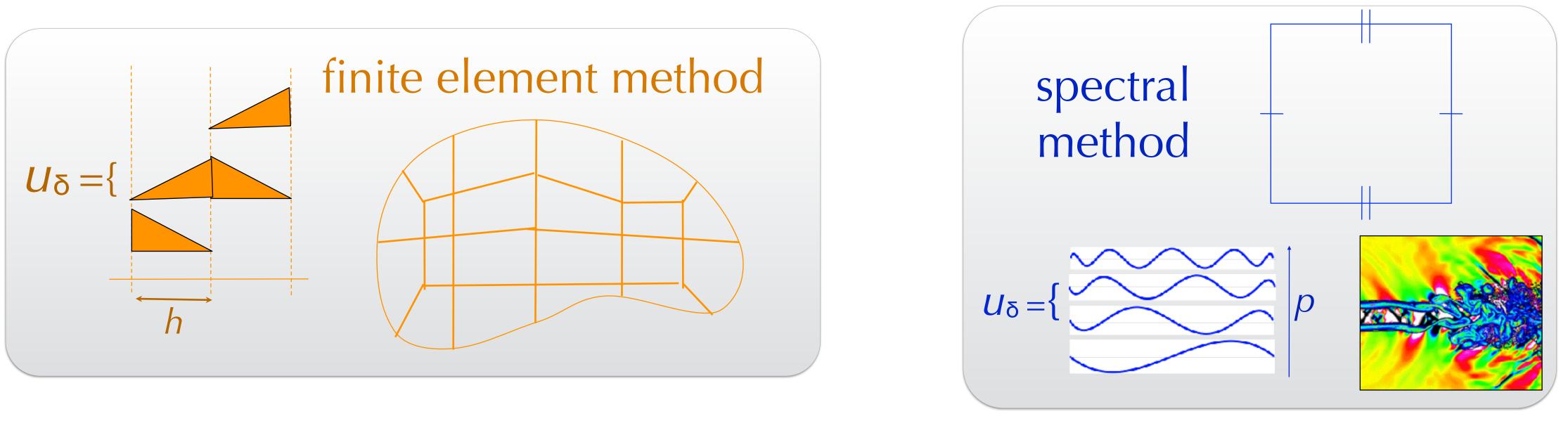
Increasing desire for **high-fidelity** simulation in high-end engineering applications.

Move towards methods and techniques for making LES affordable

Want to accurately model difficult features:

- strongly separated flows
- feature tracking and prediction
- vortex interaction

What is a spectral/hp element?



spatial flexibility (h)

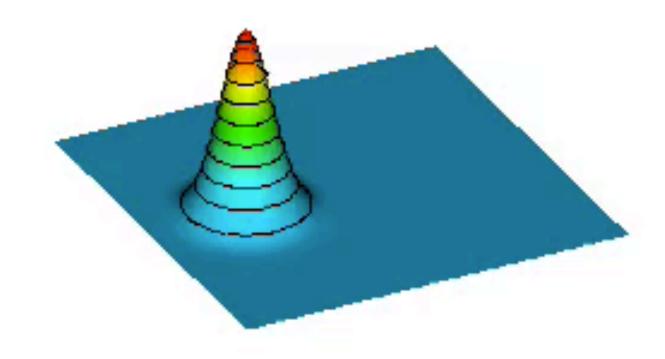
accuracy (p)

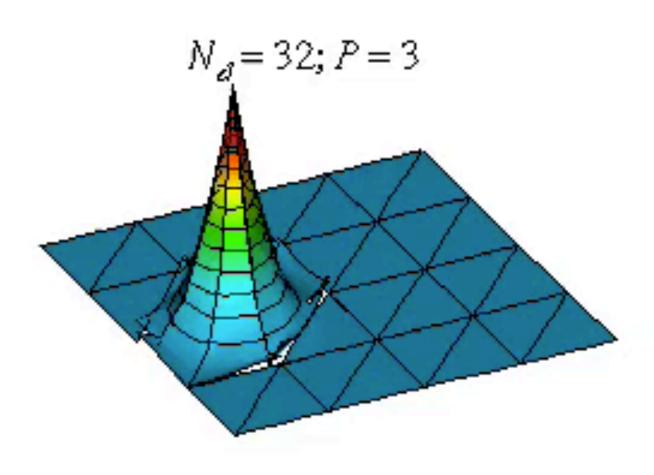
spectral/hp element

Why use a high-order method?

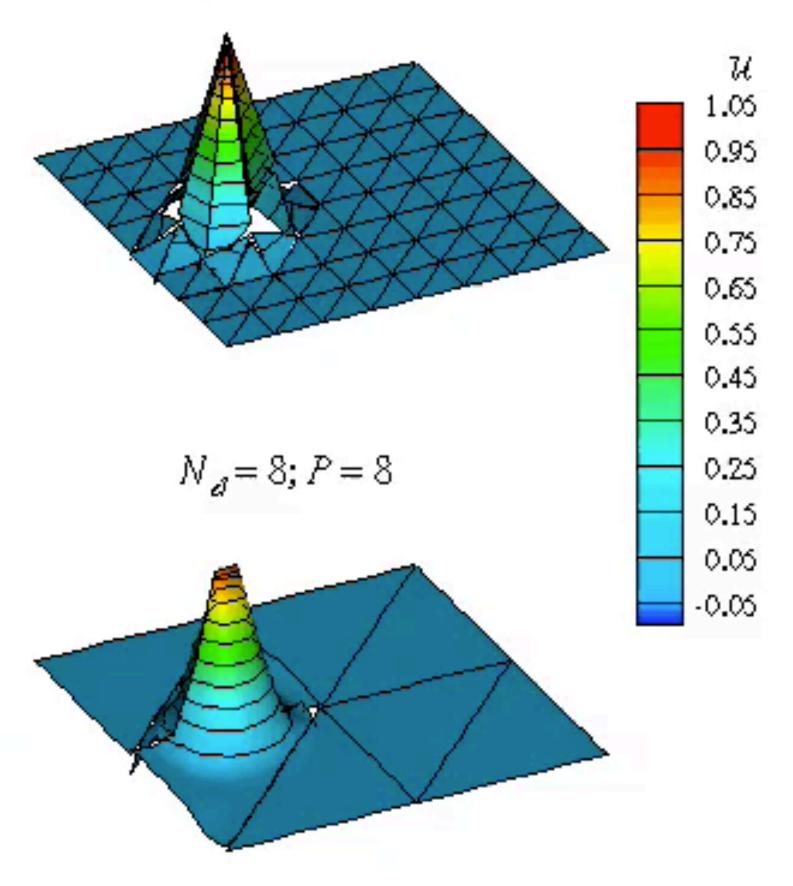
Time = 0

'Exact' solution





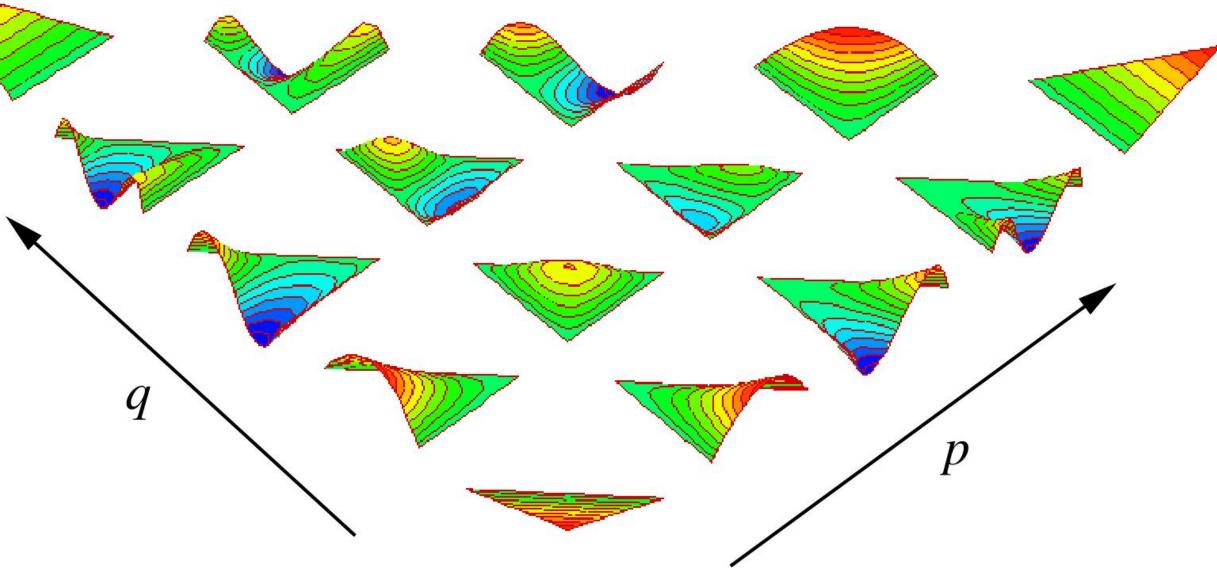
 $N_{a} = 128; P = 1$



Higher-order expansions

- Extend traditional FEM by adding higher order polynomials of degree *P* within each element.
- Traditional linear element has 3 degrees of freedom per element (each vertex).
- High-order has (*P*+1)(*P*+2)/2 at a given order *P*.
- Key defining feature of spectral/hp: tensor product basis.

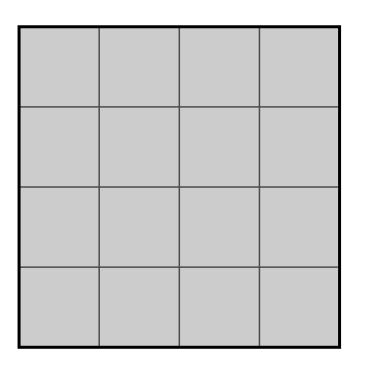
local bases

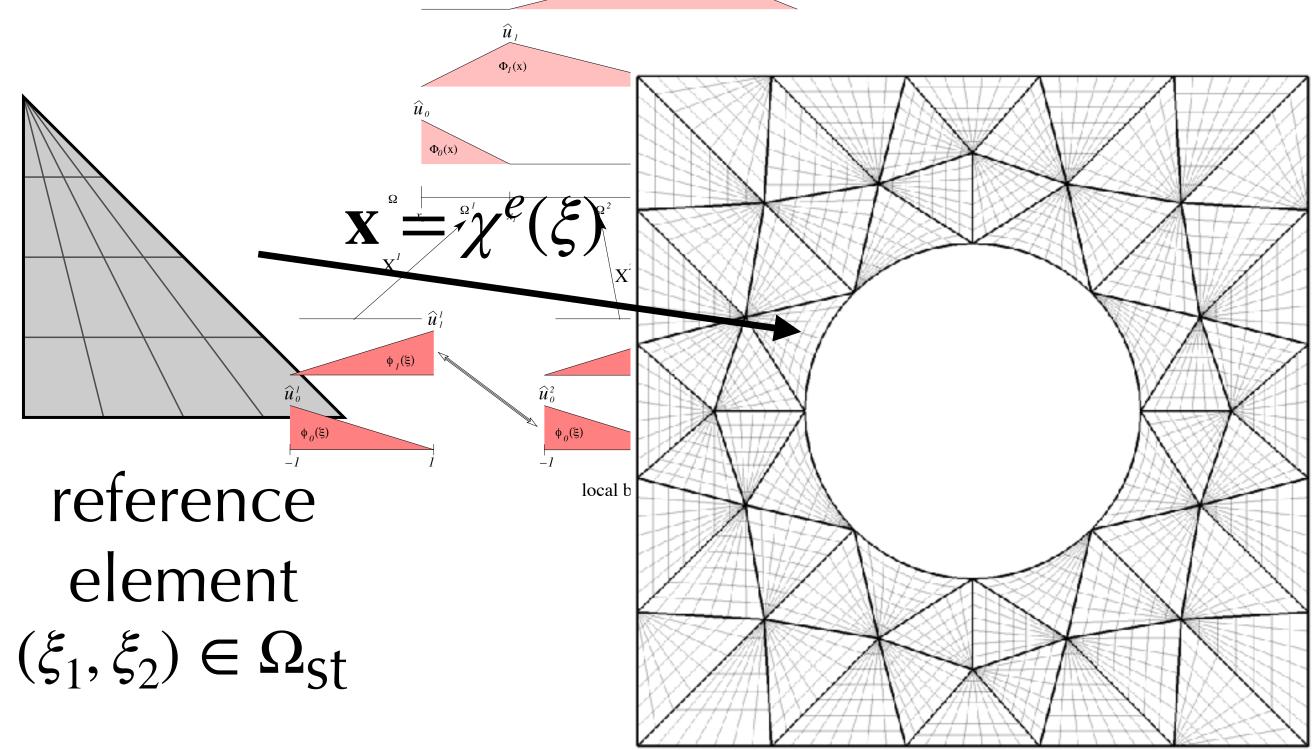


 $\Psi_0(S)$

-

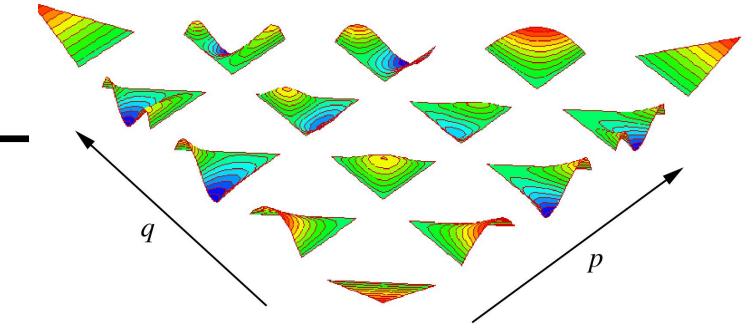
Spectral/hp element formulation



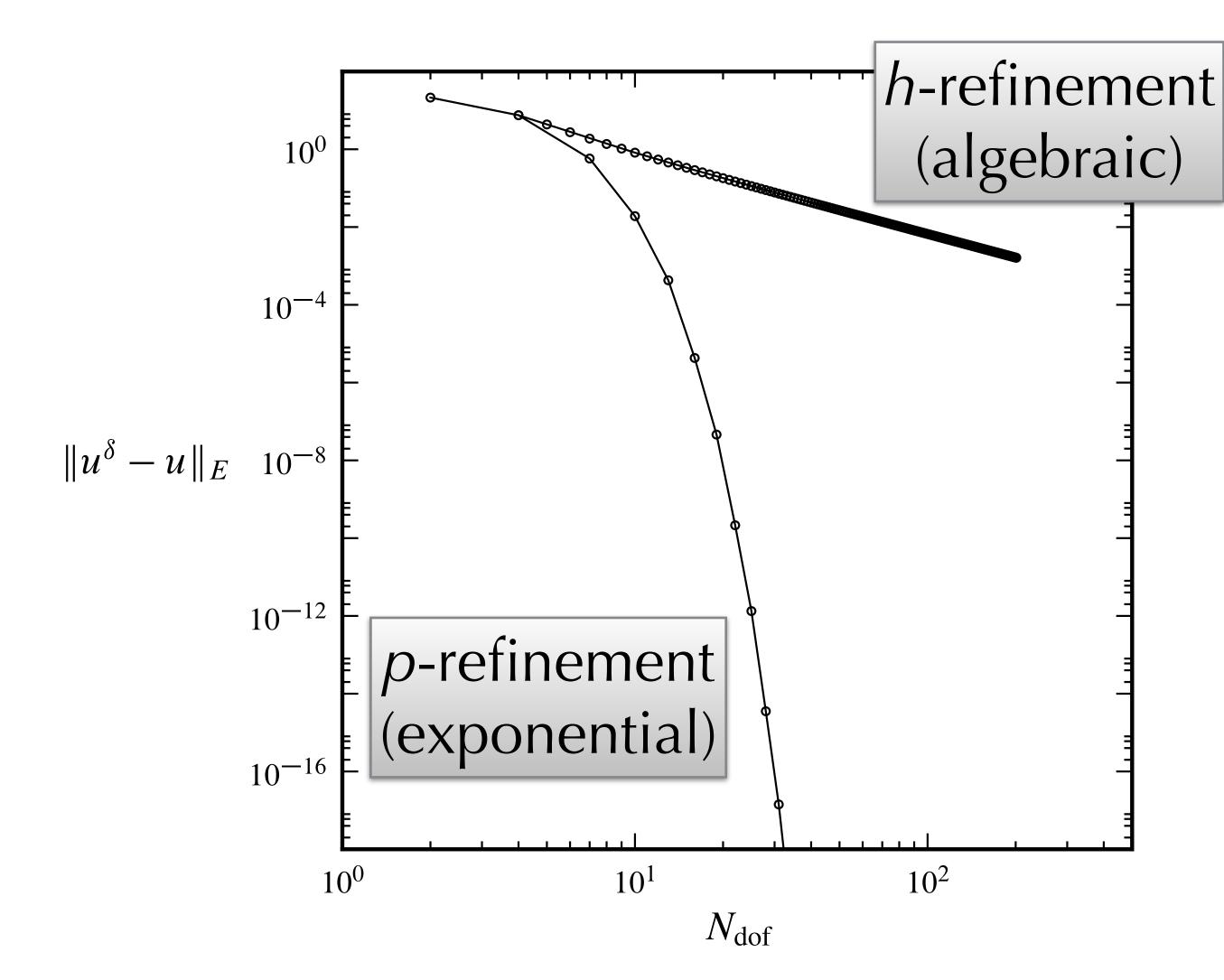


collapsed coordinates $(\eta_1, \eta_2) \in [-1, 1]^2$

(C⁰) tensor product basis $\phi_p^a(\eta_1)\,\phi_{pq}^b(\eta_2)$

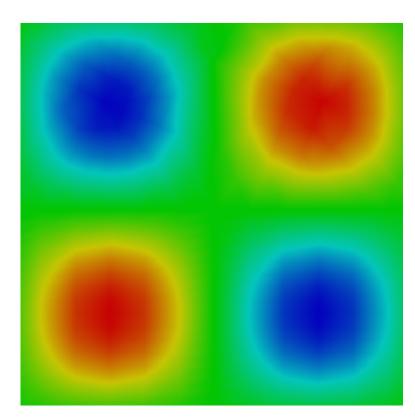


Why use a high-order method?



 $\nabla^2 u(x) - \lambda u(x) = -f(x)$

Method of manufactured solutions on square domain $u(x) = \sin(\pi x) \sin(\pi y)$ $\Rightarrow f(x) = (\nabla^2 - \lambda)u(x)$



So why doesn't everyone use high-order?

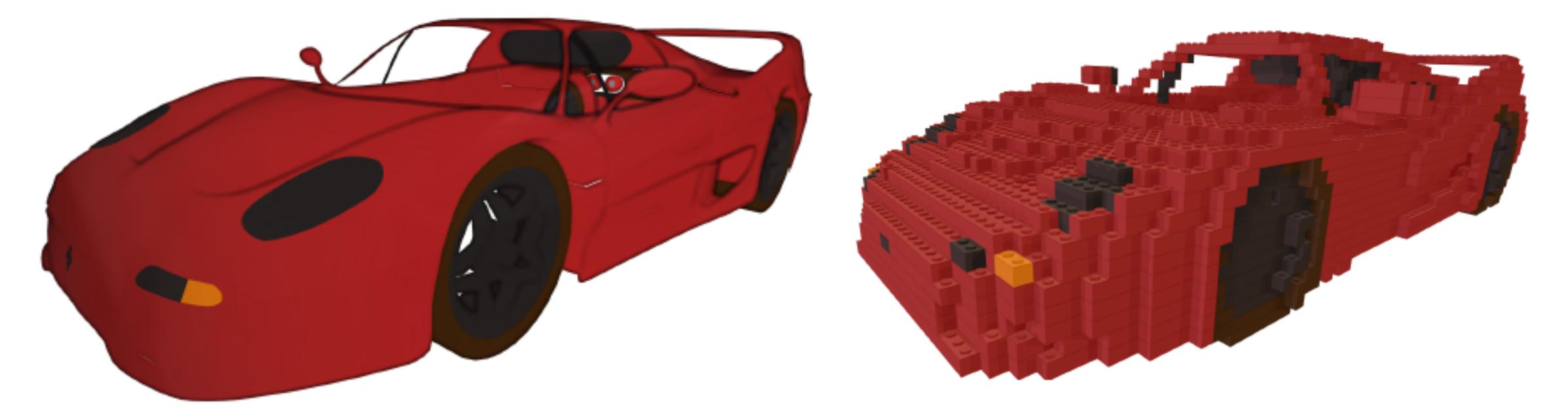
Stuff I'll discuss today:

- Pre-processing (mesh generation), particularly for complex geometries.
- Efficient linear algebra techniques & operator implementations.
- Implementation effort and difficulties.

Other stuff:

• Post-processing and visualisation, stability and robustness, preconditioning...

