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Lombard, Moxey et al., AIAA J (2016)

Increasing desire for high-fidelity 
simulation in high-end engineering 
applications.

Want to accurately model difficult features: 
• strongly separated flows 
• feature tracking and prediction 
• vortex interaction

Move towards methods and techniques for making LES affordable



What is a spectral/hp element?
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Why use a high-order method?



Higher-order expansions

• Extend traditional FEM by adding 
higher order polynomials of 
degree P within each element. 

• Traditional linear element has 3 
degrees of freedom per element 
(each vertex). 

• High-order has (P+1)(P+2)/2 at a 
given order P. 

• Key defining feature of spectral/hp: 
tensor product basis.
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Spectral/hp element methods
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Spectral/hp element formulation
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⌘ = (⌘1, ⌘2) 2 [�1, 1]2

collapsed element
⇠ = (⇠1, ⇠2) 2 ⌦tri

st

standard element
x = (x1, x2) 2 ⌦e

curvilinear element

Fig. 1. Illustration of the three coordinate systems used in the representation of a high-order
triangle. A representative equally-spaced distribution of points is used to highlight the distribution
of quadrature points in the resulting high-order element.

ment a basis for a quadrilateral can be formed as �pq(⇠1, ⇠2) = �p(⇠1)�q(⇠2).224

Evaluation of an expansion at a given point can then be represented as225
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where the brackets denote the use of a temporary storage. At a given di-227

mension d, and considering a tensor product of quadrature or solution points228

that require evaluation, this technique thereby substantially reduces operator229

evaluations from O(P 2d) to O(P 2(d�1)).230

The relative performance of these approaches, specifically on modern hardware,231

has been considered previously in separate work (e.g. [21]), but only for elements that232

naturally lend themselves to a tensor-product basis: namely quadrilaterals and hexa-233

hedra. In this paper, however, we consider how e↵ectively this matrix-free evaluation234

can be applied in the context of unstructured elements to yield e�cient solvers for235

very complex geometries. To do this requires the selection of a basis permitting tensor236

product decomposition, which we discuss in the following section.237

2.2. Choice of polynomial basis. The selection of the polynomial basis on238

each element is a key consideration of this paper. Much of the prior work considered239

in Section 1 exploits the use of a tensor product of one-dimensional nodal Lagrange240

basis functions, where on the standard segment [�1, 1], these are defined as241

`p(⇠) =
Y

0qP
q 6=p

⇠ � ⇠̂q

⇠̂p � ⇠̂q
242

where ⇠̂q 2 [�1, 1] denote a set of P + 1 data points frequently chosen to align or243

collocate with an underlying quadrature (e.g. Gauss or Gauss-Lobatto points). Al-244

though this approach can readily be extended to higher dimensional tensor-product245

elements, a formulation of these basis functions inside hybrid or simplicial elements246

such as triangles and tetrahedra leads to a set of basis functions that lack the tensor247

product structure required to enable the use of sum factorisation. More details on248

this approach can be found in e.g. [16].249

To arrive at a tensor product formulation, we follow standard practice [18] and250

employ the use of a square-to-triangle Du↵y transformation [10] to define two inde-251

pendent coordinate directions over which to perform the decomposition (or otherwise252

This manuscript is for review purposes only.

collapsed 
coordinates

(η1, η2) ∈ [−1,1]2

6 D. MOXEY, R. AMICI AND R. M. KIRBY

⌘ = (⌘1, ⌘2) 2 [�1, 1]2

collapsed element
⇠ = (⇠1, ⇠2) 2 ⌦tri

st

standard element
x = (x1, x2) 2 ⌦e

curvilinear element

Fig. 1. Illustration of the three coordinate systems used in the representation of a high-order
triangle. A representative equally-spaced distribution of points is used to highlight the distribution
of quadrature points in the resulting high-order element.

ment a basis for a quadrilateral can be formed as �pq(⇠1, ⇠2) = �p(⇠1)�q(⇠2).224

Evaluation of an expansion at a given point can then be represented as225

u(⇠1, ⇠2) =
PX

p=0

PX

q=0
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Why use a high-order method?
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So why doesn’t everyone use high-order?

Stuff I’ll discuss today: 

• Pre-processing (mesh generation), particularly for complex geometries. 

• Efficient linear algebra techniques & operator implementations. 

• Implementation effort and difficulties. 

Other stuff: 

• Post-processing and visualisation, stability and robustness, preconditioning…
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Challenge 1: high-order mesh generation

Complex geometries 
look like this

Not like this



High-order mesh generation

• Good quality meshes are essential to 
finite element and finite volume 
simulations. 

• You can have a very fancy solver, but if 
you can’t mesh your geometry then 
you can’t run your simulation! 

• At high orders we have an additional 
headache, as we must curve the 
elements to fit the geometry.
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surface

triangulation

don’t lie on the surface!



