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Motivation

• High-order methods potentially map well onto current/future hardware 
challenges in three key ways. 

‣ Use of matrix-free formulations of operators to reduce memory 
bandwidth requirements. 

‣ Use of sum-factorisation to reduce operator count, which relies on the 
use of tensor-product basis. 

‣ Can effectively used SIMD instructions to achieve very high 
performance.
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Unstructured simulations

• Common knowledge: hex/quad 
elements yield best performance. 

• However highly complex geometries 
presently require unstructured meshes. 

• How to improve performance? 

• Possible answer: tensor-product basis 
on unstructured elements: enable 
matrix-free operators.
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Unstructured elements

• Typically unstructured elements 
make use of Lagrange basis 
functions (although not always). 

• Combine this with a suitable set 
of quadrature (cubature) points. 

• However this loses tensor-
products structure: i.e. no sum 
factorisation possible.
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Spectral/hp element formulation
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Fig. 1. Illustration of the three coordinate systems used in the representation of a high-order
triangle. A representative equally-spaced distribution of points is used to highlight the distribution
of quadrature points in the resulting high-order element.

ment a basis for a quadrilateral can be formed as �pq(⇠1, ⇠2) = �p(⇠1)�q(⇠2).224
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where the brackets denote the use of a temporary storage. At a given di-227

mension d, and considering a tensor product of quadrature or solution points228

that require evaluation, this technique thereby substantially reduces operator229

evaluations from O(P 2d) to O(P 2(d�1)).230

The relative performance of these approaches, specifically on modern hardware,231

has been considered previously in separate work (e.g. [21]), but only for elements that232

naturally lend themselves to a tensor-product basis: namely quadrilaterals and hexa-233

hedra. In this paper, however, we consider how e↵ectively this matrix-free evaluation234

can be applied in the context of unstructured elements to yield e�cient solvers for235

very complex geometries. To do this requires the selection of a basis permitting tensor236

product decomposition, which we discuss in the following section.237

2.2. Choice of polynomial basis. The selection of the polynomial basis on238

each element is a key consideration of this paper. Much of the prior work considered239

in Section 1 exploits the use of a tensor product of one-dimensional nodal Lagrange240

basis functions, where on the standard segment [�1, 1], these are defined as241

`p(⇠) =
Y

0qP
q 6=p

⇠ � ⇠̂q

⇠̂p � ⇠̂q
242

where ⇠̂q 2 [�1, 1] denote a set of P + 1 data points frequently chosen to align or243

collocate with an underlying quadrature (e.g. Gauss or Gauss-Lobatto points). Al-244

though this approach can readily be extended to higher dimensional tensor-product245

elements, a formulation of these basis functions inside hybrid or simplicial elements246

such as triangles and tetrahedra leads to a set of basis functions that lack the tensor247

product structure required to enable the use of sum factorisation. More details on248

this approach can be found in e.g. [16].249

To arrive at a tensor product formulation, we follow standard practice [18] and250

employ the use of a square-to-triangle Du↵y transformation [10] to define two inde-251

pendent coordinate directions over which to perform the decomposition (or otherwise252
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Generally not collocated
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"Defining" features

quadrature points modal coefficients

Uses tensor products of 1D basis functions, even for non-
tensor product shapes
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basis function indexing harder



Sum-factorisation

 7

Key to performance at high polynomial orders: complexity O(P2d) to O(P2d-2)

store this
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This works in essentially the same way for more complex indexing:

store this



Key questions

• Under spectral/hp approach, sum-factorisation matrix-free operators are 
certainly possible for any element type. 

• However, how much performance do we lose relative to hex/quad? 

• How should SIMD be used? 

• Developed a benchmarking utility for Helmholtz operator to test viability 
of this approach.
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∇2u − λu = f(x) → (L + λM)û = ̂f



Implementation particulars

• Hand-written kernels for each element type to implement three key 
components: interpolation, derivatives and inner products. 

• Written using C++: templating on (maybe heterogeneous) polynomial 
order and quadrature order. 

• Also templates on affine elements (spatially-constant Jacobian) vs. 
curvilinear (spatially-varying); no consideration for Cartesian meshes. 

• Templating gives significant improvements in runtime performance, 
particularly for complex loop structures found in this regime.
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Data layout

Natural to consider data laid out element by element

degrees of freedom

elements



Data layout

Exploit vectorisation by grouping DoFs by vector width

degrees of freedom

elements



Data layout

• Operations occur over groups of 
elements of size of vector width. 

• Use C++ data type that encodes 
vector operations (common strategy)
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Tests
• Benchmarking of Helmholtz operator performed on two architectures with 

varying SIMD widths.
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Broadwell (AVX2) Skylake (AVX512)

Model E5-2697 v4 Xeon Gold 6130

Clock speed(s) 2.3 / 2.0 GHz 
standard / AVX2

2.1 / 1.7 / 1.3 GHz 
standard / AVX / AVX512

Cores / sockets 18 / 2 16 / 2

Max node GFLOP/s 1152 870 (AVX2) 
1331 (AVX512)



Assessing performance

• Various techniques used to assess kernel performance: 

‣ Throughput: number of local DoF/s processed, for a mesh whose sizes 
exceeds available cache. 

‣ GFLOP/s gives some indication of capabilities, provided we are not 
memory-bound. 

‣ Better is roofline analysis: where do we sit in terms of memory bandwidth to 
arithmetic intensity? 

• Note all results for local elemental operation evaluation only.
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2D: Quads, triangles 3D: Hexahedra, prisms, tetrahedra



Some clear trends

• This behaves pretty much as you might anticipate: 

‣ For regular elements, clear hierarchy of element type/dimension, where 
throughput is lost as dimension/complexity of indexing increases. 

‣ Regular elements outperform deformed elements: memory bandwidth. 

‣ Relative performance gap between deformed elements decreases at 
moderate polynomial orders. 

• However, doesn’t really tell us how efficient our kernels are.
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Roofline model

• Roofline modelling should give better indication of ability of kernel to hit 
peak computational performance: 

Max GFLOPS/s = min(peak GFLOPS/s, peak memory bandwidth × α) 

• Profiled on Broadwell architecture using likwid performance profiling 
tools; hardware counters observed for GFLOPS/s and memory transfer.
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Roofline results
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Summary

• Efficient matrix-free implementations of key finite element operators are 
certainly achievable on modern architectures for unstructured elements. 

• Inevitable drop in performance from quads/hexahedra: complexity of 
indexing, additional cache pressure, etc. 

• However relative performance of e.g. hex/prism and quad/tri is actually 
pretty good, particularly for deformed elements; important for e.g. 
boundary layer problems with large proportion of BL prisms. 

• Clear future direction for this work!
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Thanks for listening!
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