Challenge 1: high-order mesh generation

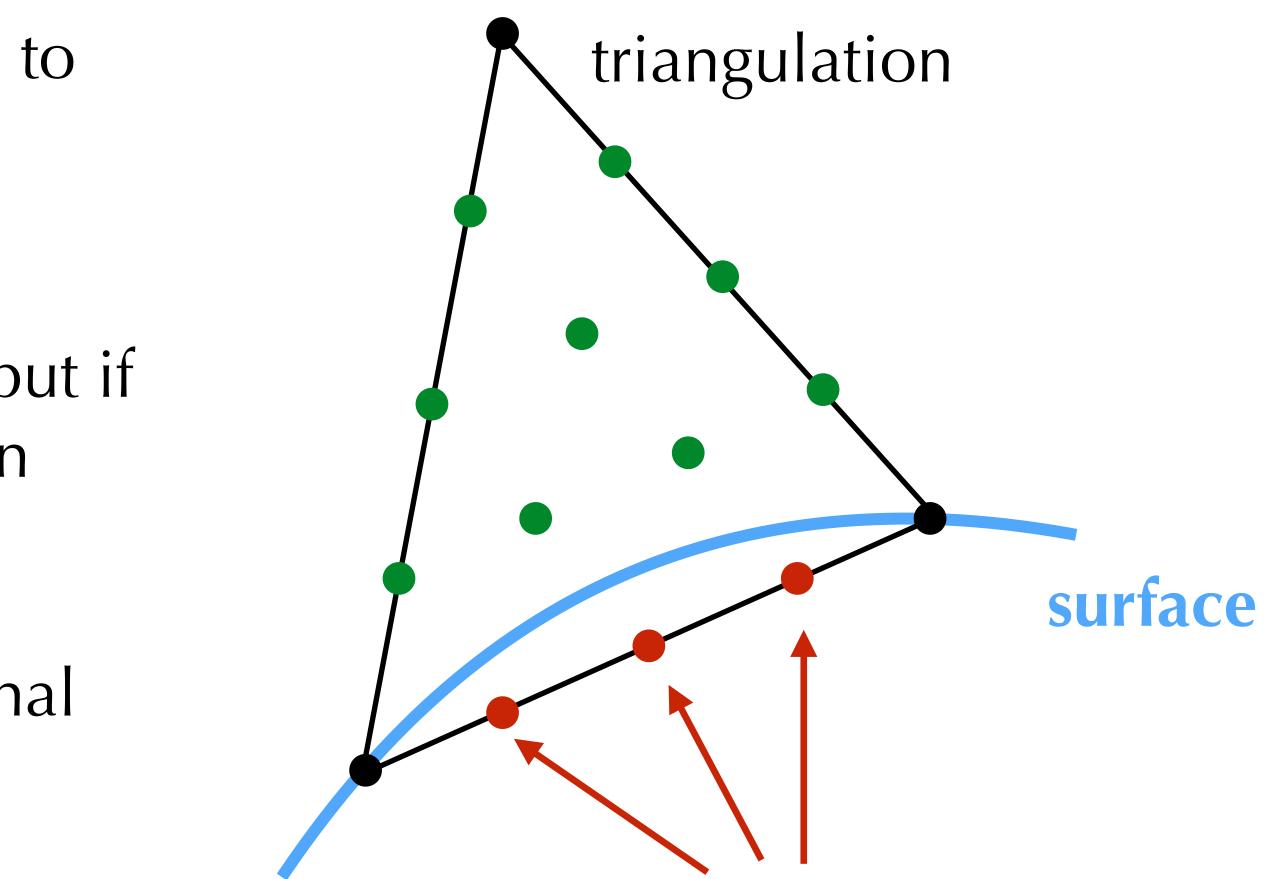


Complex geometries look like this

Not like this

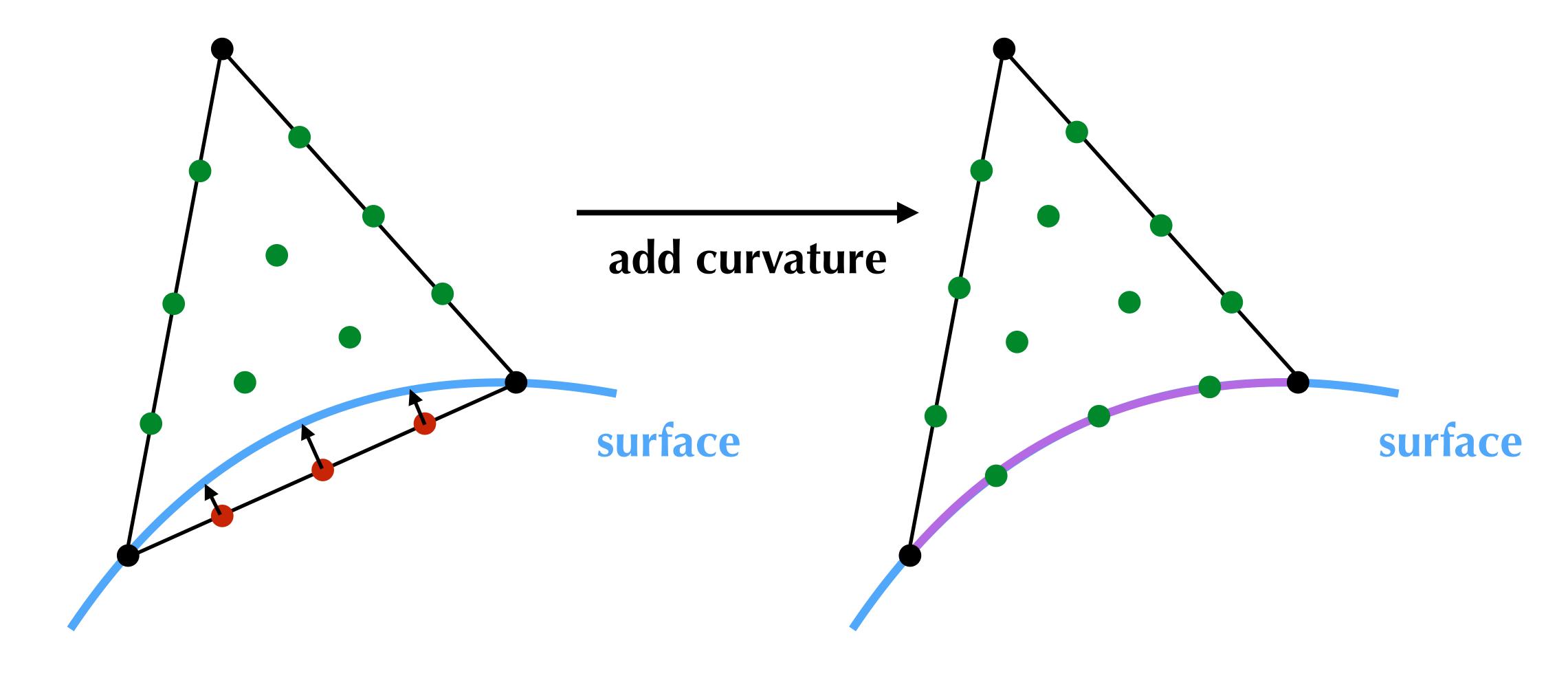
High-order mesh generation

- Good quality meshes are essential to finite element and finite volume simulations.
- You can have a very fancy solver, but if you can't mesh your geometry then you can't run your simulation!
- At high orders we have an additional headache, as we must curve the elements to fit the geometry.



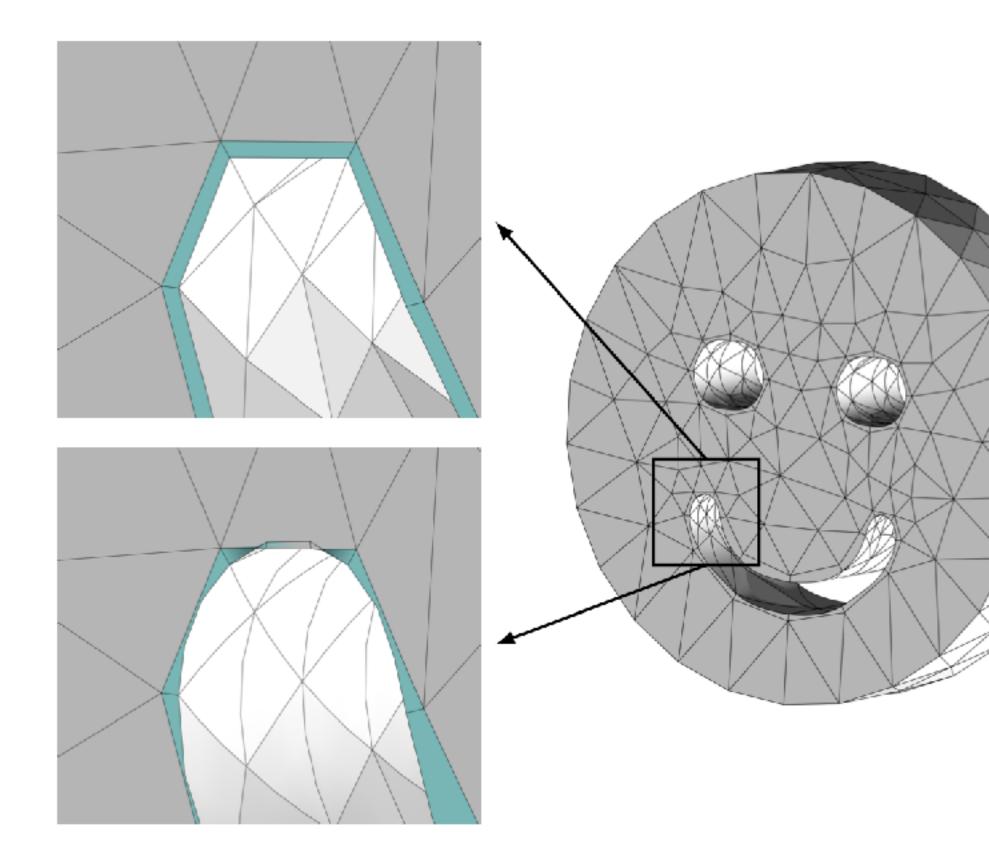
don't lie on the surface!

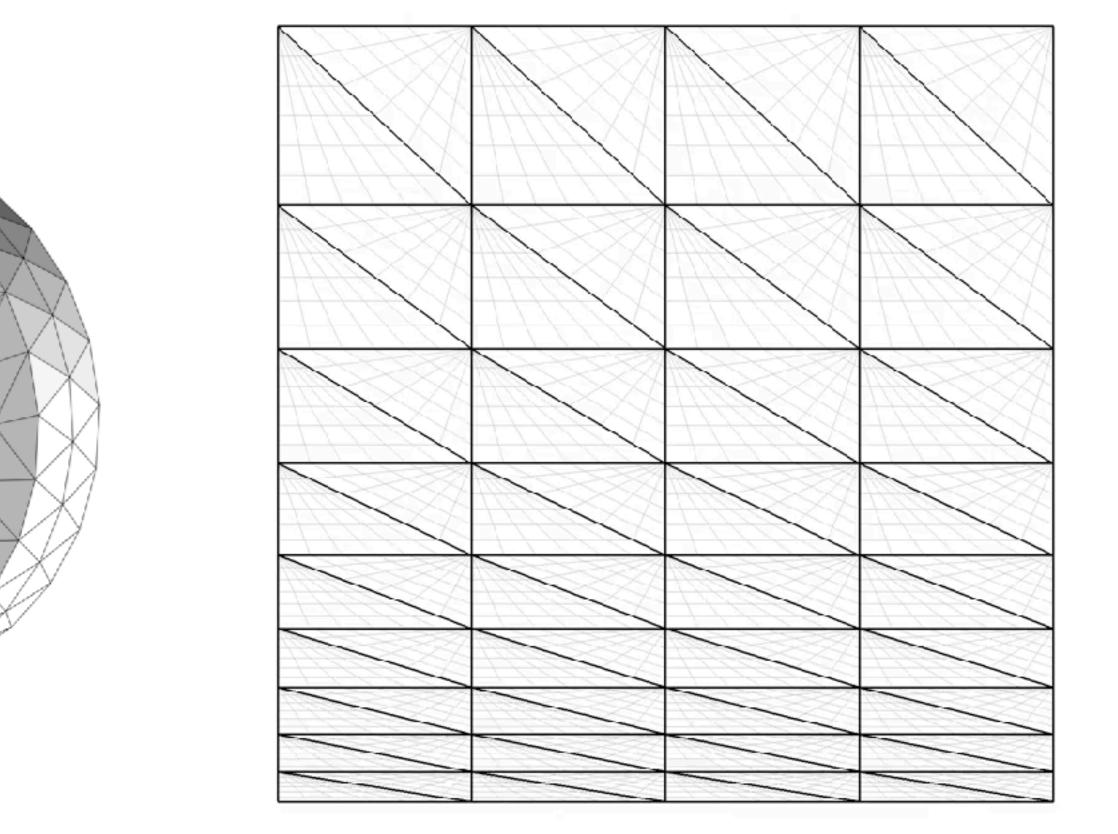
High-order mesh generation



High-order mesh generation

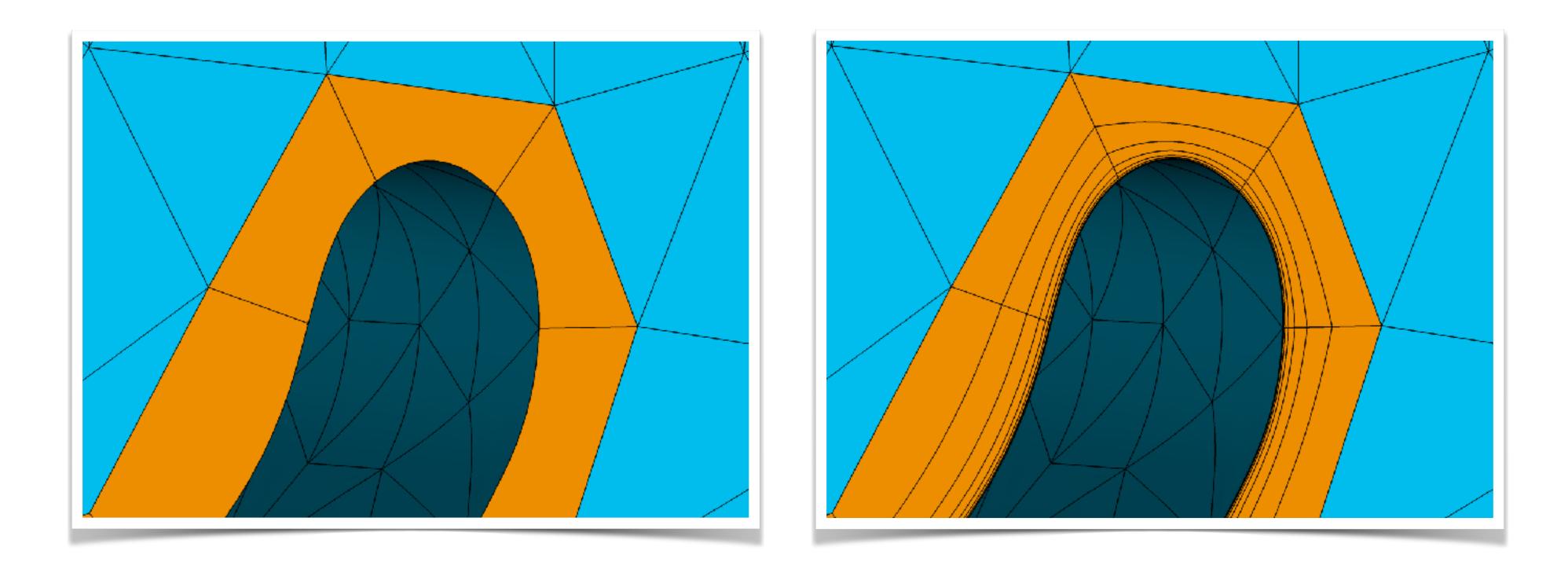
Curving coarse meshes leads to invalid elements Most existing mesh generation packages cannot deal with this





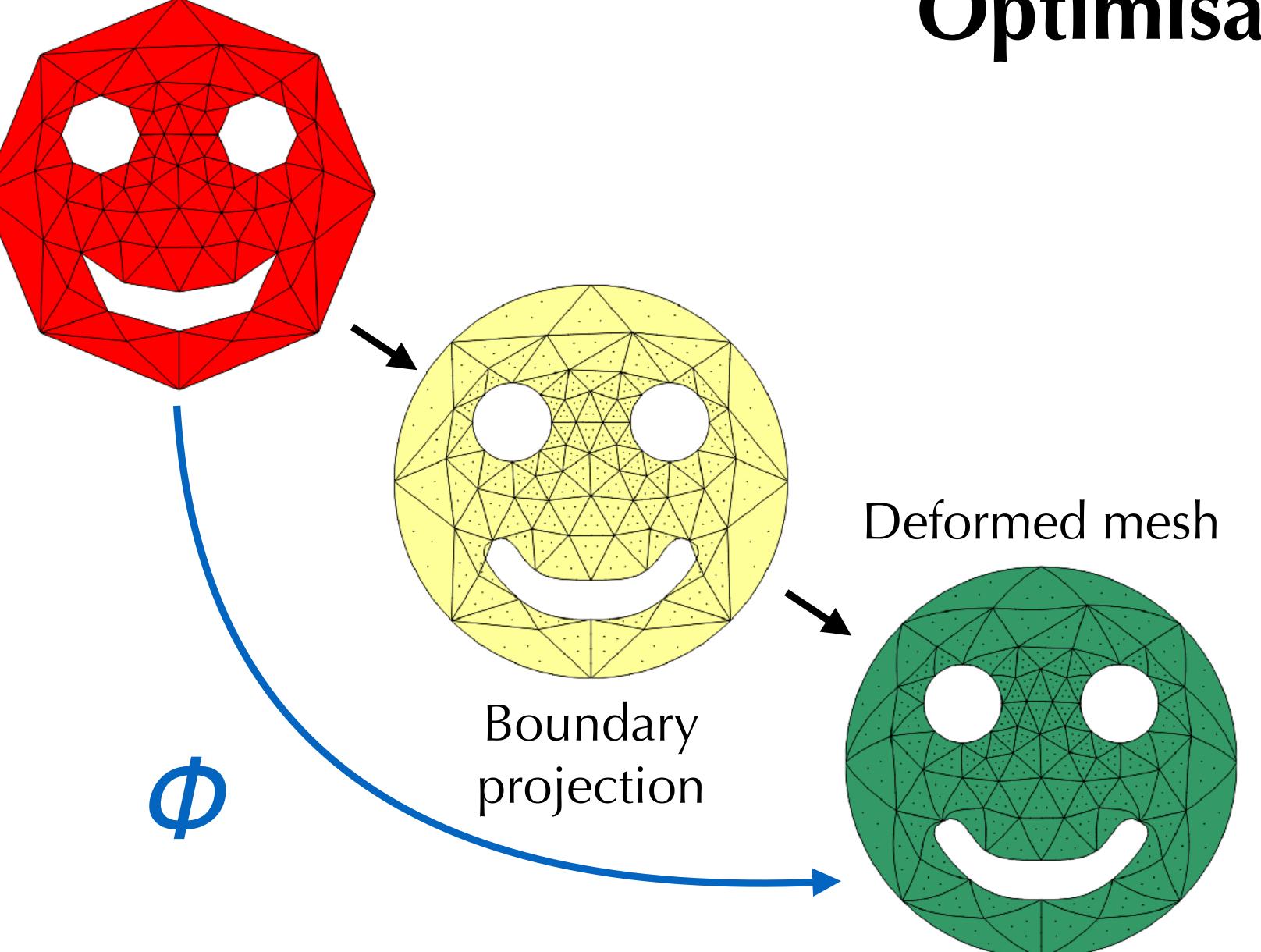
High-order technologies

Isoparametric splitting of high-order boundary layers

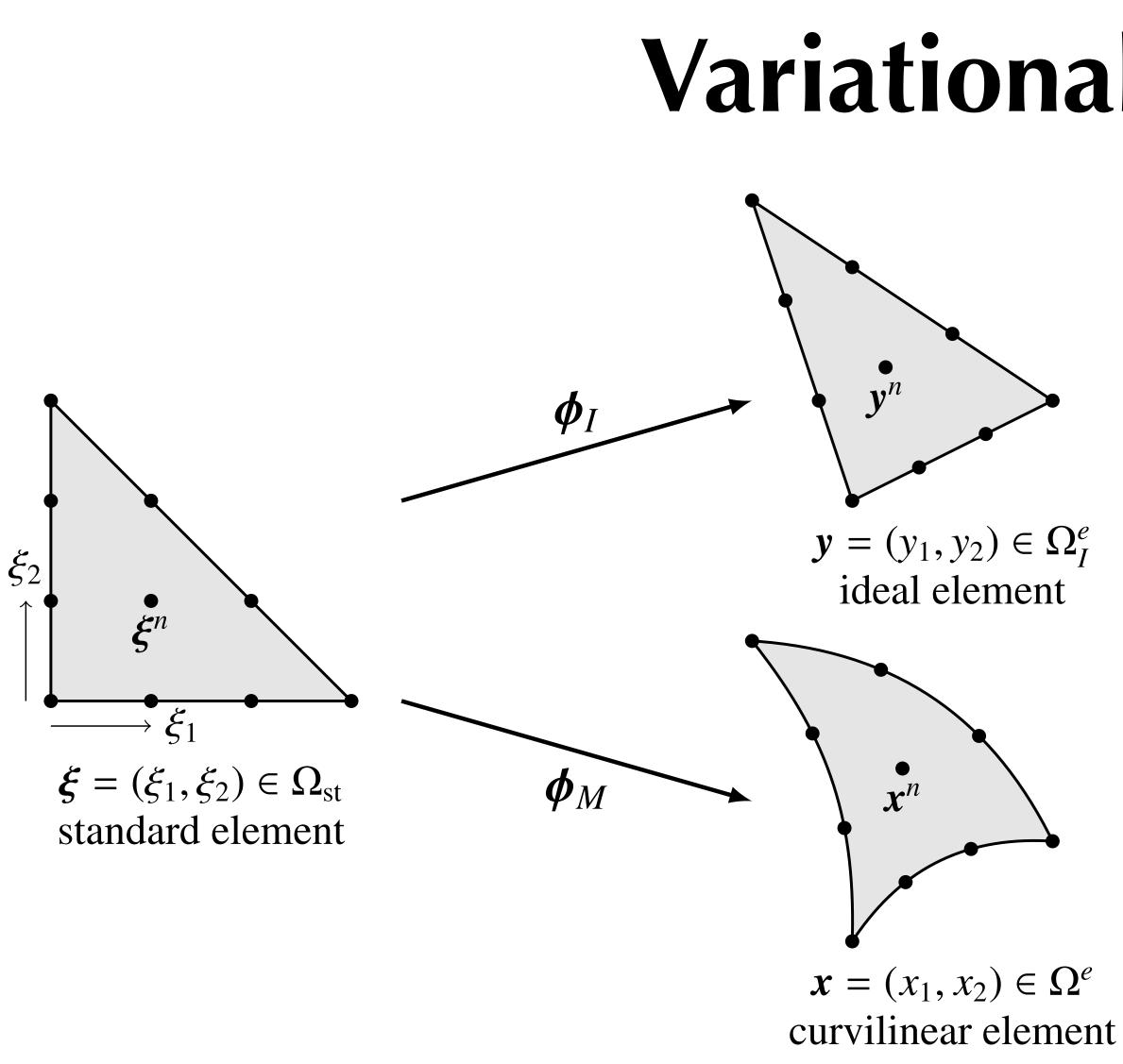


Moxey et al., Comp. Meth. Appl. Mech. Eng 283 pp. 636-650 (2015)