High-order mesh generation
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surface surface

add curvature



High-order mesh generation
Curving coarse meshes leads to invalid elements 

Most existing mesh generation packages cannot deal with this



High-order technologies

Moxey et al., Comp. Meth. Appl. Mech. Eng 283 pp. 636-650 (2015)

Isoparametric splitting of high-order boundary layers



Straight-sided mesh

Boundary  
projection

Deformed mesh

Optimisation

Φ



Recast PDE as energy 
minimisation and solve

Variational approach

Different W give PDE and 
optimisation methods in a 

single framework

M. Turner, J. Peiró, D. Moxey, Curvilinear mesh generation using a variational 
framework, Computer Aided Design 103 73-91 (2018)
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Figure 1: Notation for mappings used throughout the paper: a triangular element is used for illustration purposes, but the notation is general and
applicable to other element types. On the left we map a standard (reference) element ⌦st onto the straight-sided element ⌦e

I through the mapping
�I : ⌦st ! ⌦e

I and onto the curvilinear element �e : ⌦st ! ⌦e. The deformation mapping � : ⌦e
I ! ⌦e is then defined through the composition

� = �e
M � ��1

I .

y 2 ⌦e
I . These mappings are constructed in an isoparametric fashion, so that the nodes ⇠n that define the Lagrange

basis functions on the standard element map to y
n under �I and x

n under �M . We note that other element types, such
as quadrilaterals in two dimensions and tetrahedra, triangular prisms, pyramids and hexahedra in three dimensions,
may use exactly the same definitions as above.

The energy functional is then defined as the integral

E(r�) =
Z

⌦I

W(r�) dy, (1)

where W depends on the deformation gradient tensor

r�(y) =
@�

@y
;

⇥r�(y)
⇤
i j =
@�i

@y j
,

and its determinant J = detr�, which we hereafter refer to as the Jacobian. In the following section we describe the
di↵erent forms of the energy that we investigate in this article.

2.1. Forms of the energy functional
This section outlines a key contribution of this work, where we show that many of the existing curvilinear mesh

generation methods can be unified in a variational setting through the definition of an energy functional.

2.1.1. Linear elasticity energy
A number of articles have examined the use of a linear elastic analogy in the context of high-order mesh genera-

tion [20, 21, 3]. This takes the form of an elliptic PDE

r · (� tr(E)I + µE) = � f
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Choice of functional
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µ

2
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• Linear elasticity: 

• Non-linear elasticity: 

• Winslow: 

• Distortion:
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Benefits

�0.5
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Figure 10: Cross-section of a semi-sphere case highlighting the sliding of CAD curves along the surface. The left-hand image shows the initial
mesh and the right-hand figure shows the optimised mesh. Note that the colour of the surface triangles is not related to mesh quality.

5.7. CAD sliding
Fig. 10 highlights the e↵ects of the CAD sliding outlined in section 5.7. In this example, we take a flat surface and

place a semi-sphere onto it. This generates an initial curved mesh, visualised on the left hand side, which possesses 8
invalid elements. Taking a closer look at the initial mesh, it is very clear that the surface mesh induces an invalidity
where the sphere meets the flat plane. The ability to slide the element edges along the flat plane and additionally the
surface of the sphere is therefore required in order to have any chance of generating a valid mesh. The optimised mesh
on the right-hand side shows how the deformation is incorporated into the surface edges, deforming them appropriately
in order to produce a valid and very high-quality mesh, as can be see from the quality metric.

5.8. Boeing reduced landing gear
In our final example, we show results for optimisation of another well-known complex geometric example: the

Boeing reduced landing gear. In this case, we have created a hybrid mesh containing a prismatic boundary layer, filled
with tetrahedra in the interior. The purpose of the prism layers is to capture the wall-normal flow physics, where very
large gradients of the flow velocities occur close to the surface. Since this region contains very high shear, the prismatic
elements should substantially decrease in thickness near the wall so that they become highly stretched relative to the
tangential surface direction. This poses a substantial challenge for curved boundary layer generation. If we apply
curvature to a standard linear boundary layer mesh, it is all but guaranteed for all but the most simple geometries that
there will be a large number of invalid elements. Given that there is very little space available to accommodate the
curvature of the boundary, correcting these boundary layer elements becomes very di�cult. Further, the number of
elements to optimise also increases substantially, thus increasing the computational cost of the method.

As has been noted in previous work it is far more practical and robust for high-order meshing to generate a single
‘macro’ isotropic prism at the geometric boundary, in which the curvature of the surface can be readily applied, and
then use a method of isoparametric splitting to produce the anisotropic elements [37]. Adopting this approach here,
we first generate a linear hybrid mesh combining tetrahedral elements and triangular prismatic ‘macro’ elements,
introduce the boundary curvature and then apply the variational optimisation to optimize the quality of the mesh. We
then finish the mesh by applying isoparametric splitting to obtain the desired boundary-layer thickness.

