Vectorisation for high-order simplicial elements

David Moxey College of Engineering, Maths & Physical Sciences, University of Exeter

Roman Amici, Robert M. (Mike) Kirby Scientific Computing and Imaging Institute, University of Utah

SIAM Conference on Computational Science & Engineering, Spokane, WA, USA

27th February 2019

Motivation

- challenges in three key ways.
 - bandwidth requirements.
 - use of tensor-product basis.
 - Can effectively used **SIMD instructions** to achieve very high performance.

• High-order methods potentially map well onto current/future hardware

Use of matrix-free formulations of operators to reduce memory

• Use of **sum-factorisation** to reduce operator count, which relies on the

Unstructured simulations

- Common knowledge: hex/quad elements yield best performance.
- However highly complex geometries presently require unstructured meshes.
- How to improve performance?
- Possible answer: tensor-product basis on unstructured elements: enable matrix-free operators.

es.

Unstructured elements

P5 triangle, Fekete points

- Typically unstructured elements make use of Lagrange basis functions (although not always).
- Combine this with a suitable set of quadrature (cubature) points.
- However this loses tensorproducts structure: i.e. no sum factorisation possible.

Spectral/hp element formulation

collapsed coordinates $(\eta_1, \eta_2) \in [-1, 1]^2$

(C⁰) tensor product basis $\phi_p^a(\eta_1)\,\phi_{pq}^b(\eta_2)$

"Defining" features

Generally not collocated

$$f(t) = \sum_{p=0}^{P} \sum_{q=0}^{Q} \hat{u}_{pq} \phi_p(\xi_{1i}) \phi_q(\xi_{2j})$$

modal coefficients

Uses tensor products of 1D basis functions, even for nontensor product shapes

$$\sum_{r=0}^{-p-q} \hat{u}_{pqr} \phi_p^a(\xi_{1i}) \phi_{pq}^b(\xi_{2j}) \phi_{pqr}^c(\xi_{3k})$$

basis function indexing harder

Sum-factorisation

Key to performance at high polynomial orders: complexity O(P^{2d}) to O(P^{2d-2})

$$\sum_{p=0}^{P} \sum_{q=0}^{Q} \hat{u}_{pq} \phi_{p}(\xi_{1i}) \phi_{q}(\xi_{2j})$$

This works in essentially the same way for more complex indexing:

 $\sum_{i=1}^{P} \sum_{j=1}^{Q-p} \hat{u}_{pq} \phi_{p}^{a}(\xi_{1i}) \phi_{pq}^{b}(\xi_{2j}) = \sum_{j=1}^{P} \phi_{p}^{a}(\xi_{1i}) \left| \sum_{j=1}^{Q-p} \hat{u}_{pq} \phi_{pq}^{b}(\xi_{2j}) \right|$ q = 0p=0 q=0*p*=0 store this

Key questions

- Under spectral/*hp* approach, sum-factorisation matrix-free operators are certainly possible for any element type.
- However, how much performance do we lose relative to hex/quad?
- How should **SIMD** be used?
- Developed a benchmarking utility for Helmholtz operator to test viability of this approach.

$$\nabla^2 u - \lambda u = f(x)$$

$$\rightarrow (\mathbf{L} + \lambda \mathbf{M})\hat{\mathbf{u}} = \hat{\mathbf{f}}$$

Implementation particulars

- Hand-written kernels for each element type to implement three key components: **interpolation**, **derivatives** and **inner products**.
- Written using C++: templating on (maybe heterogeneous) polynomial order and quadrature order.
- Also templates on **affine elements** (spatially-constant Jacobian) vs. **curvilinear** (spatially-varying); no consideration for Cartesian meshes.
- Templating gives *significant* improvements in runtime performance, particularly for complex loop structures found in this regime.

Data layout

Natural to consider data laid out element by element

Data layout

Exploit vectorisation by grouping DoFs by vector width

Data layout

elements

- Operations occur over groups of elements of size of vector width.
- Use C++ data type that encodes vector operations (common strategy)

basis functions

Tests

• Benchmarking of Helmholtz operator performed on two architectures with

Skylake (AVX512)
Xeon Gold 6130
2.1 / 1.7 / 1.3 GHz standard / AVX / AVX512
16 / 2
870 (AVX2) 1331 (AVX512)

Assessing performance

- Various techniques used to assess kernel performance:
 - **Throughput**: number of local DoF/s processed, for a mesh whose sizes exceeds available cache.
 - GFLOP/s gives some indication of capabilities, provided we are not memory-bound.
 - Better is **roofline analysis**: where do we sit in terms of memory bandwidth to arithmetic intensity?
- Note all results for local elemental operation evaluation only.

Throughput (AVX2, Broadwell)

2D: Quads, triangles

3D: Hexahedra, prisms, tetrahedra

Some clear trends

- This behaves pretty much as you might anticipate:
 - For regular elements, clear hierarchy of element type/dimension, where throughput is lost as dimension/complexity of indexing increases.
 - Regular elements outperform deformed elements: memory bandwidth.
 - Relative performance gap between deformed elements decreases at moderate polynomial orders.
- However, doesn't really tell us how efficient our kernels are.

Throughput (AVX512/AVX2, Skylake)

3D: 'Regular' elements

3D: 'Deformed' elements

Roofline model

peak computational performance:

• Roofline modelling should give better indication of ability of kernel to hit

Max GFLOPS/s = min(peak GFLOPS/s, peak memory bandwidth $\times \alpha$)

• Profiled on Broadwell architecture using likwid performance profiling tools; hardware counters observed for GFLOPS/s and memory transfer.

Roofline results

2D: Quads, triangles

3D: Hexahedra, prisms, tetrahedra

Summary

- Efficient matrix-free implementations of key finite element operators are certainly achievable on modern architectures for unstructured elements.
- Inevitable drop in performance from quads/hexahedra: complexity of indexing, additional cache pressure, etc.
- However relative performance of e.g. hex/prism and quad/tri is actually pretty good, particularly for deformed elements; important for e.g. boundary layer problems with large proportion of BL prisms.
- Clear future direction for this work!

https://davidmoxey.uk/

<u>d.moxey@exeter.ac.uk</u>

www.nektar.info

Thanks for listening!

@davidmoxey