Straight-sided mesh



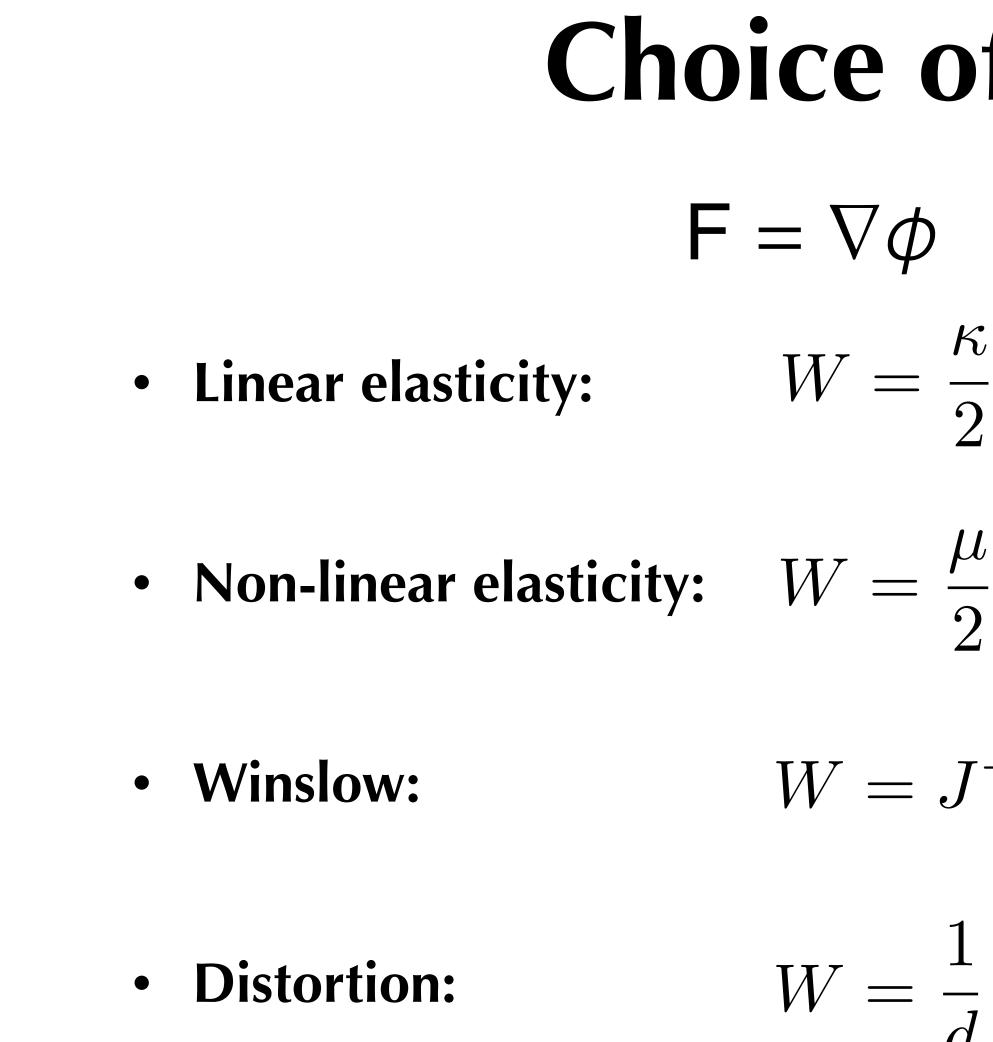
Optimisation



M. Turner, J. Peiró, D. Moxey, Curvilinear mesh generation using a variational framework, Computer Aided Design 103 73-91 (2018)

Variational approach

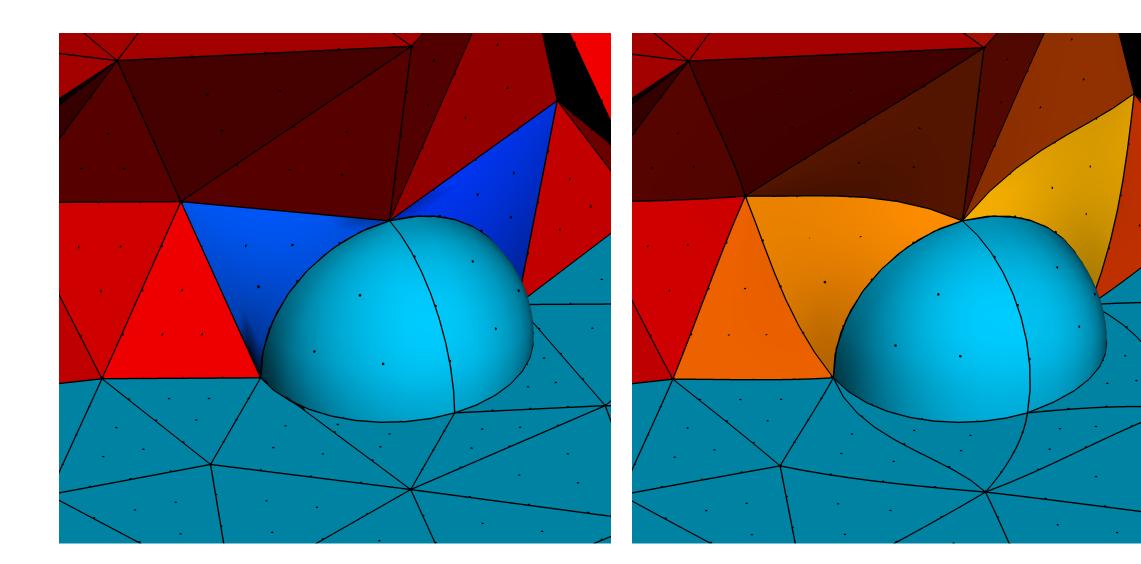
Recast PDE as energy minimisation and solve $\min_{\phi} \mathscr{E}(\phi) = \min_{\phi} \int_{\Omega_{\tau}} W(\nabla \phi) \, dy$ ϕ Different *W* give PDE and optimisation methods in a single framework



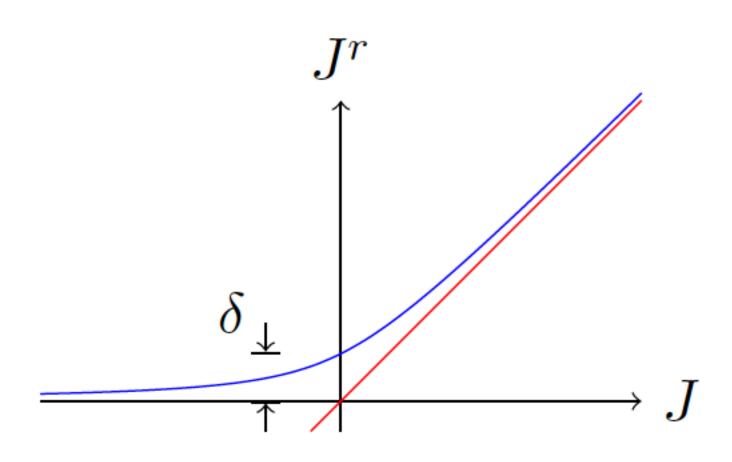
Choice of functional $\mathbf{F} = \nabla \phi$ $J = \det \mathbf{F}$ $W = \frac{\kappa}{2} (\ln J)^2 + \mu \mathbf{E} : \mathbf{E}; \quad \mathbf{E} = \frac{1}{2} (\mathbf{F}^t \mathbf{F} - \mathbf{I})$ • Non-linear elasticity: $W = \frac{\mu}{2} (\mathbf{F} : \mathbf{F} - 3) - \mu \ln J + \frac{\lambda}{2} (\ln J)^2$ $W = J^{-1} \left(\mathbf{F} : \mathbf{F} \right)$

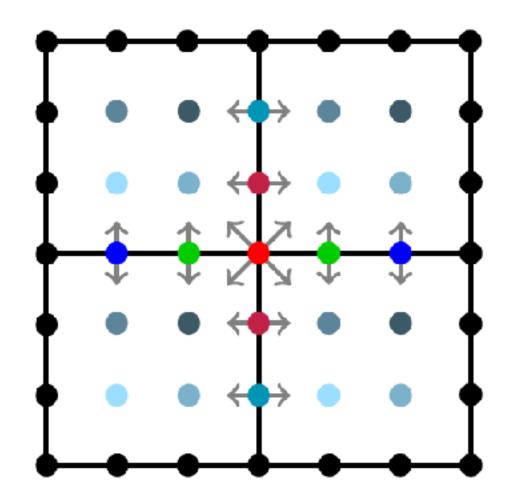
 $W = \frac{1}{J} |J|^{-d/2} (\mathbf{F} : \mathbf{F})$ \boldsymbol{U}

Benefits



CAD sliding

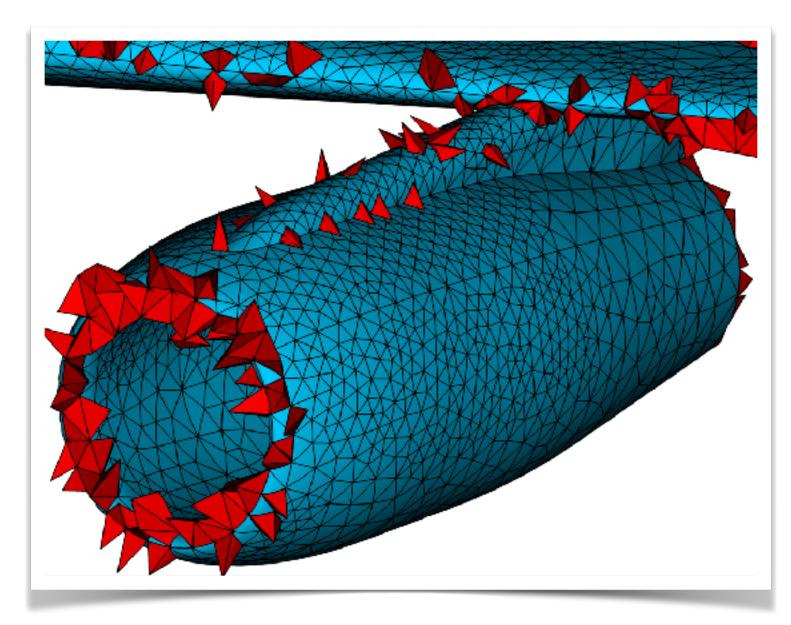


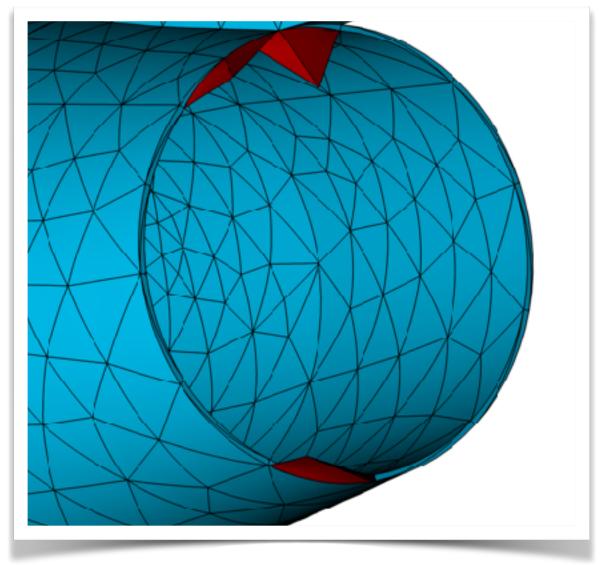


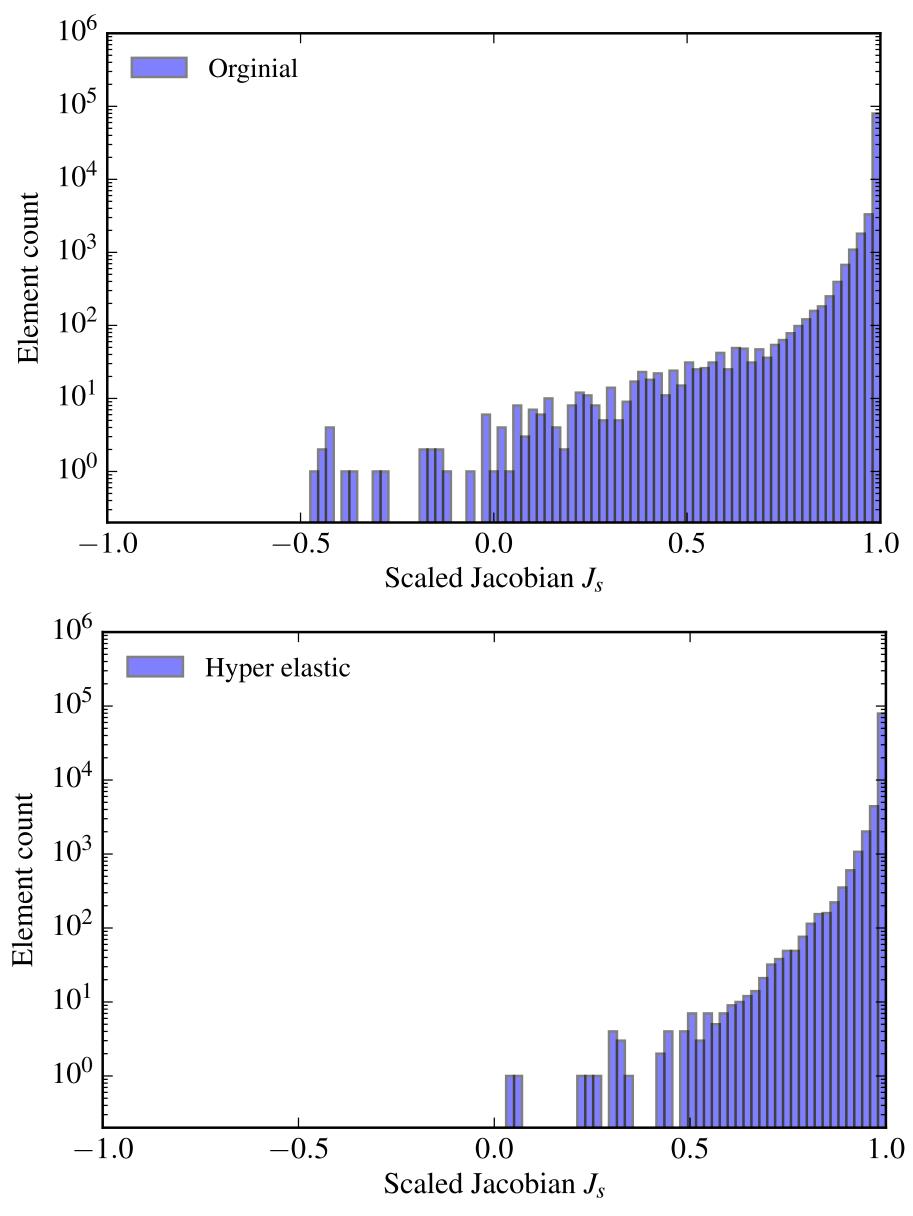
Multi-core parallelisation relaxation optimisation approach

Untangles meshes using Jacobian regularisation

Example: DLR F6 engine

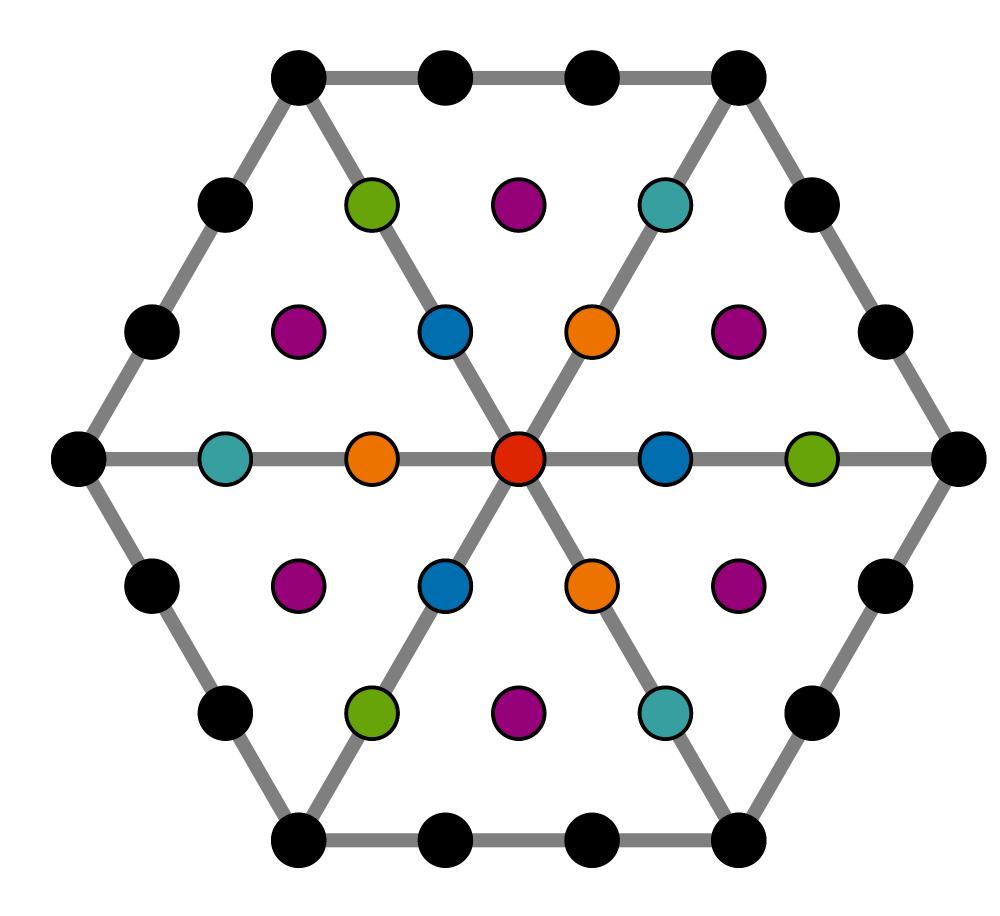






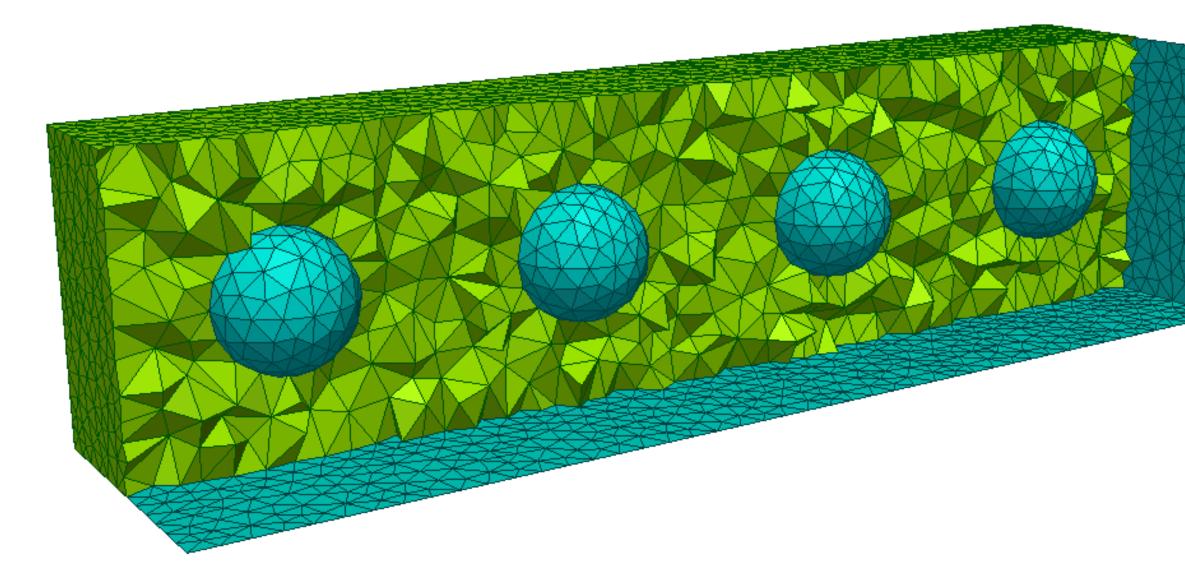
Speeding up optimisation

- Meshing usually accomplished on a single workstation, generally repeated as part of many design iterations.
- Optimisation process is resource intensive, but GPUs have lots of compute density.
- Can we leverage parallelism of the method effectively on a GPU?
- How do we do this in a code-friendly way?