Fig. 11 shows the ‘macro’ mesh before and after optimisation, for which we have used the hyperelastic functional
since this has been shown to produce the highest quality meshes. We also show the final mesh created after the macro
layer has been split. For the purposes of clarity, the tetrahedra have been removed. Overall the figure shows that whilst
the initial configuration before optimisation is of a reasonable quality, there are a number of lower-quality elements
on the shoulders of the tyres. The quality in this area, as well as throughout the mesh generally, is then improved in
optimisation across all of the elements shown. The figure also show the quality of the prismatic layers after splitting,
where in general it can be seen that this approach produces a high quality mesh.
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CAD sliding
Multi-core parallelisation 

relaxation optimisation approach

Untangles meshes 
using Jacobian regularisation



Example: DLR F6 engine
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Speeding up optimisation

• Meshing usually accomplished on a single workstation, generally repeated 
as part of many design iterations. 

• Optimisation process is resource intensive, but GPUs have lots of compute 
density. 

• Can we leverage parallelism of the method effectively on a GPU? 

• How do we do this in a code-friendly way?
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Parallelisation strategy

Figure 4: Node colouring scheme for a domain of six triangular elements

Node colouring

21

• For each node solve local 
minimisation problem 

• Calculate functional + gradients 
analytically 

• Uses multi-level threading to 
exploit GPU hierarchy: use 
Kokkos 

• Iterate until global functional 
residual is small



Results

22

Example domain for performance tests

Figure 5: Four spheres in a box, meshed with tetrahedral elements,

Ne = 22k
Four spheres in a box, 33k 
tetrahedra, ~400k nodes 

at p = 5

Runtimes on di↵erent parallel architectures
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Challenge 2: efficient implementation

• Today’s computational hardware: lots of FLOPS available, but really hard 
to use them. 

• Algorithms will only use hardware effectively if they are arithmetically 
intense: i.e. high ratio of FLOPS per byte of memory transfer. 

• One of the reasons that current CFD codes don’t often make best use of 
hardware on offer. 

• High-order has potential in this area through matrix-free formulations.
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Implementation choices
Implementation strategies

=

Global Strategy

=

Local Strategy

=
Sum-factorisation

Increasing 
polynomial order

More 
localised 
memory 
access



Unstructured elements

• Typically unstructured elements 
make use of Lagrange basis 
functions (although not always). 

• Combine this with a suitable set 
of quadrature (cubature) points: 
no tensor-products structure. 

• However, spectral/hp does have a 
tensor product structure!

25

P5 triangle, Fekete points



Sum-factorisation

26

Key to performance at high polynomial orders: complexity O(P2d) to O(Pd+1)!
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Data layout

Natural to consider data laid out element by element

degrees of freedom

elements



Data layout

Exploit vectorisation by grouping DoFs by vector width

degrees of freedom

elements



Data layout

• Operations occur over groups of 
elements of size of vector width. 

• Use C++ data type that encodes 
vector operations (common strategy)
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Roofline results
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Challenge 3: implementation effort

• High-order methods have potential to bring some nice numerical and 
computational benefits to bear on complex problems. 

• Offer high(er) fidelity at equivalent or lower costs, as they have good 
implementation characteristics. 

• However, one of the main barriers to using high-order methods is that they 
are difficult to implement.
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Nektar++ 
spectral/hp element framework



Nektar++ 
spectral/hp element framework

• Nektar++ is an open source framework for high-order methods. 

• Although fluids is a key application area, we try to make it easier to use 
these methods in many areas, not just fluids. 

• C++ API, with ambitions to bridge current and future hardware diversity 
(e.g. many-core processors, GPUs). 

• Modern development practices with continuous integration, git, etc.
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Some application areas

(a) (b)

(c)

Figure 4: Examples of external aerodynamics problems solved using the CompressibleFlowSolver. (a) Flow over a cylinder at Re = 3, 900. (b) Euler simulation
over a NACA0012 aerofoil at Ma1 = 0.8. (c) Temperature of flow passing over a T106C low-pressure turbine blade at Re = 80, 000.

where U = [⇢, ⇢u, ⇢v, ⇢w, E]> is the vector of conserved vari-
ables in terms of density ⇢, velocity (u1, u2, u3) = (u, v,w), E is
the specific total energy, and

F(U) =

2
666666666666666664

⇢u ⇢v ⇢w
p + ⇢u2 ⇢uv ⇢uw
⇢uv ⇢v2 + p ⇢vw
⇢uw ⇢vw ⇢w2 + p

u(E + p) u(E + p) v(E + p)

3
777777777777777775

where p is the pressure. To close the system we need to specify
an equation of state, in this case the ideal gas law p = ⇢RT
where T is the temperature and R is the gas constant. For the
Euler equations, the tensor of viscous forces Fv(U) = 0, and for
Navier-Stokes

Fv(U) =

2
666666666666666664

0 0 0
⌧xx ⌧yx ⌧zx
⌧xy ⌧yy ⌧zy
⌧xz ⌧yz ⌧zz
A B C

3
777777777777777775

A = u⌧xx + v⌧xy + w⌧xz + k@xT,
B = u⌧yx + v⌧yy + w⌧yz + k@yT,
C = u⌧zx + v⌧zy + w⌧zz + k@zT

where in tensor notation the stress tensor ⌧xi x j = 2µ(@xi ui +

@xi u j �
1
3@xk uk�i j), µ is the dynamic viscosity calculated using

Sutherland’s law and k is the thermal conductivity.
To discretise these equations in space, we adopt an approach

which allows for the resolution of discontinuities and shocks
that may appear in the solution at transonic and supersonic flow
speeds. We therefore use approximations to our solution com-
prised of functions which are not continuous across element
boundaries. Traditionally, we follow a Galerkin approach by
utilising the variational form of the equations in order to ob-
tain the discontinuous Galerkin method. One of the key fea-
tures of Nektar++ is the ability to select a wide range of nu-
merical options, and to this end we support both discontinuous

