High-fidelity CFD with the Nektar++
spectral/hp element framework

David Moxey

T106C turbine blade
Compressible Navier-Stokes
Contours of temperature

Outline

Motivation

What are high order methods and why are they useful?
Nektar++: a spectral/hp element framework
Challenges (and some solutions!)

Applications

ombard, Moxey et al., AIAA J (2016)

Cp: -2.00 -1.60 -1.20 -0.80 -0.40 0.00

Want to accurately model difficult features:
» strongly separated flows

e feature tracking and prediction

* vortex interaction

Increasing desire for high-fidelity
simulation in high-end engineering
applications.

Move towards methods and techniques for making LES affordable

3

What is a spectral/hp element?

4 finite element method Spec}fradl
metho
.

spatial flexibility (h)

1 spectral/hp
element

accuracy (p)

Why use a high-order method?

Time =

‘Exact’ solution N,=128 F=1

1.05
0.95
0.53
0.75
0.63

0.35
0.45

0.335
0.25
0.135
0.05
-0.05

Higher-order expansions

Extend traditional FEM by adding
higher order polynomials of
degree P within each element.

Traditional linear element has 3
degrees of freedom per element
(each vertex).

High-order has (P+1)(P+2)/2 at a
given order P.

Key defining feature of spectral/hp:
tensor product basis.

Spectral/hp element formulation

. X = x(5)
ARNN
LN
collapsed reference
coordinates element
(n,1) € —1,1] (&1, 5) € Qg
r D

(C9) tensor
product basis

cb]? un, 561(’72)
- Y

Why use a high-order method?
Viu(x) — Au(x) = — f(x)

— " h-refinement

10f — (algebraic) Method of
manufactured solutions
10~ on square domain

U(x) = sin(71x) sin(7Ty)
= f(x) = (V2 = Hu(x)

lu® —u| g 1078

10—12
p-refinement

(exponential)

10—16

. L a0 a1 gl . A R
10Y 101 102

N dof

So why doesn’t everyone use high-order?

Stuff I'll discuss today:

* Pre-processing (mesh generation), particularly for complex geometries.
» Efficient linear algebra techniques & operator implementations.
 Implementation effort and difficulties.

Other stuftt:

» Post-processing and visualisation, stability and robustness, preconditioning...

9

Challenge 1: high-order mesh generation

Complex geometries

look like this Not like this

High-order mesh generation

» Good quality meshes are essential to triangulation
finite element and finite volume

simulations.

* You can have a very fancy solver, but if
you can’t mesh your geometry then
you can’t run your simulation!

* At high orders we have an additional
headache, as we must curve the '\\
elements to fit the geometry.

don’t lie on the surface!

11

High-order mesh generation

—————
add curvature

12

High-order mesh generation

Curving coarse meshes leads to invalid elements
Most existing mesh generation packages cannot deal with this

//?//
Wy
iy

High-order technologies

Isoparametric splitting of high-order boundary layers

Moxey et al., Comp. Meth. Appl. Mech. Eng 283 pp. 636-650 (2015)

Straight-sided mesh . . .
Optimisation

‘A;:v::}] Deformed mesh
‘ \..» 4 . N\

Boundary
projection

Variational approach

= (V1,)2) €

1deal element

& = (&1,6) € Qy % /
standard element

X = (x1,x2) € Q°
curvilinear element

Recast PDE as energy
minimisation and solve

min & (¢) = min WV o) dy
¢ ¢ 0,

Different W give PDE and
optimisation methods in a
single framework

M. Turner, J. Peiro, D. Moxey, Curvilinear mesh generation using a variational
framework, Computer Aided Design 103 73-91 (2018)

* Non-linear elasticity: W =

Choice of functional

F=Vo J=detF

1
- Linear elasticity: W=—-(nJ)*+uE:E; E= §(FtF — 1)

A
(F:F—-3)—pulnJH 2(1I1J)2

NI N

e Winslow: W =J1 (F : F)

* Distortion: W = %\J|_d/2(F : F)

17

Benefits

Multi-core parallelisation
relaxation optimisation approach

CAD sliding

J

.
Untangles meshes
using Jacobian regularisation

J

Example: DLR F6 e

100 ¢ .
- I Orginial
10° |

ngine

10|

1031

Element count

—1.0 —0.5 0.0 0.5 1.0
Scaled Jacobian J;

10 ¢ . . .

I Hyper elastic
10° L

Element count

100 L I
—1.0 —0.5 0.0
Scaled Jacobian J;

Speeding up optimisation

Meshing usually accomplished on a single workstation, generally repeated
as part of many design iterations.

Optimisation process is resource intensive, but GPUs have lots of compute
density.

Can we leverage parallelism of the method effectively on a GPU?

How do we do this in a code-friendly way?