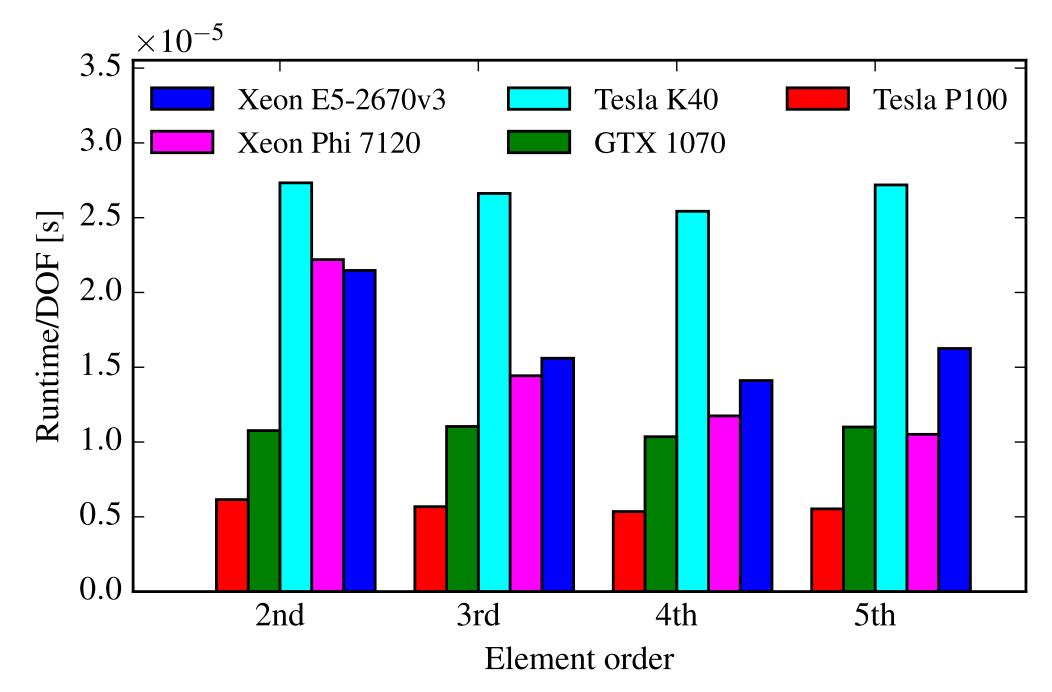
Node colouring

- For each node solve local minimisation problem
- Calculate functional + gradients analytically
- Uses multi-level threading to exploit GPU hierarchy: use Kokkos
- Iterate until global functional residual is small



Four spheres in a box, 33k tetrahedra, ~400k nodes at p = 5

Results

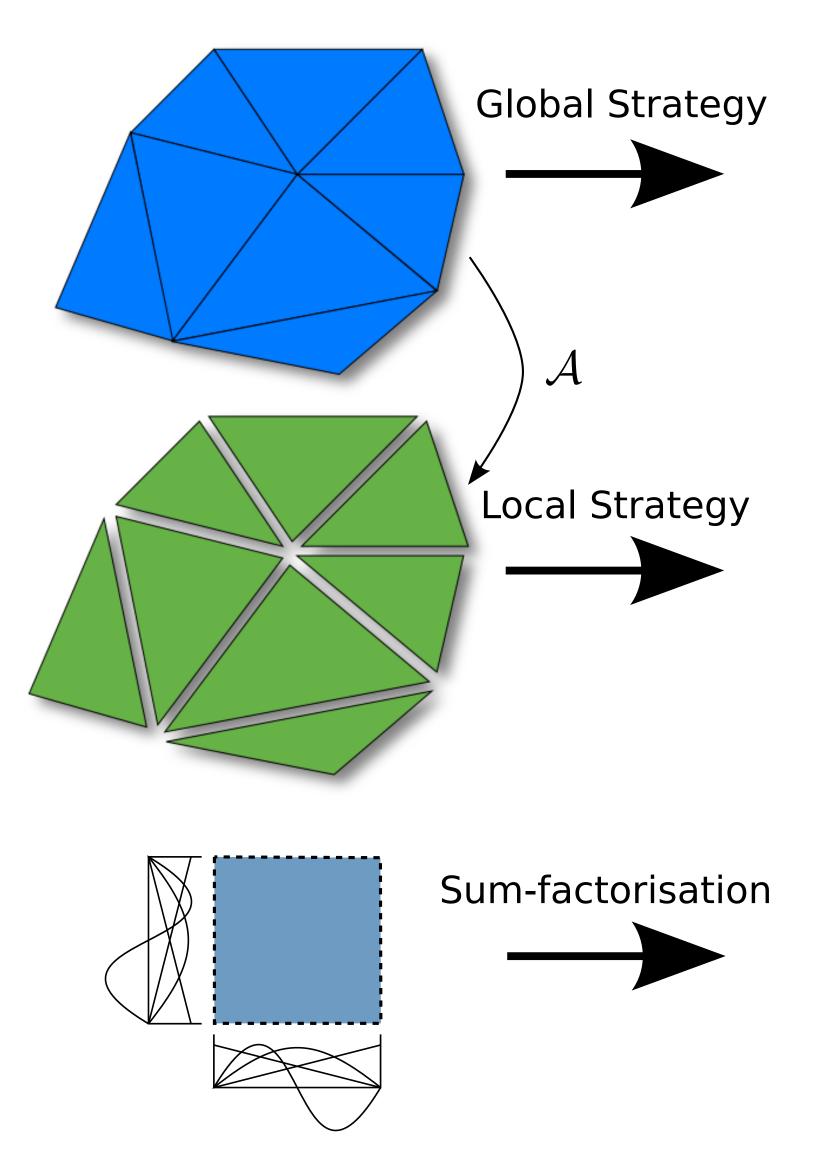


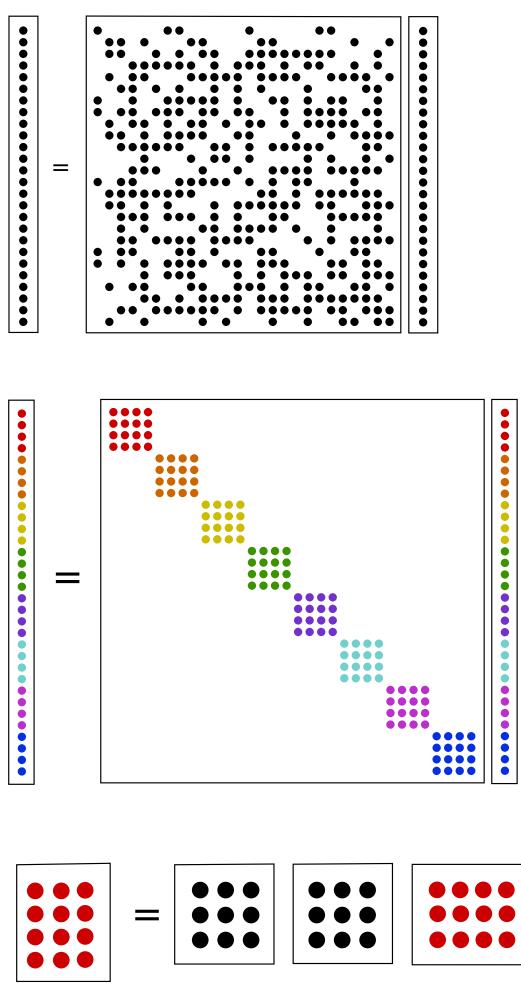
Reasonably consistent runtimes per DoF across polynomial orders

Challenge 2: efficient implementation

- Today's computational hardware: lots of FLOPS available, but really hard to use them.
- Algorithms will only use hardware effectively if they are **arithmetically intense:** i.e. high ratio of FLOPS per byte of memory transfer.
- One of the reasons that current CFD codes don't often make best use of hardware on offer.
- High-order has potential in this area through matrix-free formulations.

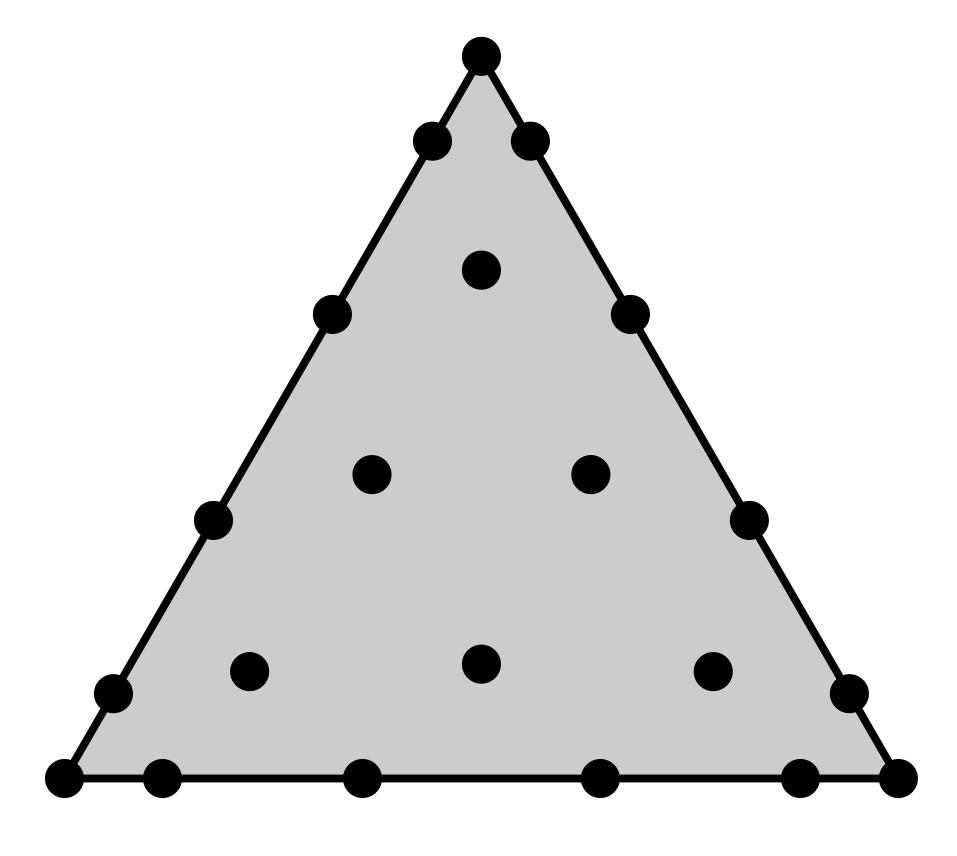
Implementation choices





Increasing polynomial order More localised memory access

Unstructured elements



P5 triangle, Fekete points

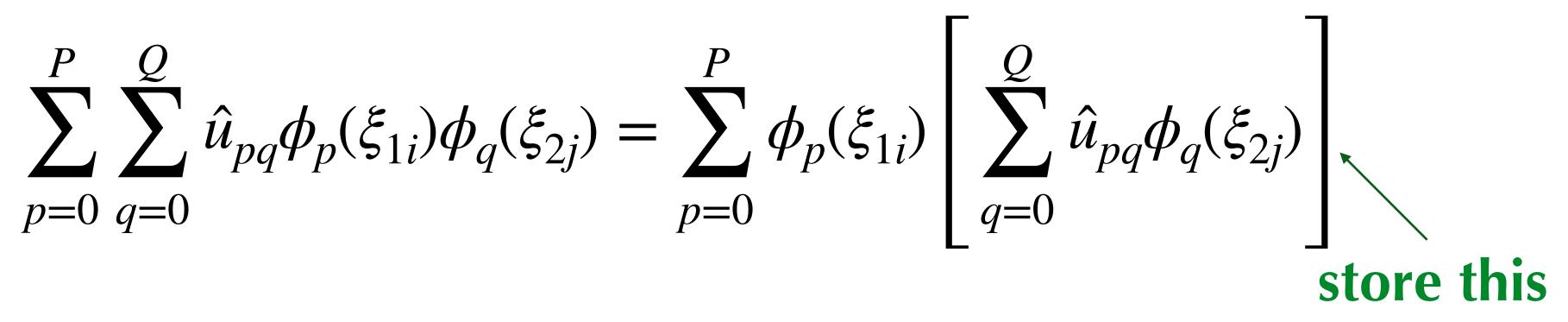
- Typically unstructured elements make use of Lagrange basis functions (although not always).
- Combine this with a suitable set of quadrature (cubature) points: no tensor-products structure.
- However, spectral/hp does have a tensor product structure!

Sum-factorisation

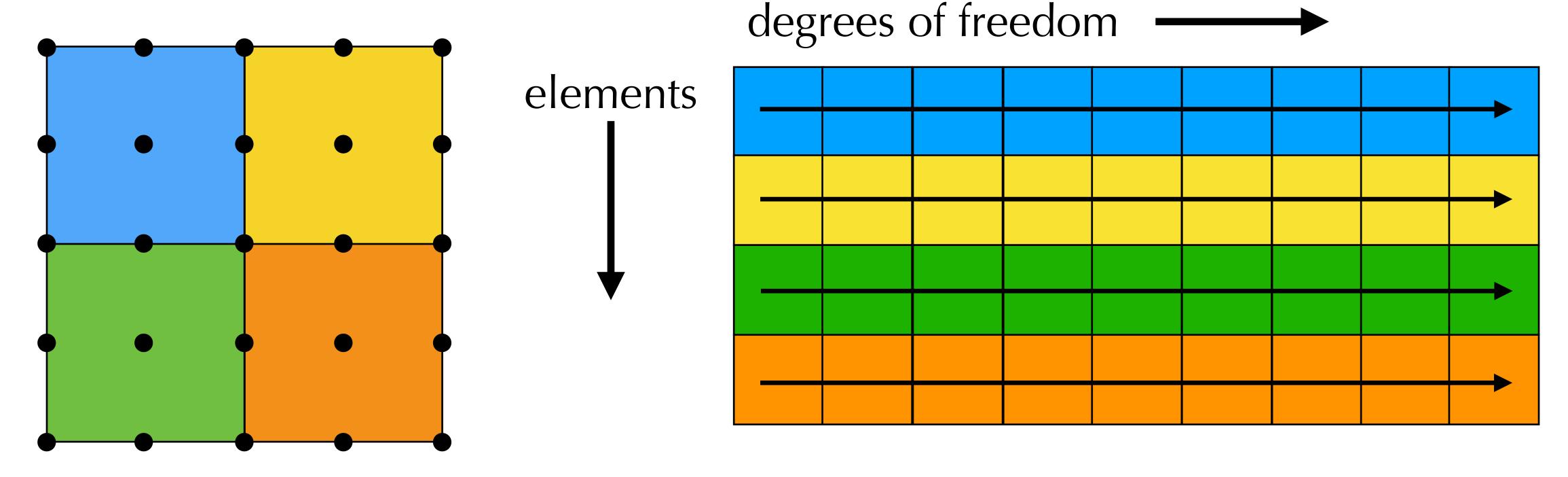
Key to performance at high polynomial orders: complexity O(P^{2d}) to O(P^{d+1})!

This works in essentially the same way for more complex indexing:

 $\sum_{i=1}^{P} \sum_{j=1}^{Q-p} \hat{u}_{pq} \phi_{p}^{a}(\xi_{1i}) \phi_{pq}^{b}(\xi_{2j}) = \sum_{j=1}^{P} \phi_{p}^{a}(\xi_{1i}) \left| \sum_{j=1}^{Q-p} \hat{u}_{pq} \phi_{pq}^{b}(\xi_{2j}) \right|$ q=0p=0 q=0*p*=0 store this



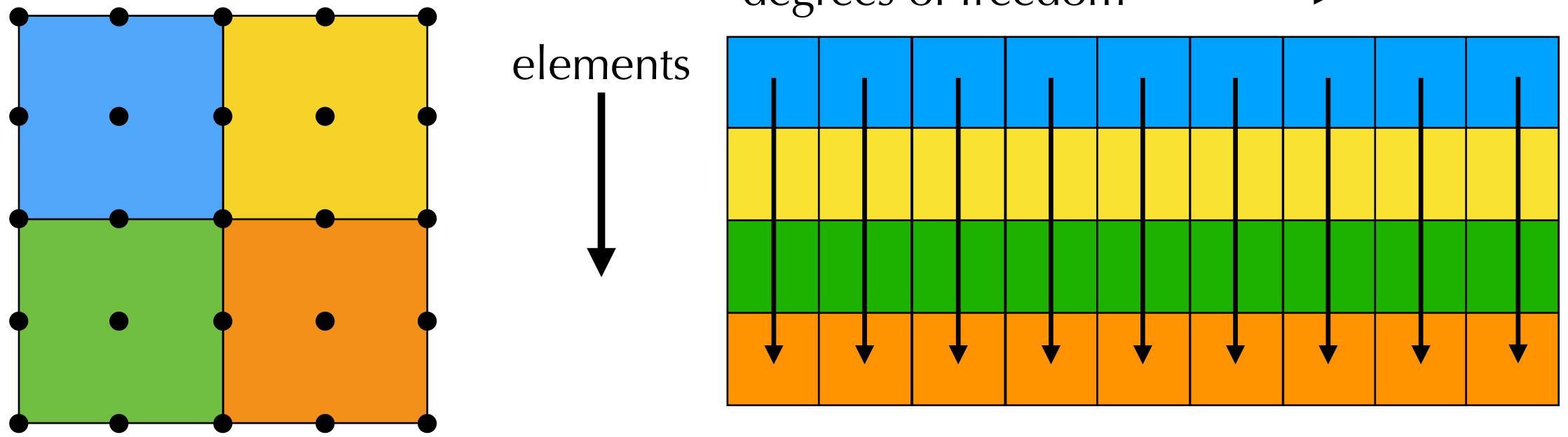
Data layout



Natural to consider data laid out element by element

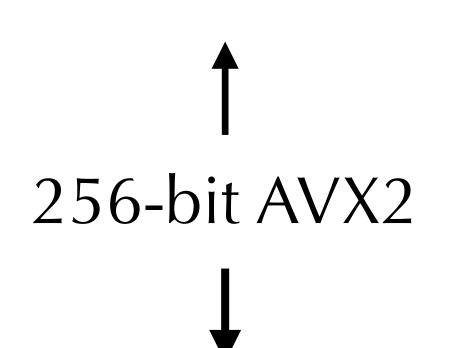
Data layout

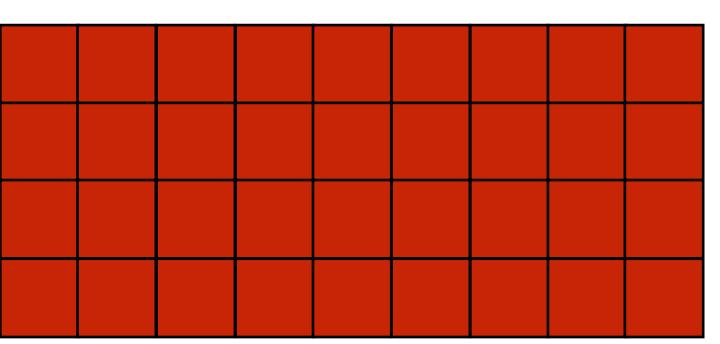
Exploit vectorisation by grouping DoFs by vector width