Galerkin and flux reconstruction spatial discretisations, which
have various numerical equivalences [22] but may possess dif-
ferent performance characteristics. In the flux reconstruction
formulation, we instead use the equation in di↵erential form in
combination with correction functions which impose continuity
of fluxes between elements.

In either case, information is transferred between elements
by solving a one-dimensional Riemann problem at the interface
between two elements. For the non-viscous terms there is sup-
port for a wide variety of Riemann solvers, including an exact
solution or a number of appproximate solvers such as HLLC,
Roe and Lax-Friedrichs solvers [23]. For the viscous terms, we
utilise a local discontinuous Galerkin method (or the equivalent
flux reconstruction version). Various versions of the discontin-
uous Galerkin method which are available throughout the lit-
erature, mostly relating to the choices of modal functions and
quadrature points, can also be readily selected by setting appro-
priate options in the session file.

Given the complexity and highly nonlinear form of these
equations, we adopt a fully explicit formulation to discre-
tise the equations in time, allowing us to use any of the ex-
plicit timestepping algorithms implemented through the gen-
eral linear methods framework [16], including 2nd and 4th order
Runge-Kutta methods. Finally, in order to stabilise the flow
in the presence of discontinuities we utilise a shock capturing
technique which makes use of artificial viscosity to damp os-
cillations in the solution, in conjunction with a discontinuity
sensor adapted from the approach taken in [24] to decide where
the addition of artificial viscosity is needed.

Figure 4 shows representative results from compressible flow
simulations of a number of industrially-relevant test cases. We
first highlight two simulations which utilise the Navier-Stokes
equations. Fig. 4(a) demonstrates the three-dimensional ver-
sion of the compressible solver by investigating the flow over a
cylinder at Re = 3,900. In this figure we visualise isocontours
of the pressure field and colour the field according to the den-
sity ⇢. To demonstrate the shock capturing techniques available
in the code, Fig. 4(b) shows the results of an Euler simulation
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Figure 5: Contours of the magnitude of velocity in a periodic hill simulation at
Re = 2800.

for flow over a NACA0012 aerofoil at a farfield Mach number
Ma1 = 0.8 and a 1.5� angle of attack. The transonic mach
number of this flow leads to the development of a strong and
weak shock along the upper and lower surfaces of the wing re-
spectively. This figure shows isocontours of the mach number
where the presence of the shocks are clearly identified. Finally,
In Fig. 4(c), we visualise the temperature field from flow pass-
ing over a T106C low-pressure turbine blade at Re = 80,000
to highlight applications to high Reynolds number flow simula-
tions.

4.2. Transitional turbulent flow dynamics

Transient problems in which turbulence dominates the flow
domain, or in which the transition to turbulence dominates the
simulation, remain some of the most challenging problems to
resolve in computational fluid simulations. Here, accurate nu-
merical schemes and high resolution of the domain is critical.
Moreover, any choice of scheme must be e�cient in order to ob-
tain results in computationally feasible time-scales. Tradition-
ally, highly resolved turbulence simulations, such as the Taylor-
Green vortex problem, lie firmly in the class of spectral meth-
ods. However, spectral methods typically lead to strong geom-
etry restrictions which limits the domain of interest to simple
shapes such as cuboids or cylinders.

Whilst spectral element methods may seem the ideal choice
for such simulations, particularly when the domain of interest
is geometrically complex, they can be more computationally
expensive in comparison to spectral methods. However, when
the domain of interest has a geometrically homogeneous com-
ponent – that is, the domain can be seen to be the tensor prod-
uct of a two-dimensional ‘complex’ part and a one-dimensional
segment – we can combine both the spectral element and tradi-
tional spectral methods to create a highly e�cient and spectrally
accurate technique [4].

We consider the application of this methodology to the prob-
lem of flow over a periodic hill, depicted in Fig. 5, where the
flow is periodic in both streamwise and spanwise directions.
This case is a well-established benchmark problem in the DNS
and LES communities [25], and is challenging to resolve due to
the smooth detachment of the fluid from the surface and recir-
culation region. Here we consider a Reynolds number of 2800,
normalised by the bulk velocity at the hill crest and the height
of the hill, with an appropriate body forcing term to drive the
flow over the periodic hill configuration.

The periodicity of this problem makes it an ideal candidate
for the hybrid technique described above. We therefore con-

struct a two-dimensional mesh of 3626 quadrilateral elements
at polynomial order P = 6, and exploit the domain symmetry
with a Fourier pseudospectral method consisting of 160 collo-
cation points in the spanwise direction to perform the simula-
tion. This yields a resolution of 20.9M degrees of freedom per
field variable and allows us to obtain excellent agreement with
the benchmark statistics.