20

Node colouring

21

For each node solve local
minimisation problem

Calculate functional + gradients
analytically

Uses multi-level threading to
exploit GPU hierarchy: use
Kokkos

lterate until global functional
residual is small

Results

x 107

B Xcon E5-2670v3 Tesla K40 B Tesla P100
3.0 B Xeon Phi 7120 B GTX 1070

g
-
T

[
N
I

Runtime/DOF [s]

[
-
I

O
W

O
=

2nd 3rd 4th 5th
Element order

Four spheres in a box, 33k

tetrahedra, ~400k nodes
at o =95

Reasonably consistent runtimes
per DoF across polynomial orders

22

Challenge 2: efficient implementation

Today’s computational hardware: lots of FLOPS available, but really hard
to use them.

Algorithms will only use hardware effectively if they are arithmetically
intense: i.e. high ratio of FLOPS per byte of memory transfer.

One of the reasons that current CFD codes don’t often make best use of
hardware on offer.

High-order has potential in this area through matrix-free formulations.

23

Implementation choices

5

m

—>

‘ Local Strategy

Sum-factorisation

—P

Global Strategy || | -t it s

Increasing
polynomial order

More
localised
memory

access

Unstructured elements

P5 triangle, Fekete points

 Typically unstructured elements
make use of Lagrange basis
functions (although not always).

» Combine this with a suitable set
of quadrature (cubature) points:

no tensor-products structure.

» However, spectral/hp does have a
tensor product structure!

25

Sum-factorisation

Key to performance at high polynomial orders: complexity O(P2d) to O(Pd+1)!

P Q L
Z Z ﬁpq¢p(5li)¢q(§2j) — 2 ¢p(§1i)
p=0

p=0 g=0

Q
2 ﬁpq¢q(§2j>

q=0] \

store this

This works in essentially the same way for more complex indexing:

P Q7 P Q—p
YD i DB E) = D BEED | Y, gl N
p=0 g=0 p=0 g=0

store this

26

Data layout

Natural to consider data laid out element by element

degrees of freedom =—

elements

Data layout

Exploit vectorisation by grouping DoFs by vector width

degrees of freedom =—

elements

Data layout

elements

» Operations occur over groups of
elements of size of vector width.

» Use C++ data type that encodes
vector operations (common strategy)

basis functions

T

256-bit AVX2

'

29

GFLOPS

Roofline results

Peak FLOPS, 2.0 GHz with FMA /AVX2

without vectorisation

A Quad (regular) Peak FLOPS, 2.0 GHz with FMA /AVX2 A Tet (regular)
10249 v Quad (deformed) 10247 v Tet (deformed)
A Tri (regular) NV without FMA A Prism (regular)
r194 ¥ Tri (deformed) Y r194 ¥ Prism (deformed)
e A Hex (regular)
wvv m v Hex (deformed)
256 - v 2 256 -
v -
without vectorisation g“g
128 A 128 -
64 - 64 -
32 - 59 -
| | | | | | | | | 1 i | |
¥ : 1 2 4 8 16 32 64 128 256 y 5 1 2

2D: Quades, triangles

Arithmetic intensity

4 8 16 32 64

Arithmetic intensity

128 256

3D: Hexahedra, prisms, tetrahedra

Use of ~50-70% peak FLOPS for regular elements

Challenge 3: implementation effort

* High-order methods have potential to bring some nice numerical and
computational benefits to bear on complex problems.

 Offer high(er) fidelity at equivalent or lower costs, as they have good
implementation characteristics.

* However, one of the main barriers to using high-order methods is that they
are difficult to implement.

31

Nektar++
¢ spectral/hp element framework

AY/
VA

Nektar++
¢ spectral/hp element framework

AY;
VA

Nektar++ is an open source framework for high-order methods.

Although fluids is a key application area, we try to make it easier to use
these methods in many areas, not just fluids.

C++ API, with ambitions to bridge current and future hardware diversity
(e.g. many-core processors, GPUs).

Modern development practices with continuous integration, git, etc.

33

ome application areas

www.nektar.info

P —_
5 150 5 150
£ £
£ 100 = 100
[} e
Z 50 3 50
e 8
o 00 5 4 - 00 2 4
Time (s) Time (s)
20
%)
Lo = 150
E 10 s
- E
o £ 100
<
OD 2 4 é 50
Time (s) @
o 0
0 2 4

Time (s)

Framework design

IncNavierStokes CompressibleFlow LinearElastic @
SolverUtils

Core Nektar++ libraries

MultiRegions LocalRegions SpatialDomains

LibUtilities
Quadrature, bases, partitioning, input/output, linear algebra, interpreter, FFT, ...

FFTW Scotch Zlib QT

Framework design

D

LocalRegions

Coming in v5: Python interface

#1include <LibUtilities/BasicUtils/SessionReader.h>

#include <SpatialDomains/MeshGraph.h>

session
mesh

SessionReader: :Createlnstance(argc, argv);
SpatialDomains: :Read(session);

cout << mesh->GetMeshDimension() << endl;

~

C++

from NekPy.LibUtilities import SessionReader
from NekPy.SpatialDomains import MeshGraph

sess1ion Sess1ion
mesh = MeshGra
print(mesh.GetMes

Reader.Createlnstance(sys.argv)
rh.Read(sess1ion)

nDimension())

Python

Python a great ‘glue' language for
different software packages

Also a good teaching aid

Automated bindings really don't
work for big codes (at least ours)

Use boost::python, good support
for inheritance, shared pointers

Quick demo: mesh visualisation

 Curved mesh visualisation is a challenging problem at present; stopgap is
to create many samples/subdivisions and use existing linear methods.