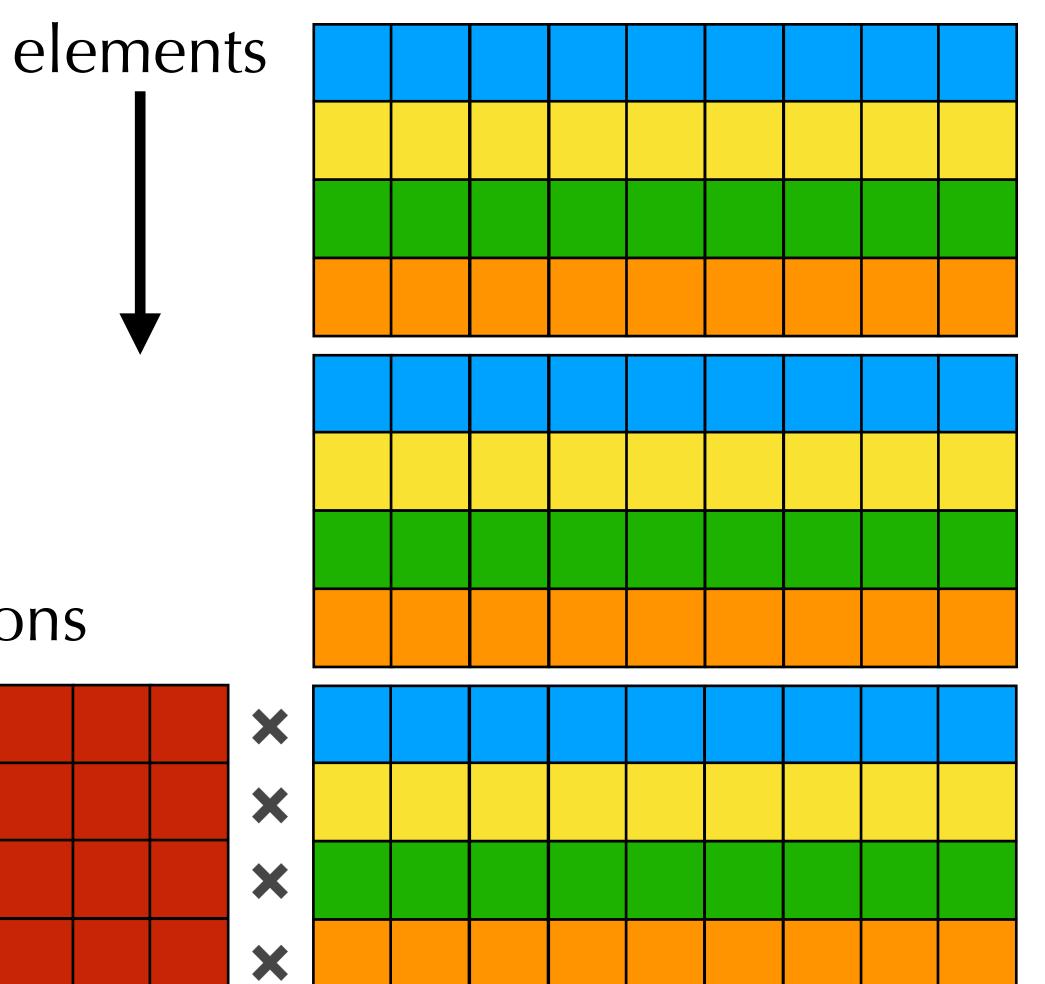
Data layout

- Operations occur over groups of elements of size of vector width.
- Use C++ data type that encodes vector operations (common strategy)

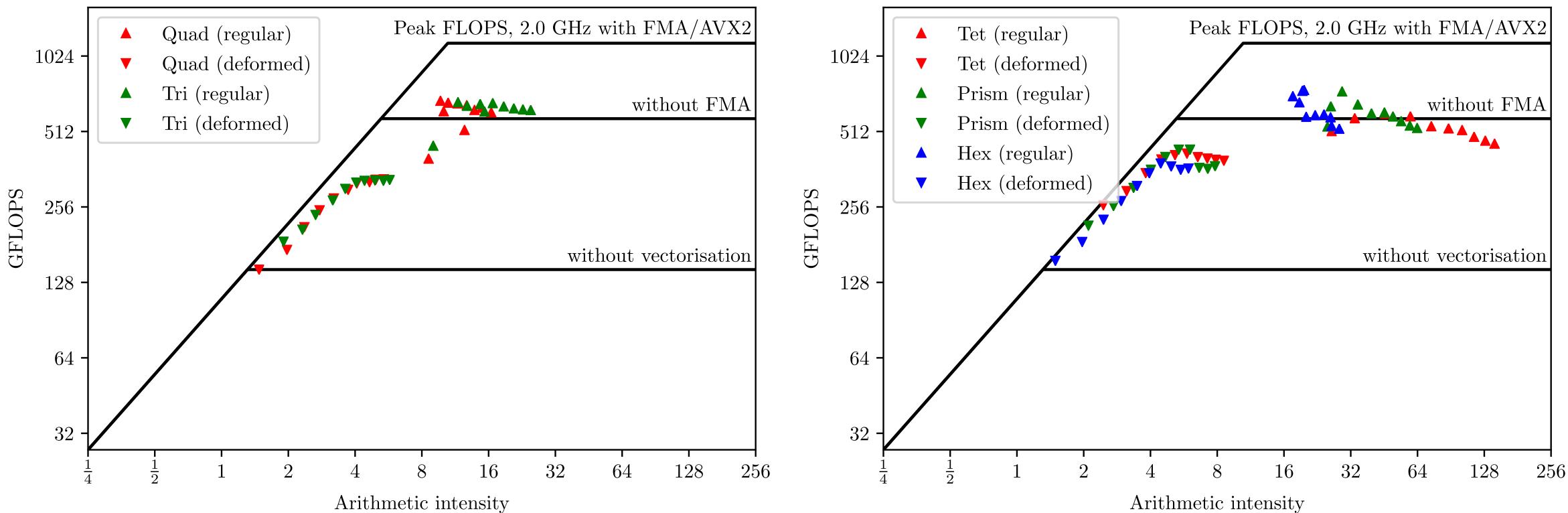




basis functions



Roofline results



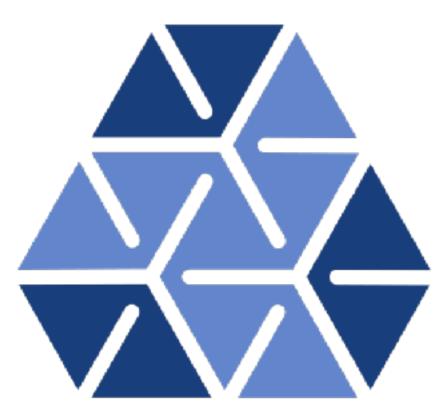
2D: Quads, triangles

3D: Hexahedra, prisms, tetrahedra

Use of ~50-70% peak FLOPS for regular elements

Challenge 3: implementation effort

- High-order methods have potential to bring some nice numerical and computational benefits to bear on complex problems.
- Offer high(er) fidelity at equivalent or lower costs, as they have good implementation characteristics.
- However, one of the main barriers to using high-order methods is that they are **difficult to implement**.



Nektar++ spectral/hp element framework

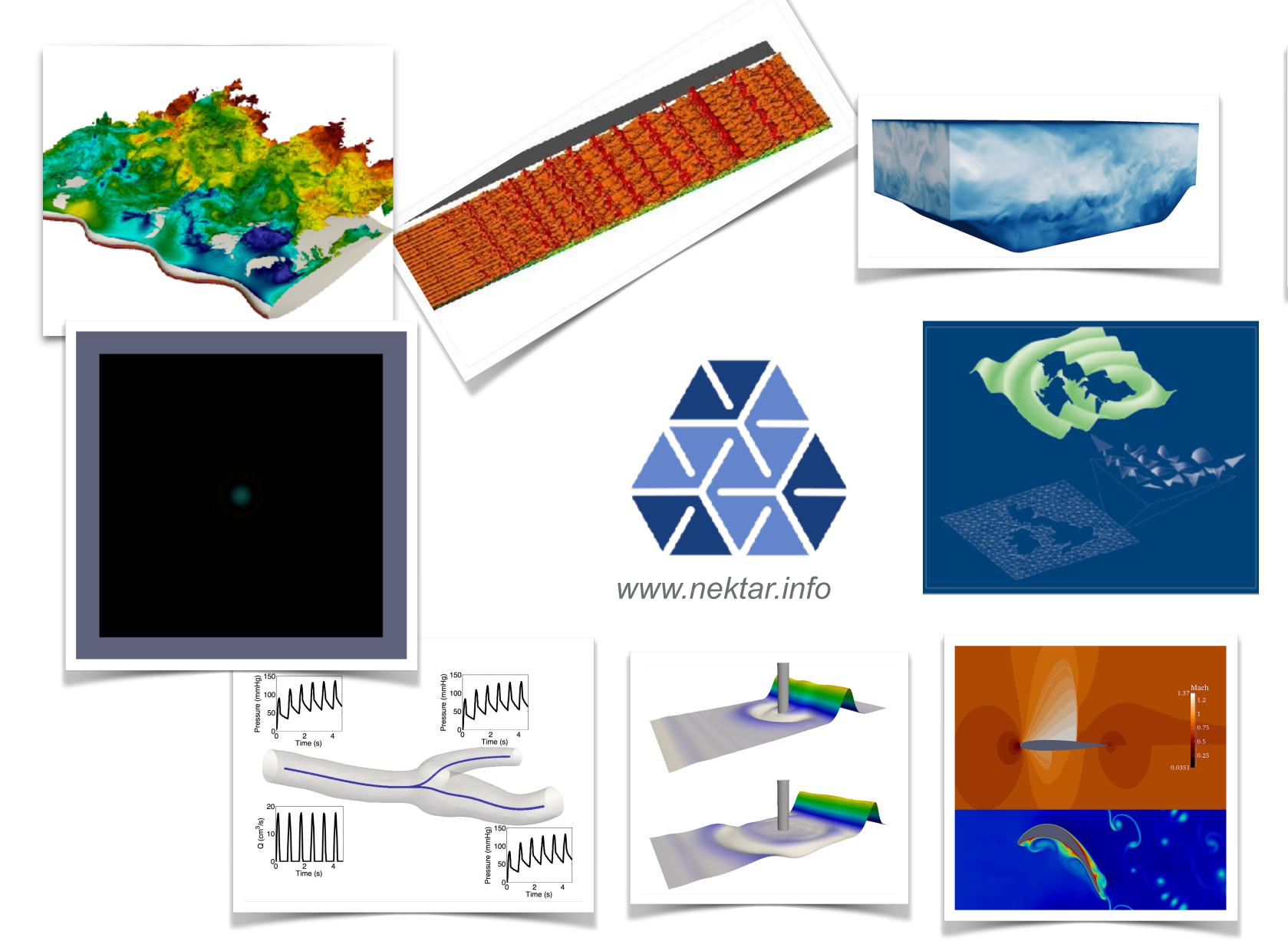
- Nektar++ is an **open source framework** for high-order methods.
- these methods in many areas, **not just fluids**.
- (e.g. many-core processors, GPUs).
- Modern development practices with continuous integration, git, etc.

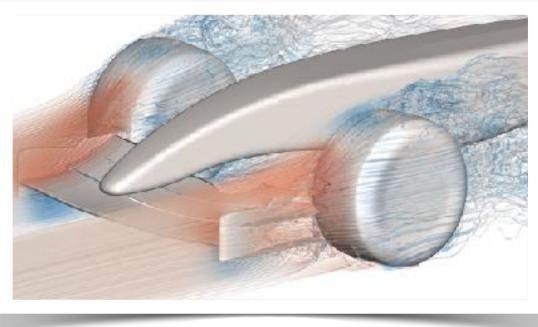
Nektar++ spectral/hp element framework

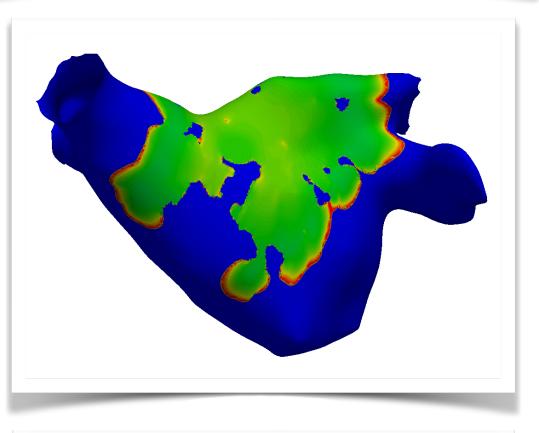
• Although fluids is a key application area, we try to make it easier to use

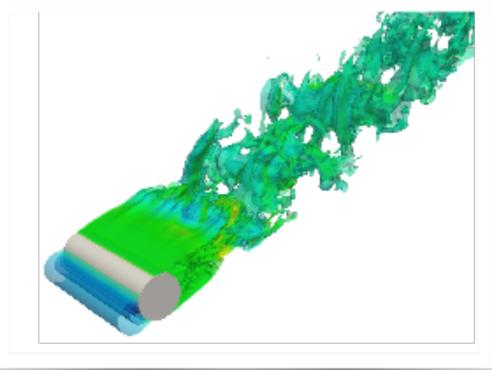
• C++ API, with ambitions to bridge current and future hardware diversity

Some application areas

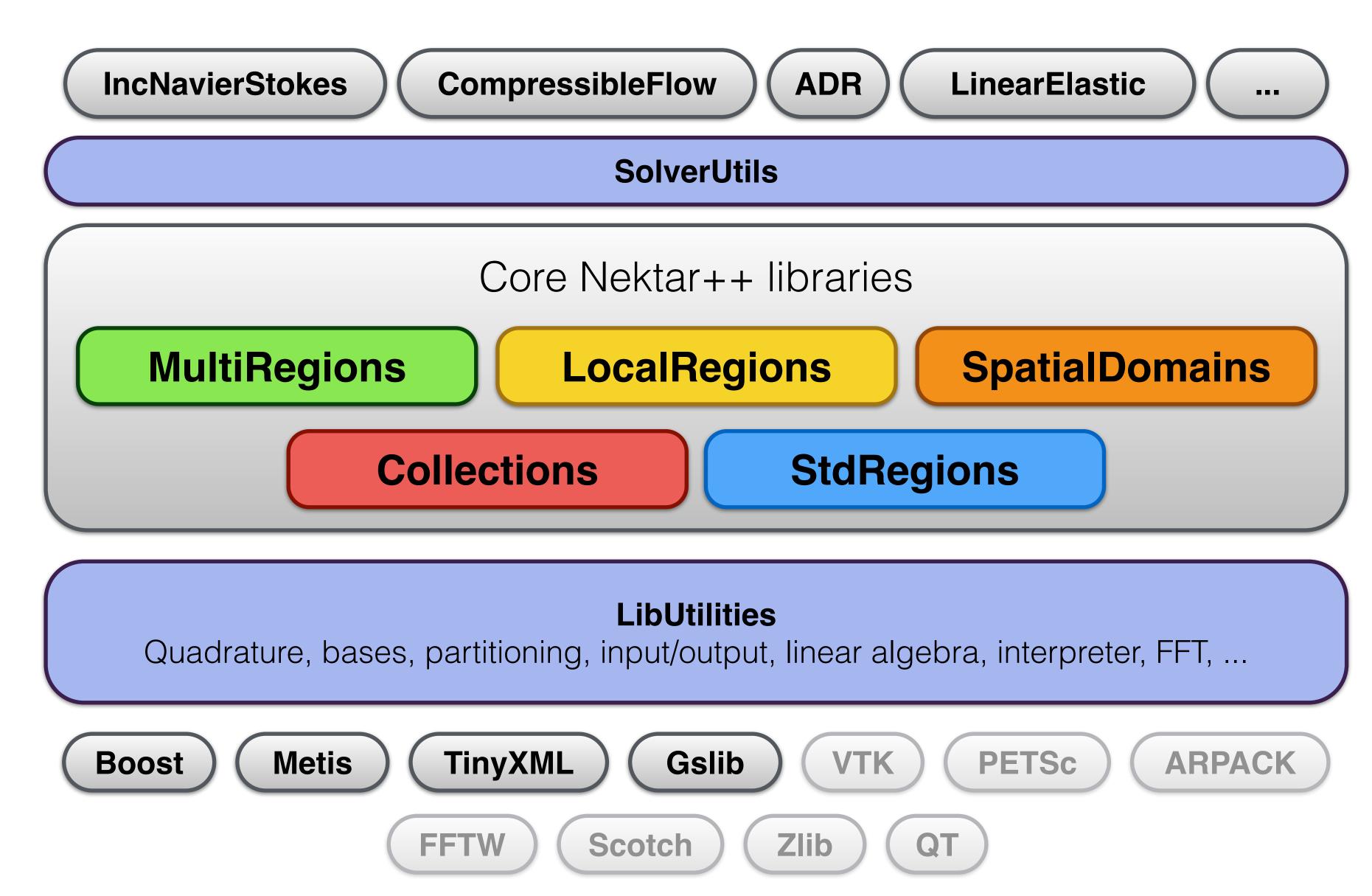


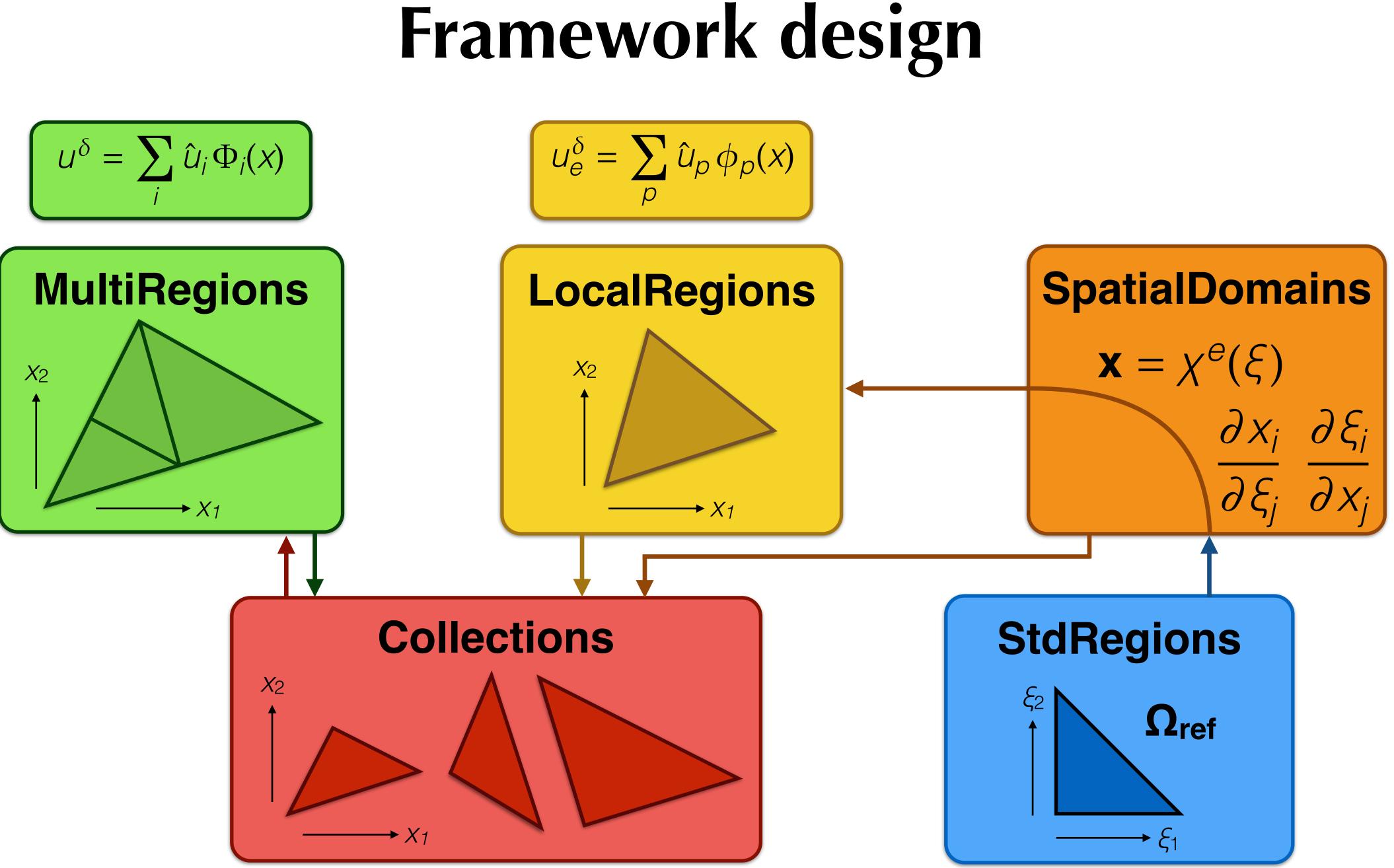






Framework design





#include <LibUtilities/BasicUtils/SessionReader.h> #include <SpatialDomains/MeshGraph.h>

session = SessionReader::CreateInstance(argc, argv); = SpatialDomains::Read(session); mesh cout << mesh->GetMeshDimension() << endl;</pre>

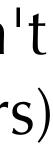
from NekPy.LibUtilities import SessionReader from NekPy.SpatialDomains import MeshGraph

session = SessionReader.CreateInstance(sys.argv) = MeshGraph.Read(session) mesh print(mesh.GetMeshDimension())

Python

Coming in v5: Python interface

- Python a great 'glue' language for different software packages
- Also a good teaching aid
- Automated bindings really don't work for big codes (at least ours)
- Use boost::python, good support for inheritance, shared pointers



Quick demo: mesh visualisation

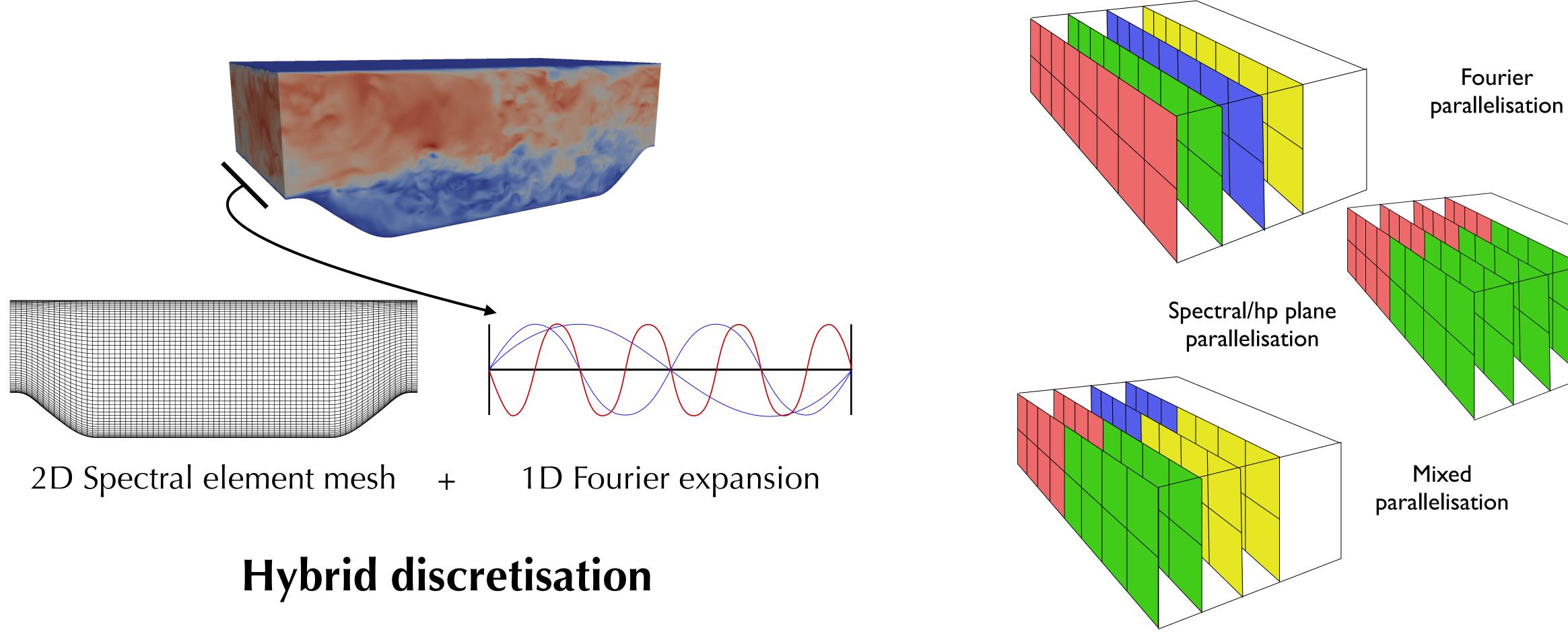
- interop to visualise
- Demo of Nektar++ wrappers in a modern OpenGL 4.2 (shaders) in ~1k lines of code.