4.3. Flow stability
In addition to direct numerical simulation of the full

non-linear incompressible Navier-Stokes equations, the
IncNavierStokesSolver supports global flow stability
analysis through the linearised Navier-Stokes equations with
respect to a steady or periodic base flow. This process identifies
whether a steady flow is susceptible to a fundamental change
of state when perturbed by an infinitesimal disturbance. The
linearisation takes the form

@u0

@t
+ (u0 · r)U + (U · r)u0 = �rp0 + ⌫r2u0

r · u0 = 0,

where U is the base flow and u0 is now the infinitesimal pertur-
bation. The time-independent base flow is computed through
evolving Equs. 9 to steady-state with appropriate boundary con-
ditions. For time-period base flows, the flow is sampled at reg-
ular intervals and interpolated.

The linear evolution of a perturbation under Equs. 10 can be
expressed as

u0(t) = A(t)u00

for some initial state u00, and we seek, for some arbitrary time
T, the dominant eigenvalues and eigenmodes of the operator
A(T ), which are solutions to the equation

A(T )ũ j = � jũ j.

The sign of the leading eigenvalues � j are used to establish the
global stability of the flow. An iterative Arnoldi method [26]
is applied to a discretisation M of A(T ). Repeated actions
of M are applied to the initial state u0 using the same time-
integration code as for the non-linear equations [27]. The re-
sulting sequence of vectors spans a Krylov subspace of M and,
through a partial Hessenberg reduction, the leading eigenval-
ues and eigenvectors can be e�ciently determined. The same
approach can be applied to the adjoint form of the linearised
Navier-Stokes evolution operatorA⇤ to examine the receptivity
of the flow and, in combination with the direct mode, identify
the sensitivity of the flow to base flow modification and local
feedback. The direct and adjoint methods can also be combined
to identify convective instabilities over di↵erent time horizons
⌧ in a flow by computing the leading eigenmodes of (A⇤A)(⌧).
This is referred to as transient growth analysis.

To illustrate the linear analysis capabilities of Nektar++, we
use the example of two-dimensional flow past a circular cylin-
der at Re = 42, just below the critical Reynolds number for
the onset of the Bénard-von Kármán vortex street. This is a
well-established test case for which significant analysis is avail-
able in the literature. We show in Fig. 6 the leading eigen-
modes for the direct (A) and adjoint (A⇤) linear operators for
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Figure 7: Solitary wave impinging a cylinder. (a) t = 4.5 s; (b) t = 5.5 s; (c)
t = 8.5 s; (d) t = 12.5 s;

substrate modification to restore normal rhythm is often partic-
ularly challenging and may benefit from insight derived from
computer modelling.

The CardiacEPSolver models the conduction process us-
ing the monodomain equations

�

 
Cm
@u
@t
+ Iion

!
= r · �ru,

where the Iion term captures the complex movement of ions
in and out of cells and is itself modelled as a set of ordinary
di↵erential equations. Additionally, � captures the potentially
heterogeneous and anisotropic nature of the tissue which af-
fects the speed of electrical propagation. While full 3D simula-
tions of myocardium are traditionally performed, the left atrium
is su�ciently thin that it can be reasonably represented as a
two-dimensional manifold embedded in three dimensions and
solved at significantly reduced computational cost [32]. The
geometry of the left atrium is created through segmentation of
magnetic resonance images of the heart.

An example of a left atrium simulation is illustrated in Fig-
ure 8. Electrophysiological characteristics vary spatially, with
regions of scar and fibrosis more resistive to activation, re-

Figure 8: Illustrative simulation of a depolarising electrochemical wavefront
on a two-dimensional manifold representation of a human left atrium. Blue
areas denote regions of unexcited (polarised) tisue, while green denotes areas
of excited (depolarised) cells. The red areas highlight the wavefront.

sulting in more complex activation patterns. The geometry is
derived from segmented magnetic resonance imaging (MRI)
data, while tissue heterogeneity is prescribed based on late
gadolinium-enhanced MRI. A human atrial ionic model [33]
is used as the reactive term in the model and represents the ex-
changes of ions between the interior and exterior of the cell,
along with other cellular biophysics.

4.6. Biological flow
1D modelling of the vasculature (arterial network) represents

an insightful and e�cient tool for tackling problems encoun-
tered in arterial biomechanics as well as other engineering prob-
lems. In particular, 3D modelling of the vasculature is relatively
expensive. 1D modelling provides an alternative in which the
modelling assumptions provide a good balance between physi-
ological accuracy and computational e�ciency. To describe the
flow and pressure in this network we consider the conservation
of mass and momentum applied to an impermeable, deformable
tube filled with an incompressible fluid, the nonlinear system
of partial di↵erential equations presented in non-conservative
form is given by

@U
@t
+H@U
@x
= S (14)

U =
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U
A

#
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"
U A
⇢ @p
@A U

#
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⇢
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f
A � s

⌘
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in which A is the Area (related to pressure), x is the axial coor-
dinate along the vessel, U(x, t) the axial velocity, P(x, t) is the
pressure in the tube, ⇢ is the density and finally f the frictional
force per unit length. The unknowns in equation 14 are u, A and
p; hence we must provide an explicit algebraic relationship to
close this system. Typically, closure is provided by an algebraic
relationship between A and p.