» Want to evaluate isoparametric mapping at lots of points within reference
element: trivially parallelisable so could use GPU for calculation, OpenGL

interop to visualise

* Demo of Nektar++ wrappers in a modern OpenGL 4.2 (shaders)
environment, using sympy to code generate basis functions & run on GPU
in ~1k lines of code.

38

T A

[T

\
|

[T

|

//////////
/
/
/

VLTV LT T

|

T

PO P

ANV VT
AV LV T

IRREEN

/ INREEN

|

I1

1

T

AL A TR T

AT LT

111

2D Spectra

ement mesh

Hybrid discretisation

+

Other features

/N

\J

1D Fourier expansion

39

/

Spectral/hp plane
parallelisation

Fourier
parallelisation

Mixed
parallelisation

Other features

E
mll||||||||||||||||||||||||||m N

4’/@(\

\
ﬁ?\u

)

t=tn+7T/2

Spatially varying polynomial orders Coordinate mapping

r-adaption: targeting element size

7Y

) € €2

.. 1dc 11 e l(sment %

z = (21, 29) € Q%
§ = (51 §2) € Oy target element

standard element

xr = (xy,x9) € Q°
optimised element

transonic

Example: NACA 0012

MACH
Lan0e+

\ ; o g0
PR S I

Ny

i-

< .

0.000¢+2D

Starting mesh

Ma = 0.8, 1.25° AoA

Example: NACA 0012 transonic

SENSOR

l— 1.414e+00

S 3.4558 N\ 026505
- 5.4978 - 0.1767

-) \ 2
-7.5399 | “\ 0.088349
— / \‘ —

~9.5826400 E0.000e+00

Discontinuity sensor Artificial viscosity

1C

NACA 0012 transon

Example

Use of CAD sliding

Calculate target size
& do r-adaptation

Ic example

Superson

Supersonic intake

1.

Example: NACA 0012 fransons

OOOOOOOOO

OOOOOOOOO

Translate to variable p

Improv

High-order fluid simulations

Now that we have some kind of a route to a mesh, the next step is to work
out how to do something useful with it!

Particular focus on incompressible flow simulations and, in particular,
high-fidelity simulations.

Consider inherently unsteady flows: investigate use of implicit LES.

Our message: still computationally expensive & requires HPC, but should
not be prohibitive and should scale with high-order simulations.

47

Solving at scale

Relying on HPC means we need efficient and

16 |

scalable linear solvers. —e— Mira, BG/Q
14F —— 1deal T
Mesh is decomposed across processors; local 12 ‘
dense matrices formed for each element, 10} —
. . . , o,
communication with gslib. 2 sl _
&
6 _
Core of the code scales well on Mira: test case
: 41 |
of a ~5m element F1 geometry at fifth order.
2+ |
However still some work to do on scalable 0

.. . 0 20000 40000 60000 80000 100000 120000 140000
preconditioning! Nproc

438

High-order splitting scheme

Ou+ N(u) = —Vp +vV-u
V-u=J(

Navier—Stokes:

Velocity correction scheme (aka stiffly stable):
Orszag, Israeli, Deville (90), Karnaidakis Israeli, Orszag (1991), Guermond & Shen (2003)

J J—1
Advection: u* = — Z agu” " — At Z BgN (™)
q=1 q=0

Pressure 2 n4+1 1 %
Poisson: VP - Atv “

o) u” 1
Helmholtz: VZu™'! Lyt = -~V

I0Ns

t

Meshing for F1 applica

More complex geometries

: by ! --. Xer

-

T -
- —aot T -
7,".‘&."-\" R
o - t.'“/‘.' T

Supported by ARCHER
leadership award (20m CPU
hours

Elemental road racing car

Most challenging case undertaken with
Nektar++ to date (that | know of!)

Re ~ Tm, around 1bn dof.

Simulated at P = 5 with a matching
high-order mesh and SVV-LES.

Aim to identify aerodynamic issues and
refine design.

52

Road car

P =4

Flemental road race car

.
ng.
SN

=
=
o
=
RN

3
2]

5th order

Re = Tm

-

~

Design 2: +33% Downforce

+270% Downforce

Design 3:

Moxey, Turner, Jassim, Taylor, Peiro & Sherwin

Summary

* We can certainly spectral/hp element techniques to challenging industrial
flow problems and succeed!

 Accurate, transient flow modelling is an enabling technology for high-end
engineering/physics.

» But... there is still a way to go yet!
- Meshing for 3D geometries is a specialist skill.

- Robustness still requires more analysis.

55

Thanks for listening!

https://davidmoxey.uk/ @davidmoxey

d.moxey@exeter.ac.uk

www.nektar.info

https://davidmoxey.uk
mailto:d.moxey@exeter.ac.uk
http://www.nektar.info