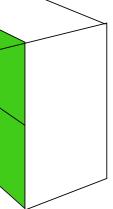
• Curved mesh visualisation is a challenging problem at present; stopgap is to create many samples/subdivisions and use existing linear methods.

• Want to evaluate isoparametric mapping at lots of points within reference element: trivially parallelisable so could use GPU for calculation, OpenGL

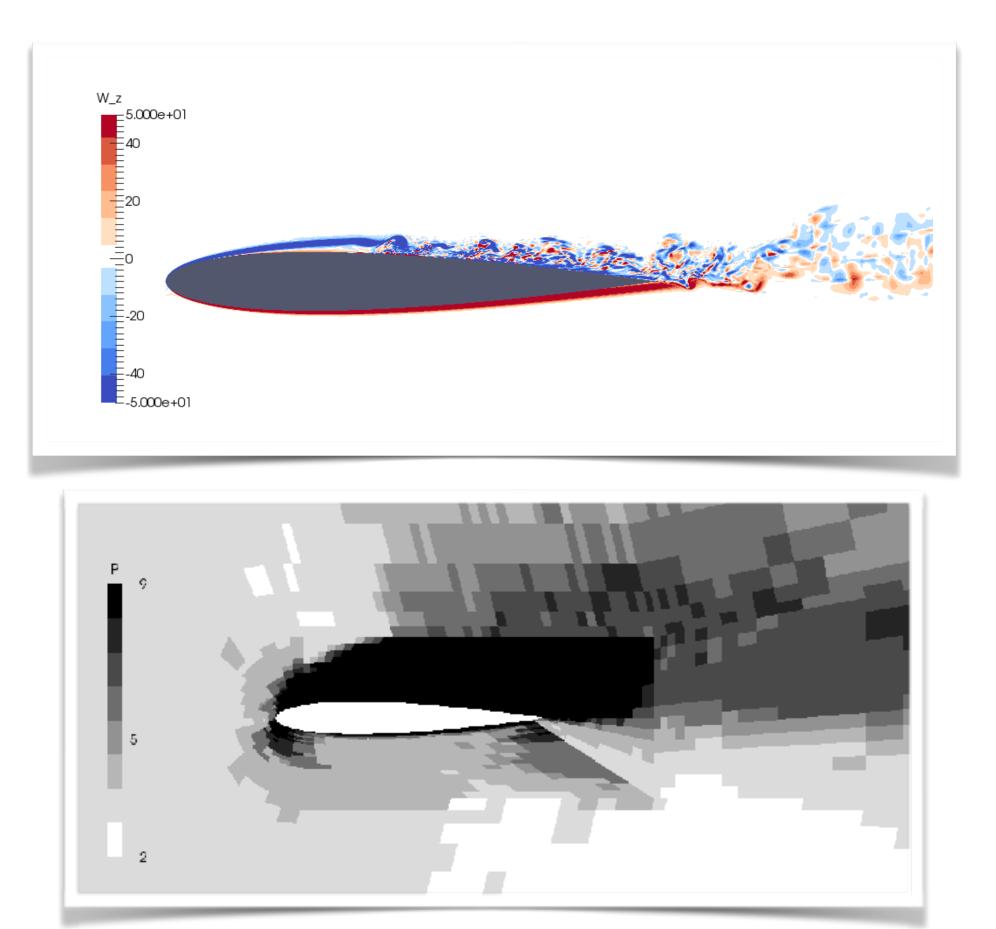
environment, using sympy to code generate basis functions & run on GPU

Other features



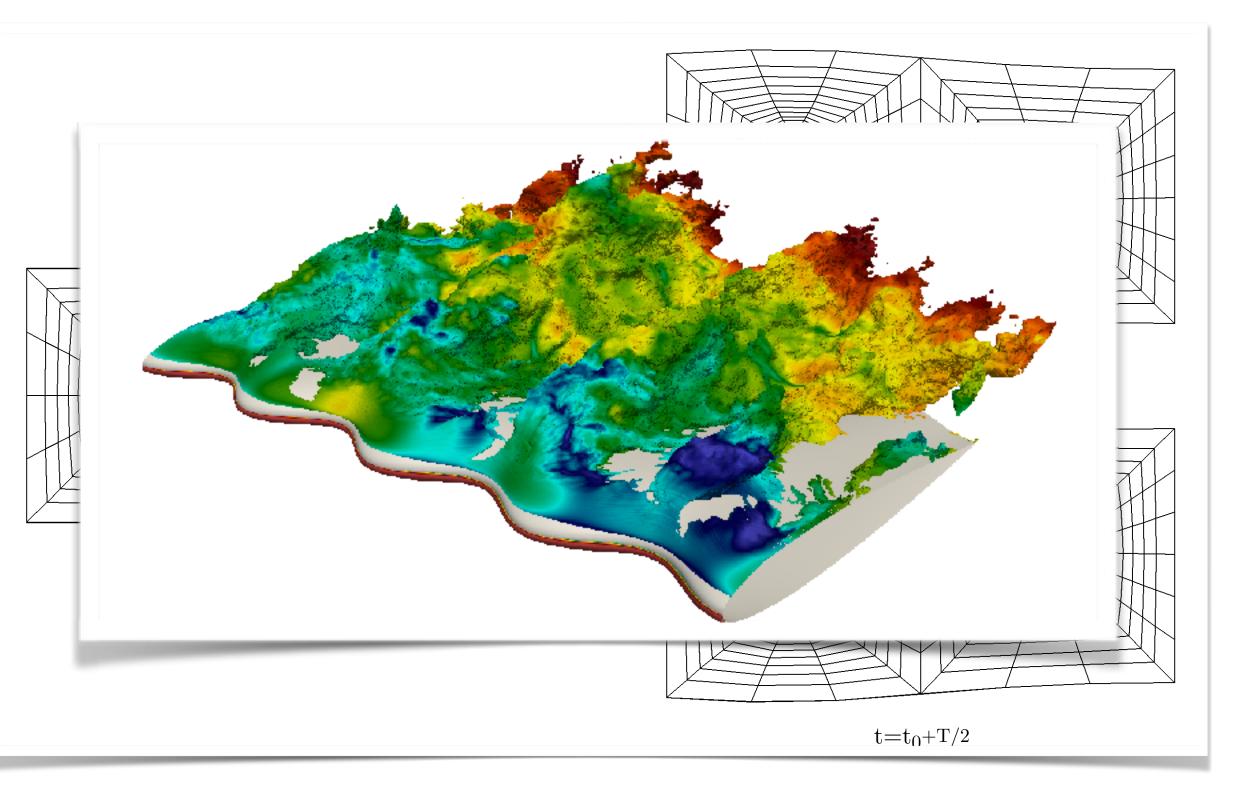


Other features



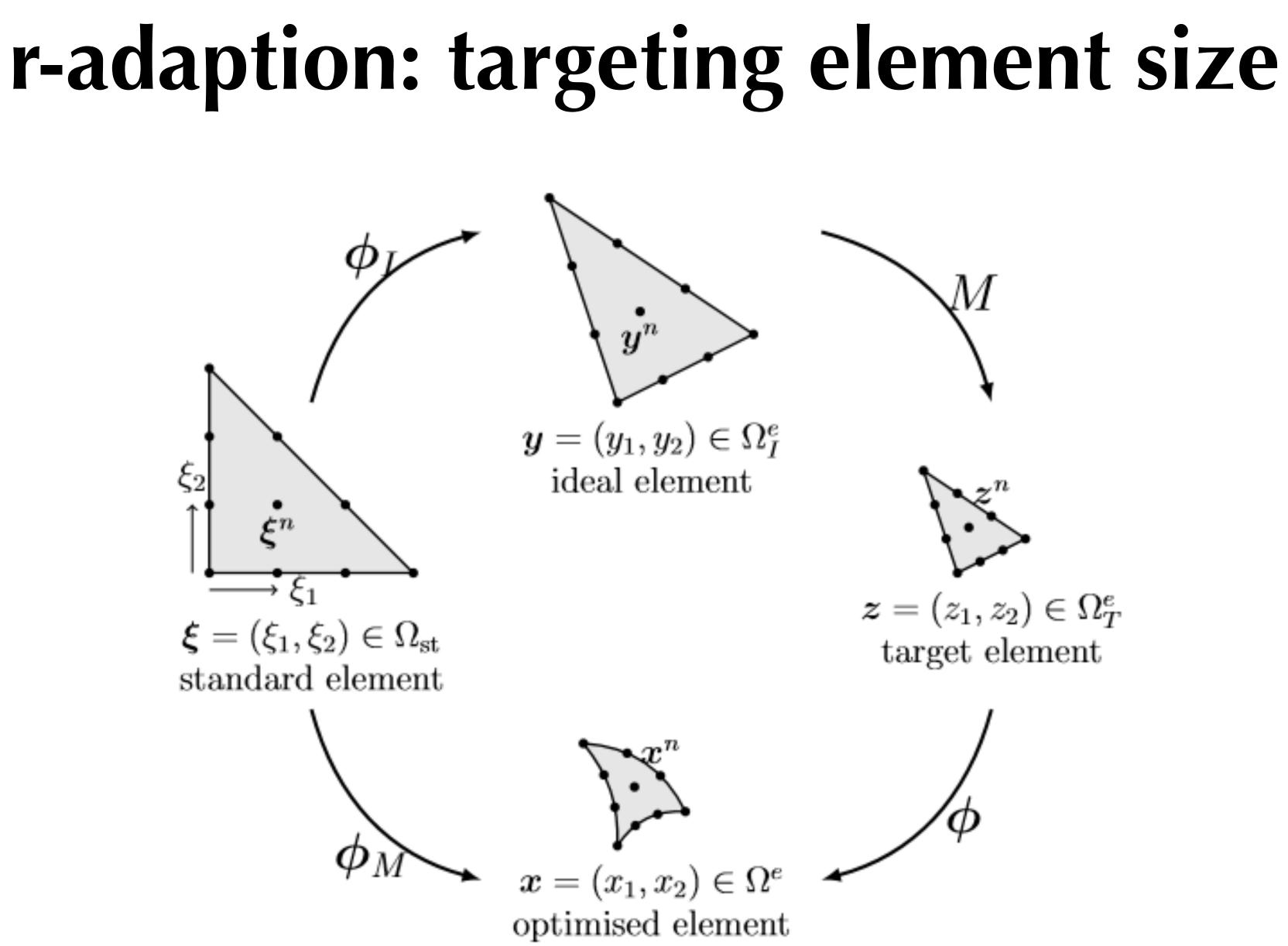
Spatially varying polynomial orders

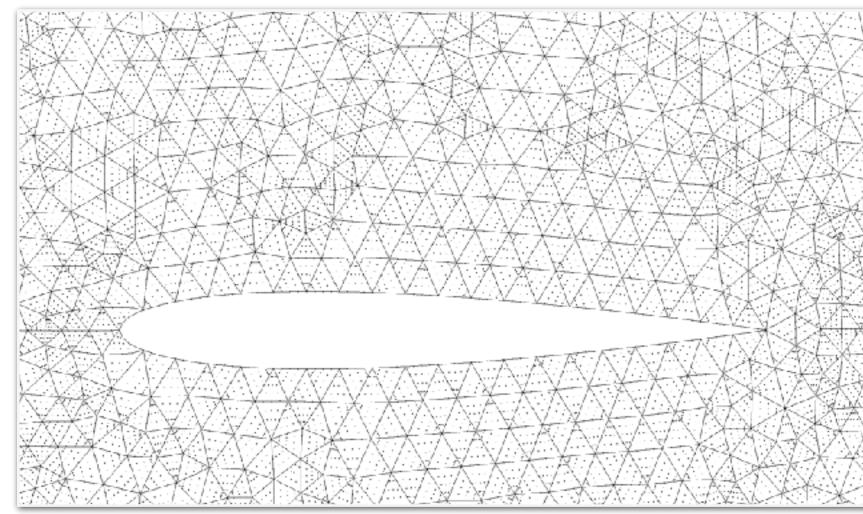
D. Moxey et al, Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2016, pp. 63–79



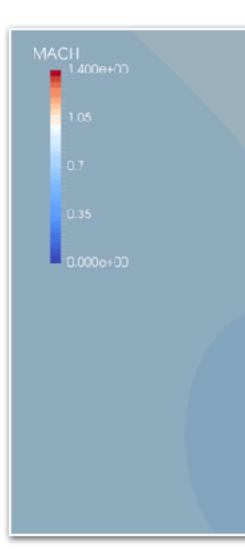
Coordinate mapping

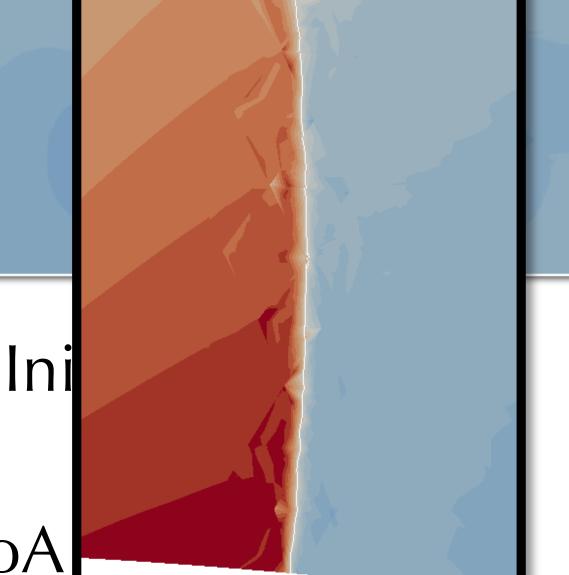
D. Serson, J. Meneghini, and S. Sherwin, J. Comp. Phys. **316**, 243-254 (2016)