For a thin elastic tube this is given by

p = p0 + �
⇣p

A �
p

A0
⌘
, � =

p
⇡hE

(1 � ⌫2)A0
(15)

where p0 is the external pressure, A0 is the initial cross-
sectional area, E is the Young’s modulus, h is the vessel wall
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Figure 9: Geometry used for the simulation. Insets show how flow and pressure
vary with time and di↵erent locations in the geometry.

thickness and ⌫ is the Poisson’s ratio. Other more elaborate
pressure - area relationships are currently being implemented
into the framework. Application of Riemann’s method of char-
acteristics to Equations 14 and 15 indicates that velocity and
area are propagated through the system by forward and back-
ward travelling waves. These waves are reflected within the
network by appropriate treatment of interfaces and boundaries
(see for example [34, 35]). The final system of equations are
discretised in the Nektar++ framework using a discontinuous
Galerkin projection.

To illustrate the capabilities of the PulseWaveSolver, a 1D
geometry was created by extracting the centreline directly from
a 3D segmentation of a carotid bifurcation (the extracted cen-
treline with the segmented geometry overlaid is shown in Fig-
ure 9). At the inlet a half-sinusoidal flow profile was applied
during the systolic phase, whist during the diastolic phase a no-
flow condition was applied. Although this profile is not rep-
resentative of the carotid wave, it is useful for demonstrating
essential dynamics of the system e.g. reflection of backward
travelling waves only during the diastolic phase. At the outflow
RCR boundary conditions were utilised [35]. These boundary
conditions take into account the peripheral resistance and com-
pliance of the vasculature. The pressure and flow results are
shown in Figure 9. The insets demonstrate that the pressure
needs about 4 cycles to reach a periodic state.

To conclude this section, we illustrate the flexibility of the
software in combining two solvers to understand mass trans-
port in the aorta. We consider the simulation of blood-flow
through a pair of intercostal branches in the decending aorta.
The three-dimensional geometry is derived from CT scans and
is meshed using a combination of tetraheda and prismatic el-
ements. Prisms are used to better capture the boundary layer
close to the wall, while tetrahedra fill the remaining interior of
the domain. The embedded manifold discretisation code can
be used to compute boundary conditions for three-dimensional
simulations where the complexity of the geometry precludes the
use of analytic conditions.

The flow is modelled using the incompressible Navier-Stokes
equations (see Section 4.1). In this case, the inlet flow profile
f in Equ. 9 is the solution of the Poisson problem, computed
using the ADRSolver, on the two-dimensional inlet boundary

surface for a prescribed body force, as shown in Fig. 10(a).
The resulting profile is imposed on the three-dimensional flow
problem as illustrated. The steady-state velocity field from the
flow simulation at Reynolds number Re = 300 is shown in
Fig. 10(b). A single boundary layer of prismatic elements is
used for this simulation and both the prismatic and tetrahedral
elements use a polynomial expansion order of P = 4. This is
su�cient to capture the boundary layer at the walls.

We now solve the advection-di↵usion equation,

r · (�Drc + cu) = 0,

to model transport of oxygen along the arterial wall. Here, c
is the concentration and u is the steady-state flow solution ob-
tained previously. D = 1/Pe is the di↵usivity of the species
considered (Pe = 7.5 ⇥ 105 for oxygen). For most of the do-
main, the non-dimensional concentration remains constant at
c = 1. However, a particularly high gradient in concentration
forms at the wall. It is this gradient which is of particular inter-
est and needs to be captured accurately. The existing mesh used
for the flow simulation is unable to resolve the gradients close
to the wall. We therefore refine the boundary layer in the wall-
normal direction using element heights following a geometric
progression. To reduce computational cost, we also exploit the
spectral/hp discretisation and reduce the polynomial order of
the prisms in the directions parallel to the wall, since the con-
centration shows negligible variation in these directions. Fur-
thermore, the domain-interior tetrahedra may also be discarded
and a dirichlet c = 1 condition imposed on the resulting interior
prism boundary.

Fig. 10(c) shows the resulting concentration gradient field on
the surface of the arterial wall. Regions of low concentration
gradient are observed upstream of the branches, while high con-
centration gradients are observed downstream. Fig.10(d) shows
close-ups of the branches to illustrate this.

5. Discussion & Future Directions

The Nektar++ framework provides a feature-rich platform
with which to develop numerical methods and solvers in the
context of high-order finite element methods. It has been de-
signed in such a way that the libraries reflect the mathematical
abstractions of the method, to simplify uptake for new users,
as well as being written in a modular way to improve the ro-
bustness of the code, minimise duplication of functionality and
promote sustainability.

