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Motivation

What are high order methods and why are they useful?
Nektar++: a spectral/hp element framework
Challenges (and some solutions!)

Applications
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Want to accurately model difficult features:
» strongly separated flows

e feature tracking and prediction

* vortex interaction

Increasing desire for high-fidelity
simulation in high-end engineering
applications.

Move towards methods and techniques for making LES affordable
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What is a spectral/hp element?
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Why use a high-order method?
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Higher-order expansions

Extend traditional FEM by adding
higher order polynomials of
degree P within each element.

Traditional linear element has 3
degrees of freedom per element
(each vertex).

High-order has (P+1)(P+2)/2 at a
given order P.

Key defining feature of spectral/hp:
tensor product basis.



Spectral/hp element formulation
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Why use a high-order method?
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So why doesn’t everyone use high-order?

Stuff I'll discuss today:

* Pre-processing (mesh generation), particularly for complex geometries.
» Efficient linear algebra techniques & operator implementations.
 Implementation effort and difficulties.

Other stuftt:

» Post-processing and visualisation, stability and robustness, preconditioning...
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Challenge 1: high-order mesh generation

Complex geometries

look like this Not like this



High-order mesh generation

» Good quality meshes are essential to triangulation
finite element and finite volume

simulations.

* You can have a very fancy solver, but if
you can’t mesh your geometry then
you can’t run your simulation!

* At high orders we have an additional
headache, as we must curve the '\\
elements to fit the geometry.

don’t lie on the surface!
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High-order mesh generation

—————
add curvature
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High-order mesh generation

Curving coarse meshes leads to invalid elements
Most existing mesh generation packages cannot deal with this
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High-order technologies

Isoparametric splitting of high-order boundary layers

Moxey et al., Comp. Meth. Appl. Mech. Eng 283 pp. 636-650 (2015)



Straight-sided mesh . . .
Optimisation

‘A;:v::} ] Deformed mesh
‘ \..» 4 . N\

Boundary
projection




Variational approach

= (V1,)2) €

1deal element

& = (&1,6) € Qy % /
standard element

X = (x1,x2) € Q°
curvilinear element

Recast PDE as energy
minimisation and solve

min & (¢) = min WV o) dy
¢ ¢ 0,

Different W give PDE and
optimisation methods in a
single framework

M. Turner, J. Peiro, D. Moxey, Curvilinear mesh generation using a variational
framework, Computer Aided Design 103 73-91 (2018)



* Non-linear elasticity: W =

Choice of functional

F=Vo J=detF

1
- Linear elasticity: W=—-(nJ)*+uE:E; E= §(FtF — 1)

A
(F:F—-3)—pulnJH 2(1I1J)2

NI N

e Winslow: W =J1 (F : F)

* Distortion: W = %\J|_d/2(F : F)
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Benefits

Multi-core parallelisation
relaxation optimisation approach

CAD sliding

J

.
Untangles meshes
using Jacobian regularisation

J




Example: DLR F6 e
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Speeding up optimisation

Meshing usually accomplished on a single workstation, generally repeated
as part of many design iterations.

Optimisation process is resource intensive, but GPUs have lots of compute
density.

Can we leverage parallelism of the method effectively on a GPU?

How do we do this in a code-friendly way?
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Node colouring

21

For each node solve local
minimisation problem

Calculate functional + gradients
analytically

Uses multi-level threading to
exploit GPU hierarchy: use
Kokkos

lterate until global functional
residual is small



Results
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Reasonably consistent runtimes
per DoF across polynomial orders
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Challenge 2: efficient implementation

Today’s computational hardware: lots of FLOPS available, but really hard
to use them.

Algorithms will only use hardware effectively if they are arithmetically
intense: i.e. high ratio of FLOPS per byte of memory transfer.

One of the reasons that current CFD codes don’t often make best use of
hardware on offer.

High-order has potential in this area through matrix-free formulations.
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Implementation choices
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Unstructured elements

P5 triangle, Fekete points

 Typically unstructured elements
make use of Lagrange basis
functions (although not always).

» Combine this with a suitable set
of quadrature (cubature) points:

no tensor-products structure.

» However, spectral/hp does have a
tensor product structure!
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Sum-factorisation

Key to performance at high polynomial orders: complexity O(P2d) to O(Pd+1)!

P Q L
Z Z ﬁpq¢p(5li)¢q(§2j) — 2 ¢p(§1i)
p=0

p=0 g=0

Q
2 ﬁpq¢q(§2j>

q=0 ] \

store this

This works in essentially the same way for more complex indexing:

P Q7 P Q—p
YD i DB E) = D BEED | Y, gl N
p=0 g=0 p=0 g=0

store this
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Data layout

Natural to consider data laid out element by element

degrees of freedom =—

elements




Data layout

Exploit vectorisation by grouping DoFs by vector width

degrees of freedom =—

elements




Data layout

elements

» Operations occur over groups of
elements of size of vector width.

» Use C++ data type that encodes
vector operations (common strategy)

basis functions

T

256-bit AVX2

'
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GFLOPS

Roofline results

Peak FLOPS, 2.0 GHz with FMA /AVX2

without vectorisation
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Arithmetic intensity
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Arithmetic intensity

128 256

3D: Hexahedra, prisms, tetrahedra

Use of ~50-70% peak FLOPS for regular elements



Challenge 3: implementation effort

* High-order methods have potential to bring some nice numerical and
computational benefits to bear on complex problems.