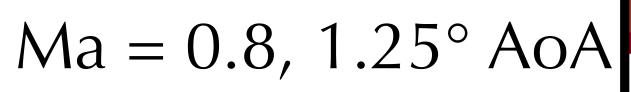


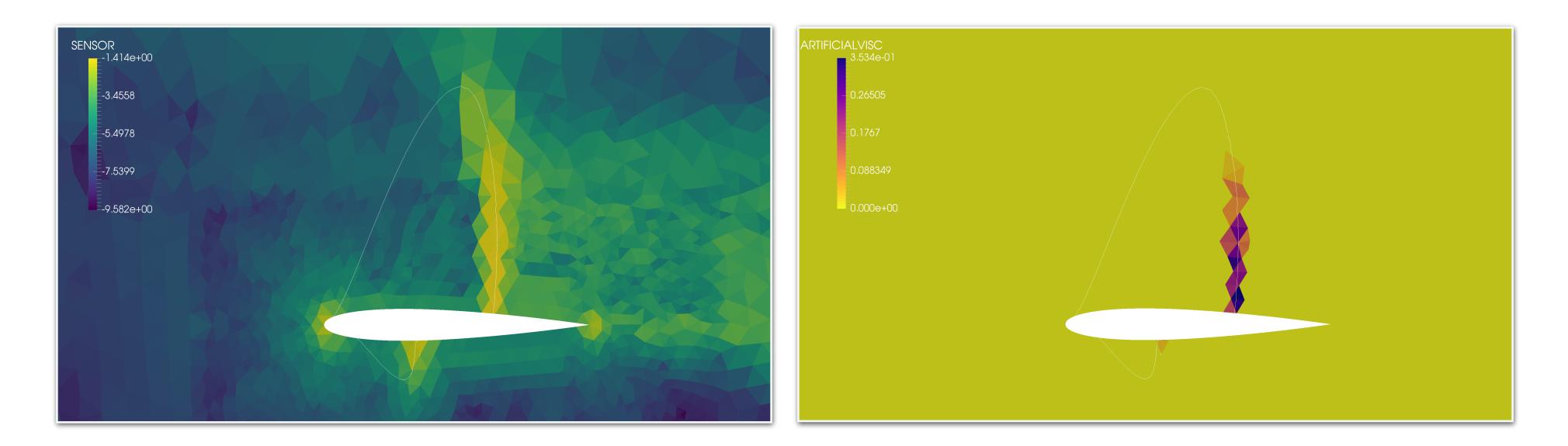


Starting mesh



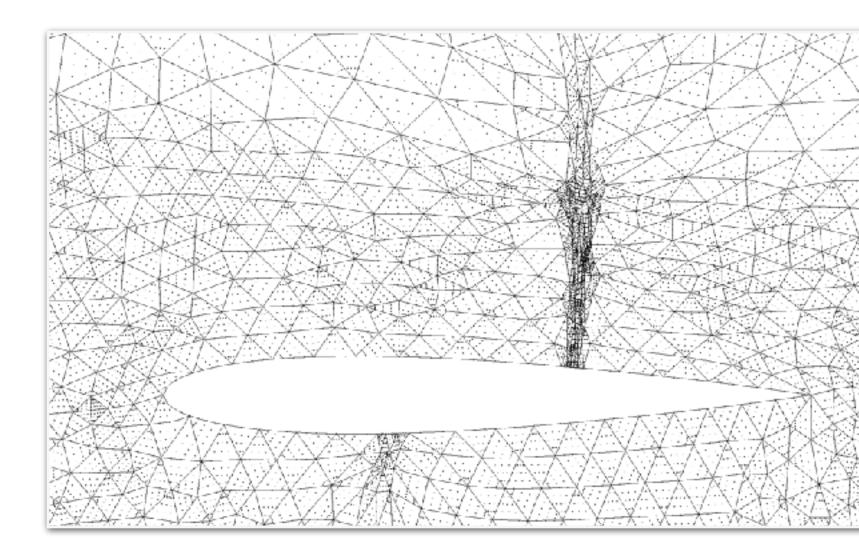




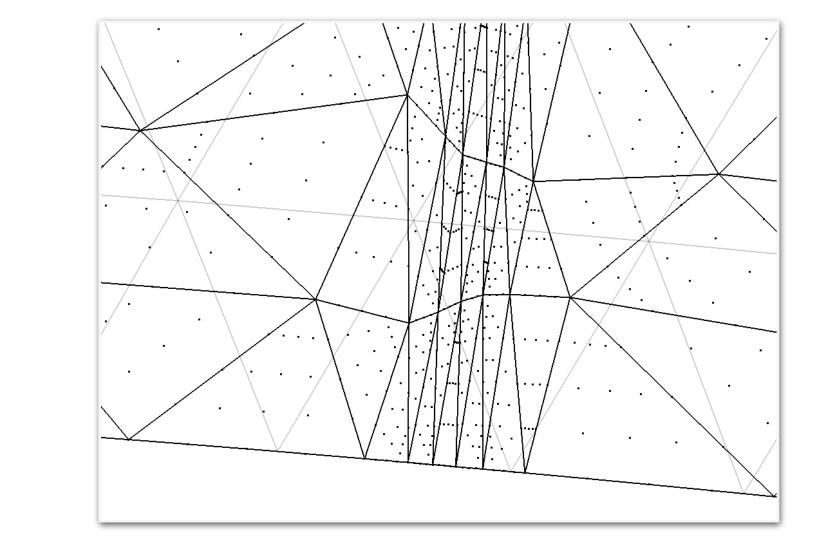


Discontinuity sensor

Artificial viscosity

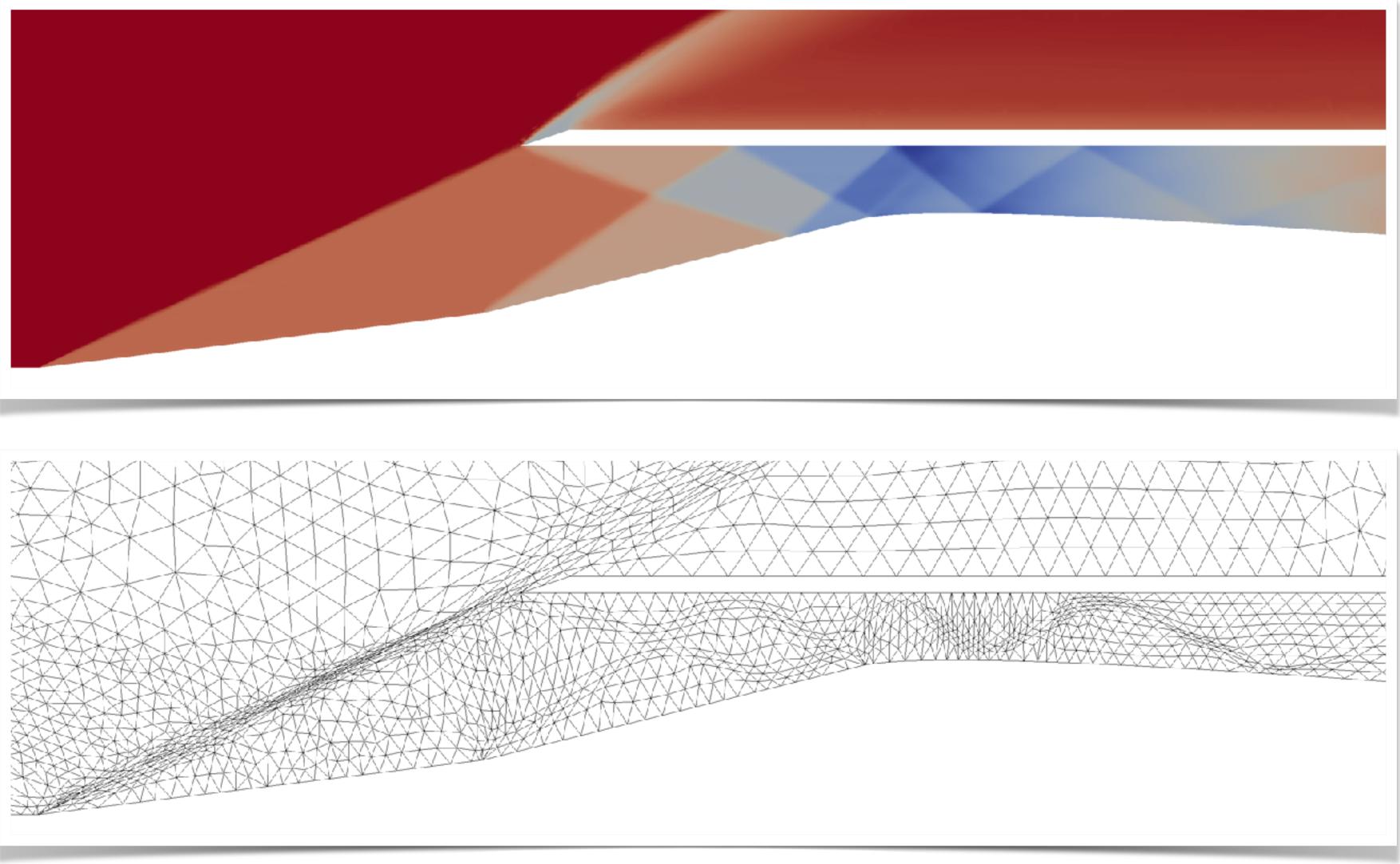


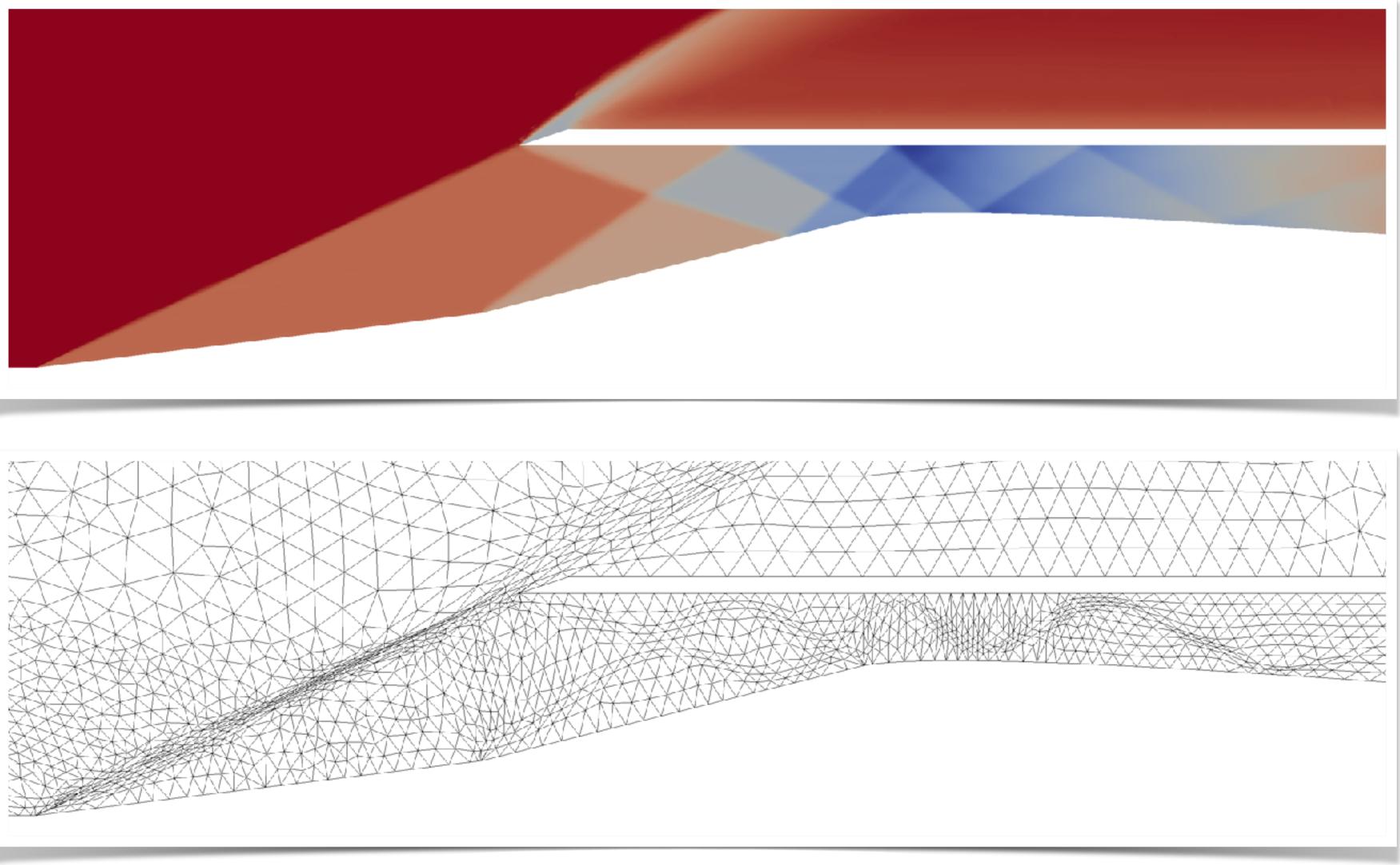
Calculate target size & do r-adaptation



Use of CAD sliding

Supersonic example

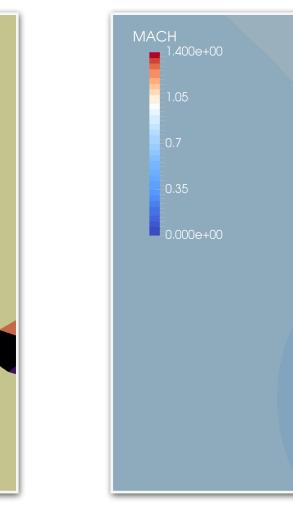


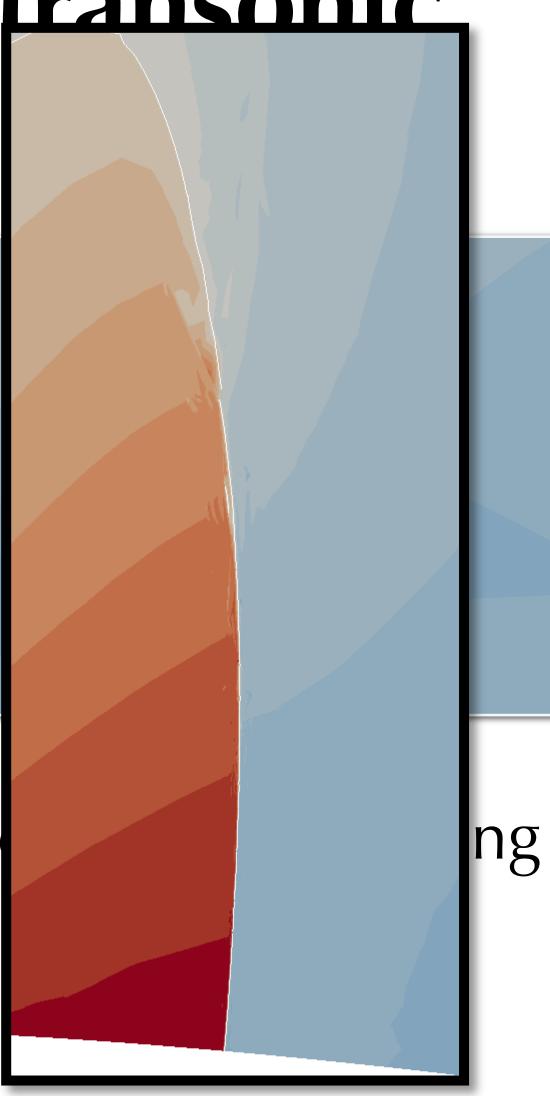


Supersonic intake Ma = 1.0



Translate to variable p





High-order fluid simulations

- out how to do something useful with it!
- **high-fidelity** simulations.
- Consider inherently **unsteady flows**: investigate use of **implicit LES**.
- not be prohibitive and should scale with high-order simulations.

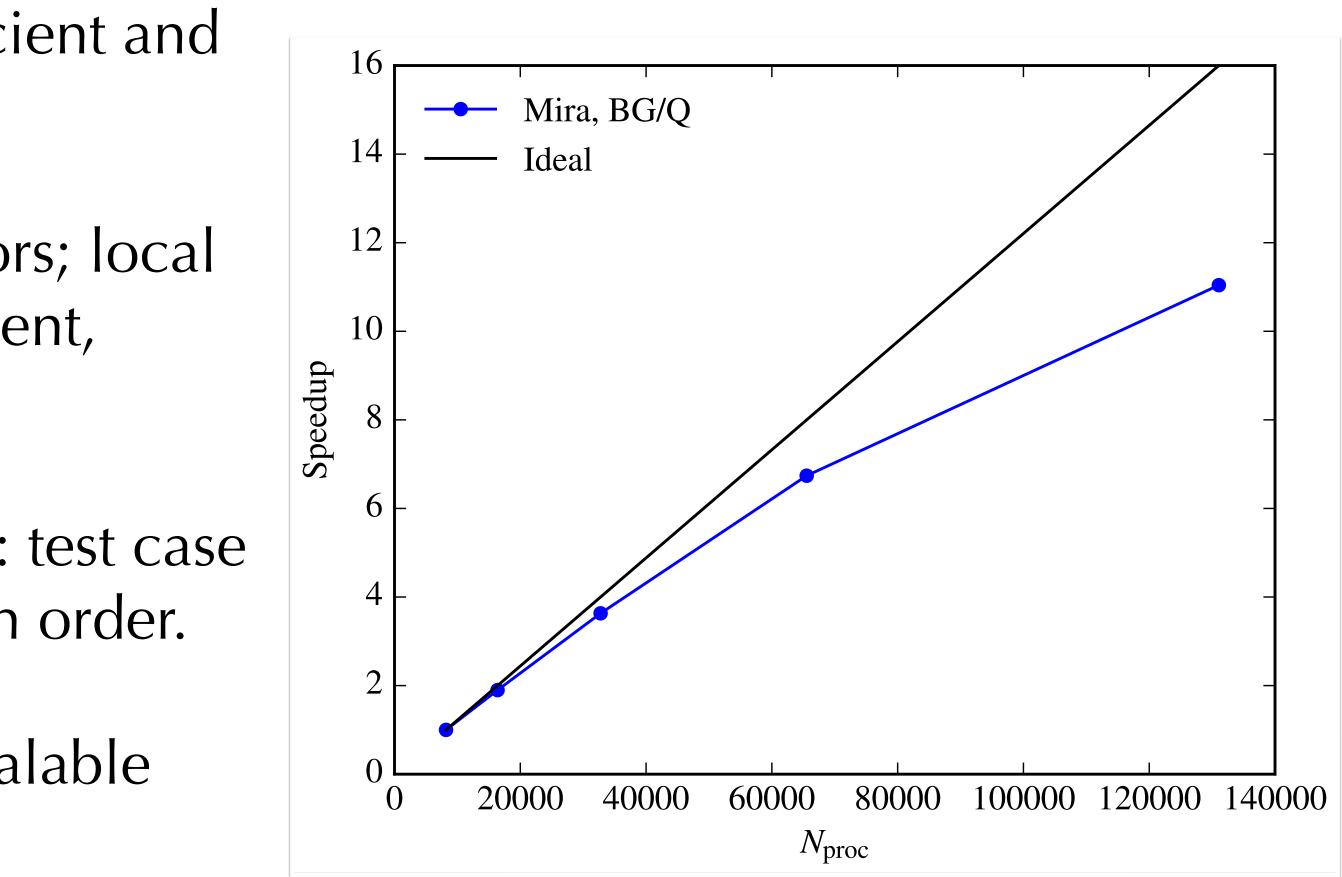
• Now that we have some kind of a route to a mesh, the next step is to work

• Particular focus on **incompressible flow** simulations and, in particular,

• Our message: still computationally expensive & requires HPC, but should

Solving at scale

- Relying on HPC means we need efficient and scalable linear solvers.
- Mesh is decomposed across processors; local dense matrices formed for each element, communication with gslib.
- Core of the code scales well on Mira: test case of a ~5m element F1 geometry at fifth order.
- However still some work to do on scalable preconditioning!



 $\partial_t \mathbf{u} + \mathbf{N}(\mathbf{u}) =$ $\nabla \cdot \mathbf{u} =$ Navier–Stokes:

Velocity correction scheme (aka stiffly stable): Orszag, Israeli, Deville (90), Karnaidakis Israeli, Orszag (1991), Guermond & Shen (2003)

Advection: $u^* = -\sum^J \alpha_q \mathbf{u}^{n-q}$ q=1

Pressure $\nabla^2 p^{n+1}$ Poisson:

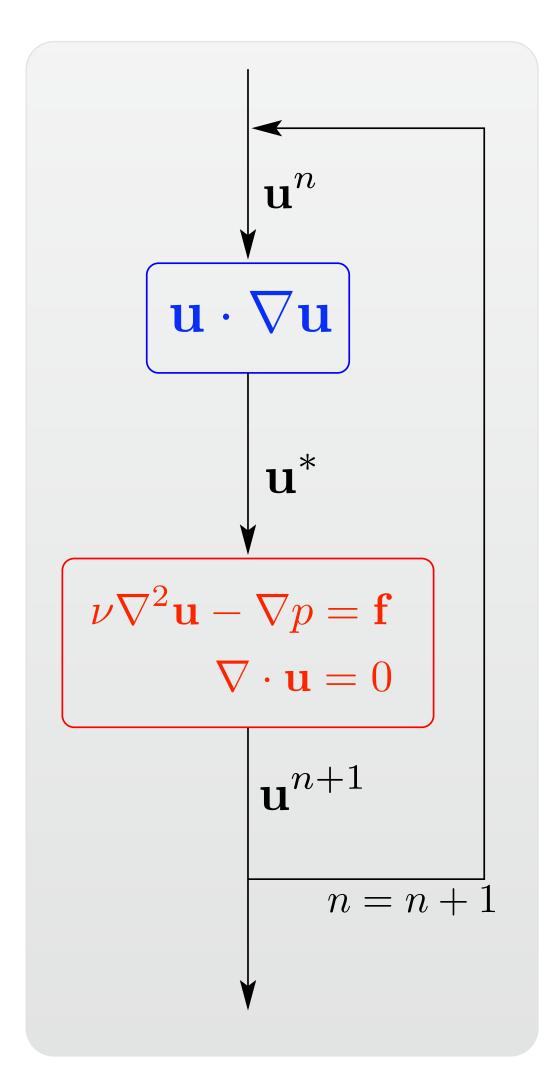
High-order splitting scheme

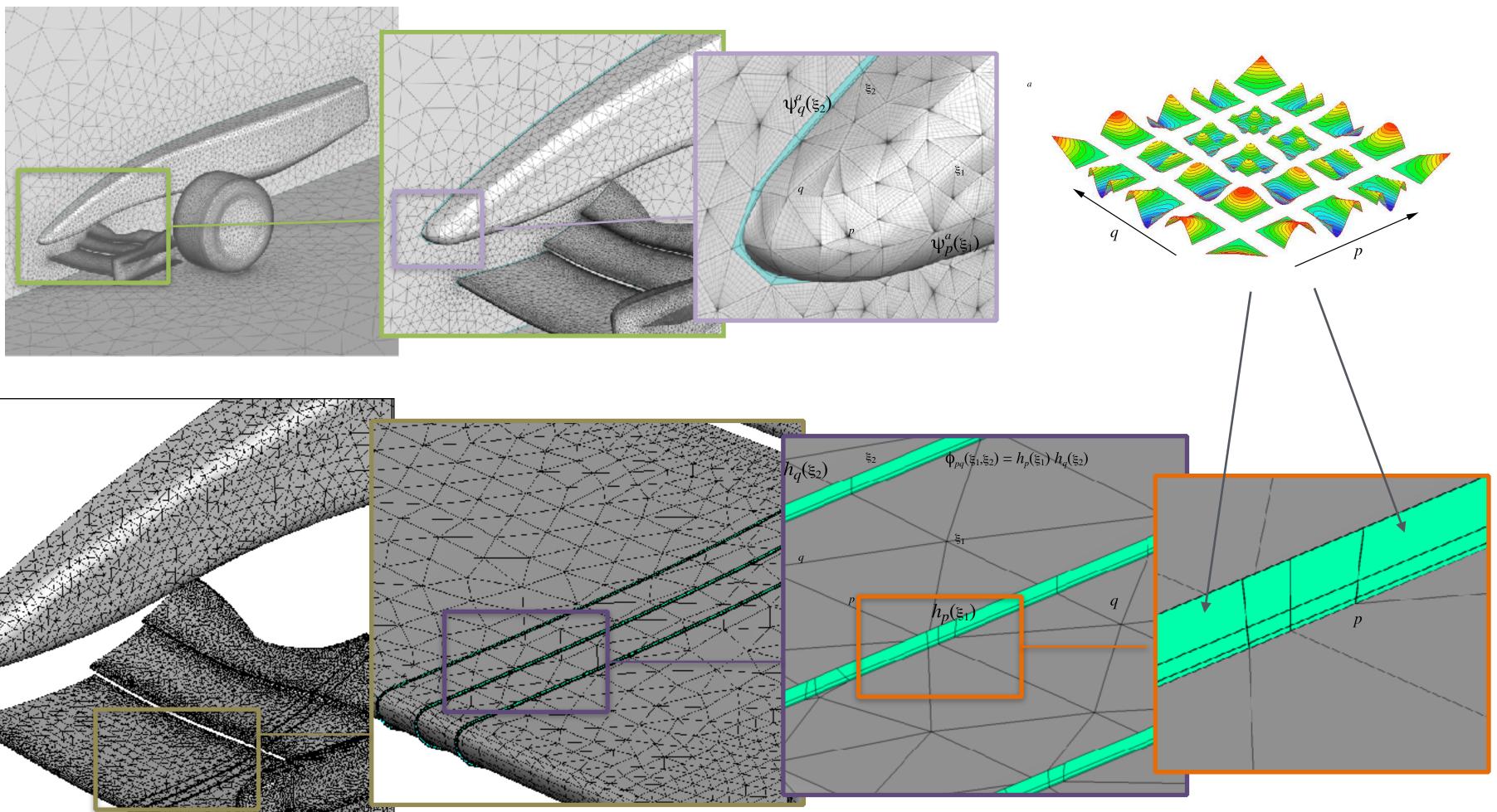
$$= -\nabla p + \nu \nabla^2 \mathbf{u}$$
$$= 0$$