Development
The development of a complex and extensive software

project such as Nektar++ necessitates the adoption of certain
development practices to enable developers to easily write new
code for their features without breaking the code for other peo-
ple. The code is managed using the git distributed version
control system [36] due to its performance, enhanced support
for branching, as well as supporting o↵-line development. All
development is performed in branches and only after rigor-
ous multi-architecture testing and internal peer-review is new
code merged into the main codebase, thereby always maintain-
ing a stable distribution. Any new bugs or feature requests
are tracked using the Trac issue-management system, which
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Figure 7: Solitary wave impinging a cylinder. (a) t = 4.5 s; (b) t = 5.5 s; (c)
t = 8.5 s; (d) t = 12.5 s;

substrate modification to restore normal rhythm is often partic-
ularly challenging and may benefit from insight derived from
computer modelling.

The CardiacEPSolver models the conduction process us-
ing the monodomain equations
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where the Iion term captures the complex movement of ions
in and out of cells and is itself modelled as a set of ordinary
di↵erential equations. Additionally, � captures the potentially
heterogeneous and anisotropic nature of the tissue which af-
fects the speed of electrical propagation. While full 3D simula-
tions of myocardium are traditionally performed, the left atrium
is su�ciently thin that it can be reasonably represented as a
two-dimensional manifold embedded in three dimensions and
solved at significantly reduced computational cost [32]. The
geometry of the left atrium is created through segmentation of
magnetic resonance images of the heart.

An example of a left atrium simulation is illustrated in Fig-
ure 8. Electrophysiological characteristics vary spatially, with
regions of scar and fibrosis more resistive to activation, re-

Figure 8: Illustrative simulation of a depolarising electrochemical wavefront
on a two-dimensional manifold representation of a human left atrium. Blue
areas denote regions of unexcited (polarised) tisue, while green denotes areas
of excited (depolarised) cells. The red areas highlight the wavefront.

sulting in more complex activation patterns. The geometry is
derived from segmented magnetic resonance imaging (MRI)
data, while tissue heterogeneity is prescribed based on late
gadolinium-enhanced MRI. A human atrial ionic model [33]
is used as the reactive term in the model and represents the ex-
changes of ions between the interior and exterior of the cell,
along with other cellular biophysics.

4.6. Biological flow
1D modelling of the vasculature (arterial network) represents

an insightful and e�cient tool for tackling problems encoun-
tered in arterial biomechanics as well as other engineering prob-
lems. In particular, 3D modelling of the vasculature is relatively
expensive. 1D modelling provides an alternative in which the
modelling assumptions provide a good balance between physi-
ological accuracy and computational e�ciency. To describe the
flow and pressure in this network we consider the conservation
of mass and momentum applied to an impermeable, deformable
tube filled with an incompressible fluid, the nonlinear system
of partial di↵erential equations presented in non-conservative
form is given by
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in which A is the Area (related to pressure), x is the axial coor-
dinate along the vessel, U(x, t) the axial velocity, P(x, t) is the
pressure in the tube, ⇢ is the density and finally f the frictional
force per unit length. The unknowns in equation 14 are u, A and
p; hence we must provide an explicit algebraic relationship to
close this system. Typically, closure is provided by an algebraic
relationship between A and p.

For a thin elastic tube this is given by

p = p0 + �
⇣p

A �
p
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⌘
, � =

p
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where p0 is the external pressure, A0 is the initial cross-
sectional area, E is the Young’s modulus, h is the vessel wall
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Framework design

StdRegions

LocalRegions SpatialDomainsMultiRegions

Collections

Core Nektar++ libraries

LibUtilities
Quadrature, bases, partitioning, input/output, linear algebra, interpreter, FFT, ...

Boost Metis TinyXML Gslib VTK PETSc ARPACK

FFTW Scotch Zlib QT

SolverUtils

IncNavierStokes CompressibleFlow ADR LinearElastic ...
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Coming in v5: Python interface

#include <LibUtilities/BasicUtils/SessionReader.h>
#include <SpatialDomains/MeshGraph.h>

session = SessionReader::CreateInstance(argc, argv);
mesh    = SpatialDomains::Read(session);
cout << mesh->GetMeshDimension() << endl;

from NekPy.LibUtilities import SessionReader
from NekPy.SpatialDomains import MeshGraph

session = SessionReader.CreateInstance(sys.argv)
mesh    = MeshGraph.Read(session)
print(mesh.GetMeshDimension())

C++

Python

• Python a great ‘glue' language for 
different software packages 

• Also a good teaching aid 

• Automated bindings really don't 
work for big codes (at least ours) 

• Use boost::python, good support 
for inheritance, shared pointers



Quick demo: mesh visualisation

• Curved mesh visualisation is a challenging problem at present; stopgap is 
to create many samples/subdivisions and use existing linear methods. 

