Vectorisation for high-order

simplicial elements
David Moxey

Roman Amici, Robert M. (Mike) Kirby

SIAM Conference on Computational Science & Engineering,
Spokane, WA, USA

27t February 2019



Motivation

» High-order methods potentially map well onto current/future hardware
challenges in three key ways.

» Use of matrix-free formulations of operators to reduce memory
bandwidth requirements.

» Use of sum-factorisation to reduce operator count, which relies on the
use of tensor-product basis.

» Can effectively used SIMD instructions to achieve very high
performance.



Unstructured simulations

e Common knowledge: hex/quad
elements yield best performance.

* However highly complex geometries
presently require unstructured meshes.

e How to improve performance?
* Possible answer: tensor-product basis

on unstructured elements: enable
matrix-free operators.




Unstructured elements

 Typically unstructured elements
make use of Lagrange basis
functions (although not always).

» Combine this with a suitable set
of quadrature (cubature) points.

* However this loses tensor-
products structure: i.e. no sum
factorisation possible.
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Spectral/hp element formulation
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"Defining" features

Generally not collocated
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quadrature points modal coefficients

Uses tensor products of 1D basis functions, even for non-
tensor product shapes
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Sum-factorisation

Key to performance at high polynomial orders: complexity O(P2d) to O(P2d-2)
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This works in essentially the same way for more complex indexing:
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Key questions

Under spectral/hp approach, sum-factorisation matrix-free operators are
certainly possible for any element type.

However, how much performance do we lose relative to hex/quad?

How should SIMD be used?

Developed a benchmarking utility for Helmholtz operator to test viability
of this approach.
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Implementation particulars

Hand-written kernels for each element type to implement three key
components: interpolation, derivatives and inner products.

Written using C++: templating on (maybe heterogeneous) polynomial
order and quadrature order.

Also templates on affine elements (spatially-constant Jacobian) vs.
curvilinear (spatially-varying); no consideration for Cartesian meshes.

Templating gives significant improvements in runtime performance,
particularly for complex loop structures found in this regime.

9



Data layout

Natural to consider data laid out element by element

degrees of freedom —»

elements




Data layout

Exploit vectorisation by grouping DoFs by vector width

degrees of freedom —»

elements




Data layout

elements

» Operations occur over groups of
elements of size of vector width.

» Use C++ data type that encodes
vector operations (common strategy)

basis functions
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Tests

* Benchmarking of Helmholtz operator performed on two architectures with
varying SIMD widths.

Broadwell (AVX2) Skylake (AVX512)

Model E5-2697 v4 Xeon Gold 6130

Clock speed(s) 2.3/2.0GHz 21/1.7/1.3 GHz
P standard / AVX2  standard / AVX / AVX512
Cores / sockets 18 /2 16/ 2

870 (AVX2)

Max node GFLOP/s 1152 1331 (AVX512)
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Assessing performance

» Various techniques used to assess kernel performance:

» Throughput: number of local DoF/s processed, for a mesh whose sizes
exceeds available cache.

» GFLOP/s gives some indication of capabilities, provided we are not
memory-bound.

» Better is roofline analysis: where do we sit in terms of memory bandwidth to
arithmetic intensity?

 Note all results for local elemental operation evaluation only.
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Throughput (AVX2, Broadwell)
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Some clear trends

 This behaves pretty much as you might anticipate:

» For regular elements, clear hierarchy of element type/dimension, where
throughput is lost as dimension/complexity of indexing increases.

» Regular elements outperform deformed elements: memory bandwidth.

» Relative performance gap between deformed elements decreases at
moderate polynomial orders.

* However, doesn’t really tell us how efficient our kernels are.
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Throughput (DoF/s)

Throughput (AVX512/AVX2, Skylake)
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Roofline model

» Roofline modelling should give better indication of ability of kernel to hit
peak computational performance:

Max GFLOPS/s = min(peak GFLOPS/s, peak memory bandwidth x &)

* Profiled on Broadwell architecture using 1ikwid performance profiling
tools; hardware counters observed for GFLOPS/s and memory transfer.
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GFLOPS

Roofline results
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Summary

Efficient matrix-free implementations of key finite element operators are
certainly achievable on modern architectures for unstructured elements.

Inevitable drop in performance from quads/hexahedra: complexity of
indexing, additional cache pressure, etc.

However relative performance of e.g. hex/prism and quad/tri is actually
pretty good, particularly for deformed elements; important for e.g.
boundary layer problems with large proportion of BL prisms.

Clear future direction for this work!
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Thanks for listening!

https://davidmoxey.uk/ @davidmoxey

d.moxey@exeter.ac.uk
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