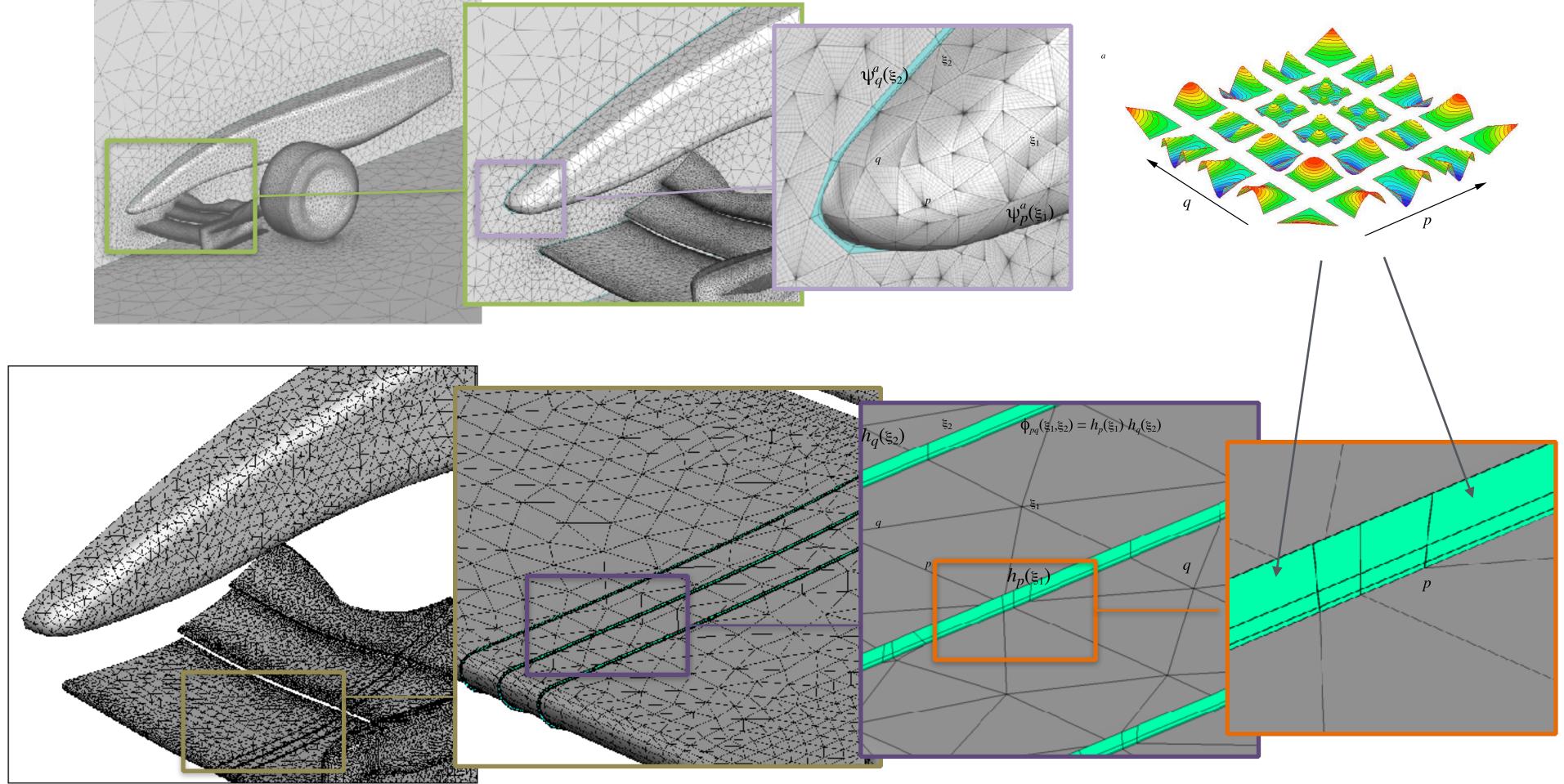
$$\Delta t \sum_{q=0}^{J-1} \beta_q \mathbf{N}(\mathbf{u}^{n-q})$$

$$=\frac{1}{\Delta t}\nabla\cdot\mathbf{u}^*$$

Helmholtz: $\nabla^2 \mathbf{u}^{n+1} - \frac{\alpha_0}{\nu \Delta t} \mathbf{u}^{n+1} = -\frac{\mathbf{u}^*}{\nu \Delta t} + \frac{1}{\nu} \nabla p^{n+1}$

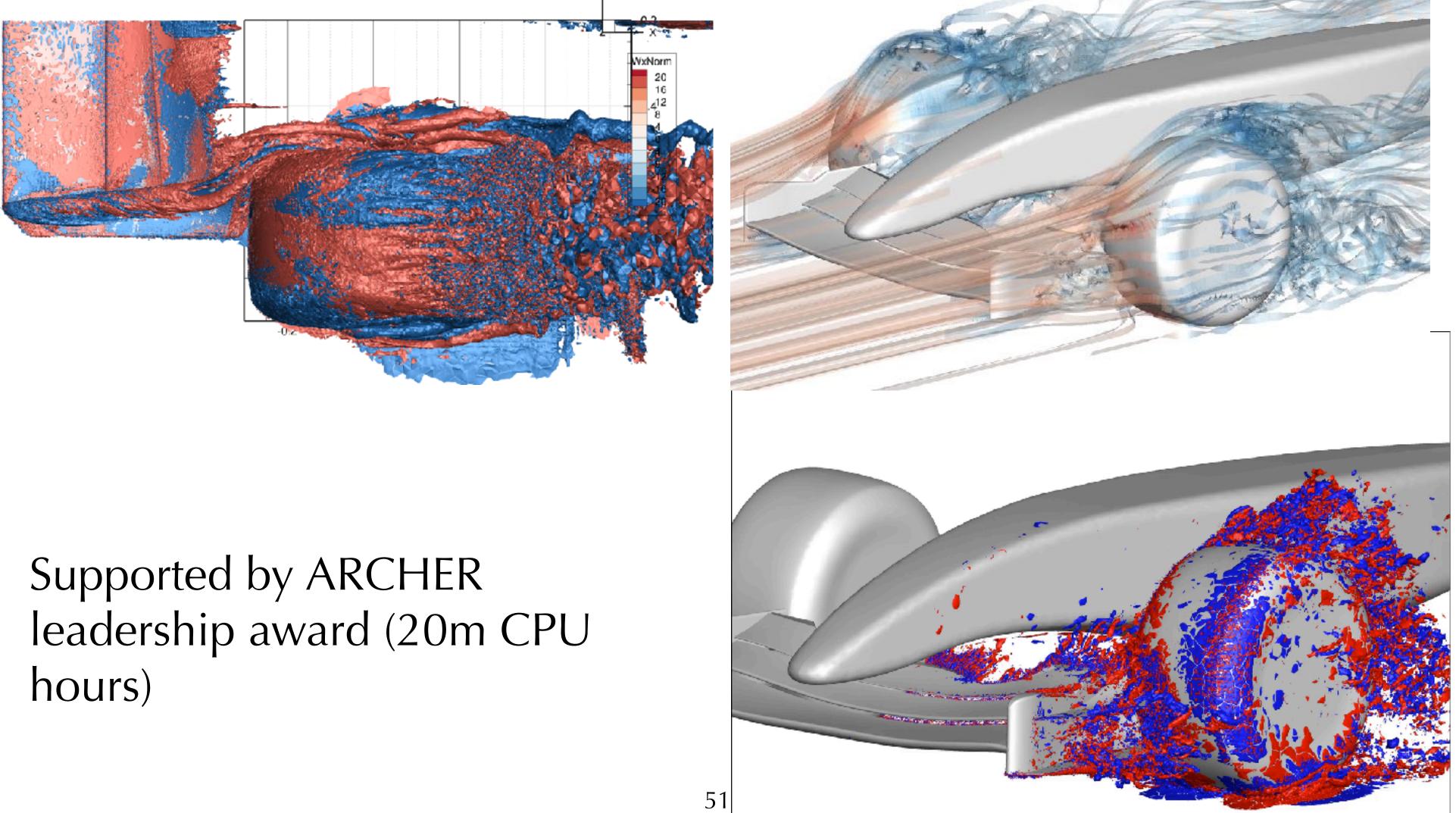






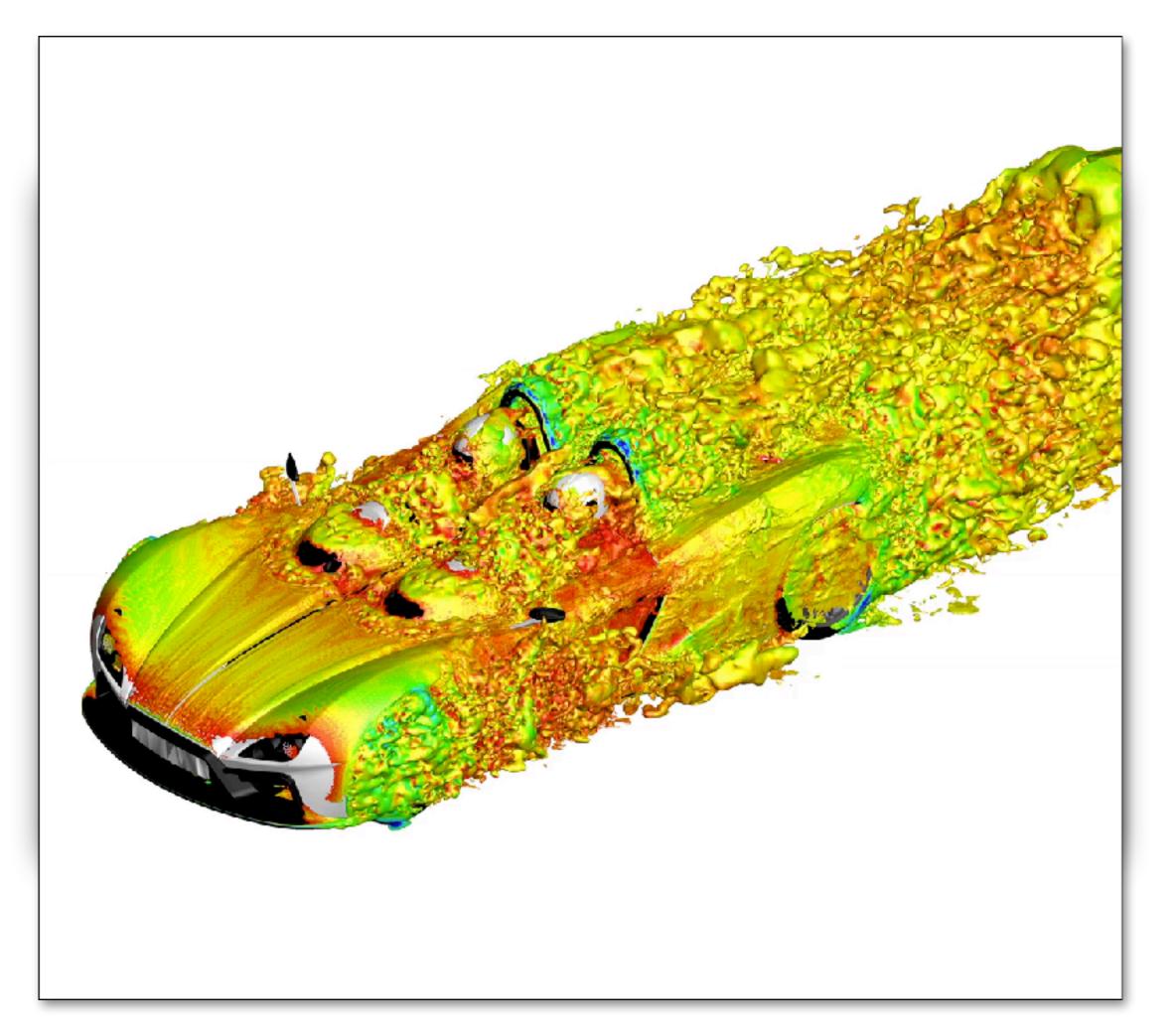
Meshing for F1 applications

More complex geometries

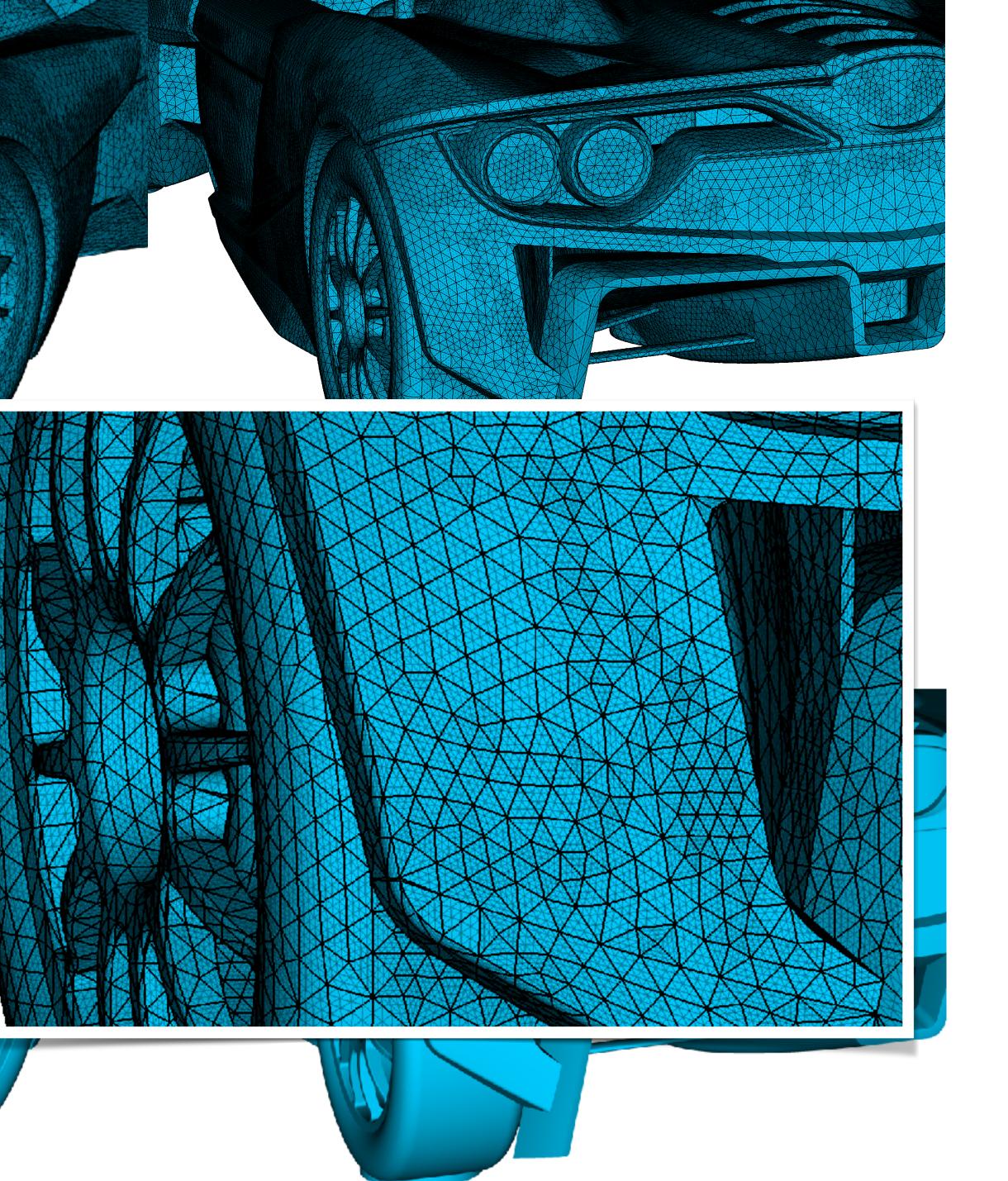


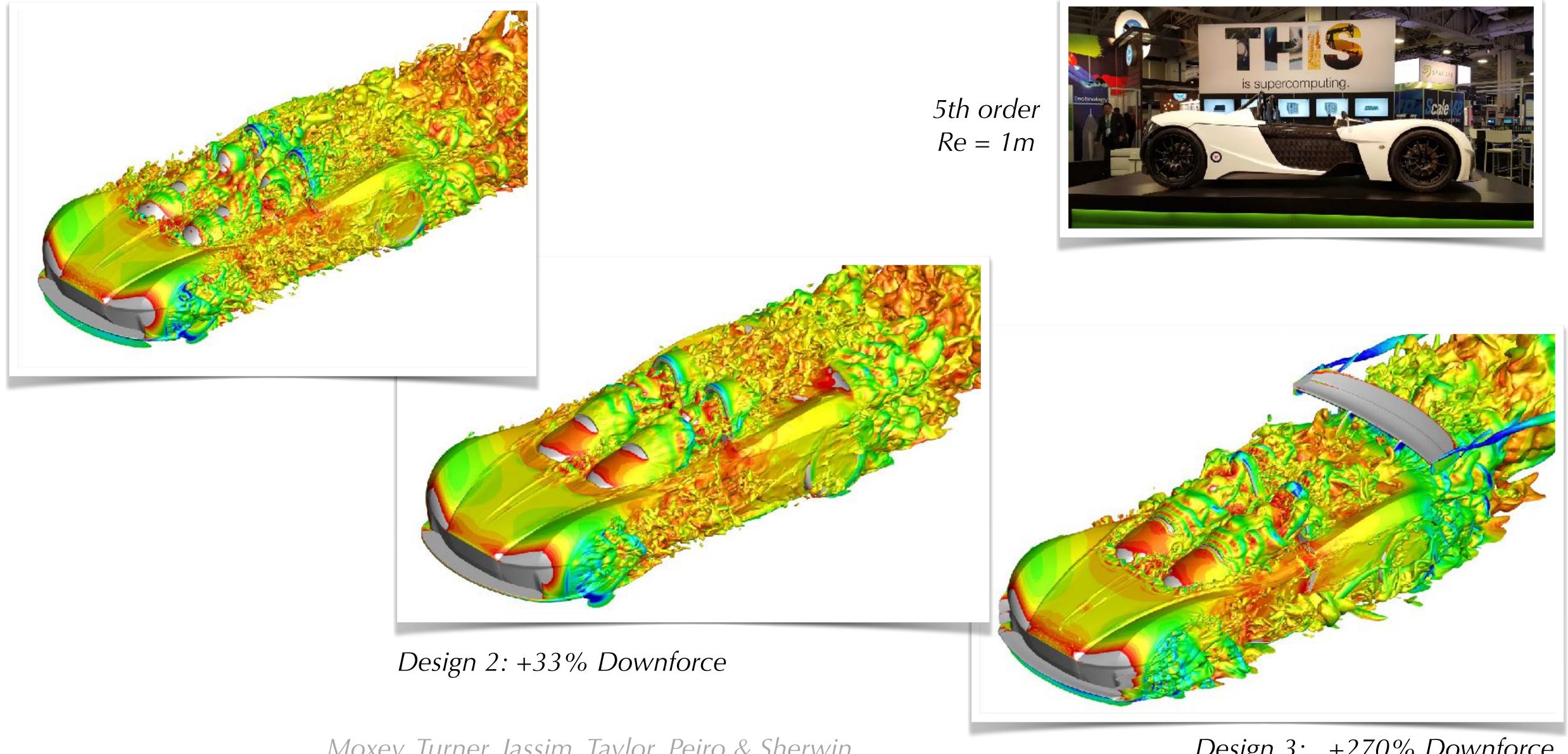
Elemental road racing car

- Most challenging case undertaken with Nektar++ to date (that I know of!)
- Re ~ 1m, around 1bn dof.
- Simulated at P = 5 with a matching high-order mesh and SVV-LES.
- Aim to identify aerodynamic issues and refine design.



Road car P = 4





Moxey, Turner, Jassim, Taylor, Peiro & Sherwin

Elemental road race car

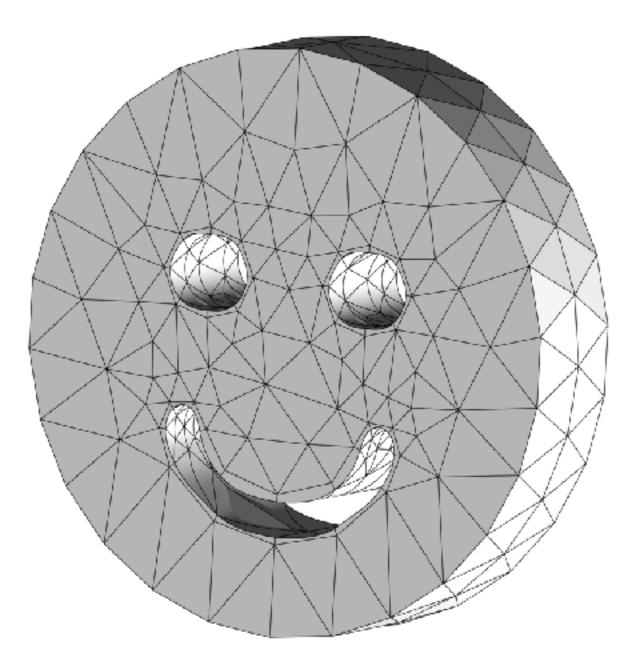
Design 3: +270% Downforce

Summary

- flow problems and succeed!
- engineering/physics.
- But... there is still a way to go yet!
 - Meshing for 3D geometries is a specialist skill.
 - Robustness still requires more analysis.

• We can certainly spectral/hp element techniques to challenging industrial

• Accurate, transient flow modelling is an **enabling technology** for high-end



https://davidmoxey.uk/ @davidmoxey

d.moxey@exeter.ac.uk

www.nektar.info

Thanks for listening!