• Want to evaluate isoparametric mapping at lots of points within reference 
element: trivially parallelisable so could use GPU for calculation, OpenGL 
interop to visualise 

• Demo of Nektar++ wrappers in a modern OpenGL 4.2 (shaders) 
environment, using sympy to code generate basis functions & run on GPU 
in ~1k lines of code.
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Other features
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2D Spectral element mesh

Symmetry
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Other features

Spatially varying polynomial orders

Computational domain

Physical domain

t=t0

t=t0+T/2
Coordinate mapping

D. Serson, J. Meneghini, and S. Sherwin, J. Comp. Phys. 
316, 243-254 (2016)

D. Moxey et al, Spectral and High Order 
Methods for Partial Differential Equations 

ICOSAHOM 2016, pp. 63–79

108

Figure 8.11: Time-averaged contours of spanwise velocity at z = 0.125 for L05h10 wing
with ↵ = 6� and Re = 50, 000.

(a) baseline

(b) L05h10, trough

(c) L05h10, peak

Figure 8.12: Slices with contours of instantaneous spanwise vorticity (on the left) and of
turbulence kinetic energy (on the right) for simulations with ↵ = 6�.



r-adaption: targeting element size



Example: NACA 0012 transonic

Starting mesh Initial simulation

Ma = 0.8, 1.25° AoA



Example: NACA 0012 transonic

Discontinuity sensor Artificial viscosity



Example: NACA 0012 transonic

Calculate target size 
& do r-adaptation

Pressure plots

Missing

figure

Figure 4: Pressure plots in the vicinity of the shocks before and after r -adaptation.

Figure 5: Magnified view of boundary elements with CAD sliding enabled nodes: suction
side (left) and pressure side (right).
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Use of CAD sliding



Supersonic example

Supersonic intake 
Ma = 1.0



Example: NACA 0012 transonic

Translate to variable p Improved shock capturing



High-order fluid simulations

• Now that we have some kind of a route to a mesh, the next step is to work 
out how to do something useful with it! 

• Particular focus on incompressible flow simulations and, in particular, 
high-fidelity simulations. 

• Consider inherently unsteady flows: investigate use of implicit LES. 

• Our message: still computationally expensive & requires HPC, but should 
not be prohibitive and should scale with high-order simulations.
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Solving at scale

• Relying on HPC means we need efficient and 
scalable linear solvers. 

• Mesh is decomposed across processors; local 
dense matrices formed for each element, 
communication with gslib. 

• Core of the code scales well on Mira: test case 
of a ~5m element F1 geometry at fifth order. 

• However still some work to do on scalable 
preconditioning!
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High-order splitting scheme

⇥tu + N(u) = �⇥p + �⇥2u
Navier–Stokes:

Velocity correction scheme (aka stiffly stable): 
Orszag, Israeli, Deville (90), Karnaidakis Israeli, Orszag (1991), Guermond & Shen (2003)

Advection: u⇥ = �
J�
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Meshing for F1 applications
Spectral/hp element methods Sec. 4: Spectral/hp elements in 2D

 φpq(ξ1,ξ2) = ψp(ξ1) ψq(ξ2)
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Figure 17: Construction of a two-dimensional expansion basis from the tensor product of two
one-dimensional expansions of order P = 4. A modal expansion (top) and a nodal
expansion (bottom) are shown.

expansion. Since a large part of the efficiency of the quadrilateral expansion (particu-
larly at larger polynomial orders) arises from the tensor product construction, we would
like to use a similar procedure to construct expansions within the triangular domains.
Therefore, to extend the tensor product expansion to simplex regions such as a triangle
we need to generalise the tensor product expansion concept, which can be achieved by
using a collapsed coordinate system.

4.1.3 Collapsed coordinate system

In this section we will focus on 2D expansions defined on the standard triangle Tst,
defined as

Tst = {(ξ1 , ξ2)|− 1 ≤ ξ1 , ξ2 ; ξ1 + ξ2 ≤ 0} .

In the quadrilateral expansions discussed in section 4.1.1 we generated a multidi-
mensional expansion by forming a tensor product of one-dimensional expansions based
on a Cartesian coordinate system. The one-dimensional expansion was defined between
constant limits and therefore an implicit assumption of the tensor extension was that the
coordinates in the two-dimensional region were bounded between constant limits. How-
ever this is not the case in the standard triangular region as the bounds of the Cartesian
coordinates (ξ1, ξ2) are dependent upon each other.
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More complex geometries
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Elemental road racing car

• Most challenging case undertaken with 
Nektar++ to date (that I know of!) 

• Re ~ 1m, around 1bn dof. 

• Simulated at P = 5 with a matching 
high-order mesh and SVV-LES. 

• Aim to identify aerodynamic issues and 
refine design.

52



Road car
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P = 4



Elemental road race car

Moxey, Turner, Jassim, Taylor, Peiro & Sherwin

Design 2: +33% Downforce 

Design 3:   +270% Downforce 

5th order  
Re = 1m



Summary

• We can certainly spectral/hp element techniques to challenging industrial 
flow problems and succeed! 

• Accurate, transient flow modelling is an enabling technology for high-end 
engineering/physics.   

• But… there is still a way to go yet! 

- Meshing for 3D geometries is a specialist skill. 

- Robustness still requires more analysis.
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Thanks for listening!

https://davidmoxey.uk/        @davidmoxey 

d.moxey@exeter.ac.uk 

www.nektar.info 
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