 Offer high(er) fidelity at equivalent or lower costs, as they have good
implementation characteristics.

* However, one of the main barriers to using high-order methods is that they
are difficult to implement.
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Nektar++
¢ spectral/hp element framework

AY/
VA




Nektar++
¢ spectral/hp element framework

AY;
VA

Nektar++ is an open source framework for high-order methods.

Although fluids is a key application area, we try to make it easier to use
these methods in many areas, not just fluids.

C++ API, with ambitions to bridge current and future hardware diversity
(e.g. many-core processors, GPUs).

Modern development practices with continuous integration, git, etc.
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ome application areas

www.nektar.info
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Framework design

IncNavierStokes CompressibleFlow LinearElastic @
SolverUtils

Core Nektar++ libraries

MultiRegions LocalRegions SpatialDomains

LibUtilities
Quadrature, bases, partitioning, input/output, linear algebra, interpreter, FFT, ...

FFTW Scotch Zlib QT




Framework design

D

LocalRegions




Coming in v5: Python interface

#1include <LibUtilities/BasicUtils/SessionReader.h>

#include <SpatialDomains/MeshGraph.h>

session
mesh

SessionReader: :Createlnstance(argc, argv);
SpatialDomains: :Read(session);

cout << mesh->GetMeshDimension() << endl;

~

C++

from NekPy.LibUtilities import SessionReader
from NekPy.SpatialDomains import MeshGraph

sess1ion Sess1ion
mesh = MeshGra
print(mesh.GetMes

Reader.Createlnstance(sys.argv)
rh.Read(sess1ion)

nDimension())

Python

Python a great ‘glue' language for
different software packages

Also a good teaching aid

Automated bindings really don't
work for big codes (at least ours)

Use boost::python, good support
for inheritance, shared pointers



Quick demo: mesh visualisation

 Curved mesh visualisation is a challenging problem at present; stopgap is
to create many samples/subdivisions and use existing linear methods.

» Want to evaluate isoparametric mapping at lots of points within reference
element: trivially parallelisable so could use GPU for calculation, OpenGL

interop to visualise

* Demo of Nektar++ wrappers in a modern OpenGL 4.2 (shaders)
environment, using sympy to code generate basis functions & run on GPU
in ~1k lines of code.
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Spectral/hp plane
parallelisation

Fourier
parallelisation

Mixed
parallelisation




Other features
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r-adaption: targeting element size

7Y
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§ = (51 §2) € Oy target element

standard element
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optimised element




transonic

Example: NACA 0012
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Example: NACA 0012 transonic
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Discontinuity sensor Artificial viscosity




1C

NACA 0012 transon

Example

Use of CAD sliding

Calculate target size
& do r-adaptation



Ic example

Superson

Supersonic intake

1.




Example: NACA 0012 fransons
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Translate to variable p

Improv



High-order fluid simulations

Now that we have some kind of a route to a mesh, the next step is to work
out how to do something useful with it!

Particular focus on incompressible flow simulations and, in particular,
high-fidelity simulations.

Consider inherently unsteady flows: investigate use of implicit LES.

Our message: still computationally expensive & requires HPC, but should
not be prohibitive and should scale with high-order simulations.
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Solving at scale

Relying on HPC means we need efficient and

16 . . . . . |

scalable linear solvers. —e— Mira, BG/Q
14F —— 1deal T
Mesh is decomposed across processors; local 12 ‘
dense matrices formed for each element, 10} —
. . . , o,
communication with gslib. 2 sl _
&
6 _
Core of the code scales well on Mira: test case
: 41 |
of a ~5m element F1 geometry at fifth order.
2+ |
However still some work to do on scalable 0

.. . 0 20000 40000 60000 80000 100000 120000 140000
preconditioning! Nproc
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High-order splitting scheme

Ou+ N(u) = —Vp +vV-u
V-u=J(

Navier—Stokes:

Velocity correction scheme (aka stiffly stable):
Orszag, Israeli, Deville (90), Karnaidakis Israeli, Orszag (1991), Guermond & Shen (2003)

J J—1
Advection: u* = — Z agu” " — At Z BgN (™)
q=1 q=0

Pressure 2 n4+1 1 %
Poisson: VP - Atv “

o) u” 1
Helmholtz: VZu™'! Lyt = -~V
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More complex geometries
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Elemental road racing car

Most challenging case undertaken with
Nektar++ to date (that | know of!)

Re ~ Tm, around 1bn dof.

Simulated at P = 5 with a matching
high-order mesh and SVV-LES.

Aim to identify aerodynamic issues and
refine design.

52



Road car

P =4




Flemental road race car
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Design 2: +33% Downforce

+270% Downforce

Design 3:

Moxey, Turner, Jassim, Taylor, Peiro & Sherwin



Summary

* We can certainly spectral/hp element techniques to challenging industrial
flow problems and succeed!

 Accurate, transient flow modelling is an enabling technology for high-end
engineering/physics.

» But... there is still a way to go yet!
- Meshing for 3D geometries is a specialist skill.

- Robustness still requires more analysis.
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Thanks for listening!

https://davidmoxey.uk/ @davidmoxey

d.moxey@exeter.ac.uk

www.nektar.info
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