Developing methods for exascale

CFD simulations at high orders
David Moxey

Chris Cantwell, Martin Vymazal & Spencer Sherwin

Platform for Advanced Scientific Computing Conference,
Basel, Switzerland

i ExaFLOW
ond July 2018 ”:f:'::.....;::i‘f..

Outline

Challenges for exascale: hardware landscape
The spectral/hp element method

Exploiting vectorisation

Performance results

summary

What CFD do we want to do at exascale”

* |ndustrial simulations at high Reynolds
numbpers

* Things that RANS struggles with: high-
fidelity, detachment, vortex interaction

e SVV LES formulation of incompressible NS

Cp: 2.00 -1.60 -1.20 -0.80 -0.40 0.00

P i

"7.# - i N e m_,,,_.-er ol t}"é/}f’ - JJ;\%J
: e ?,ﬁ, - NG N

""\-1

Implicit large-eddy simulation of a wingtip vortex, AIAA Journal 54 (2), 2016

Why is exascale CFD hard?

» |deally, want really fast single-core nodes with lots of memory
bandwidth

* |nstead, many cores per node @ |lower clock speed
e Very [imited memory bandwidth, complicated memory hierarchies

Therefore need algorithms with high arithmetic intensities that can
actually use FLOPS available

high-order methods

Spectral/hp element method
2 (gt

—
map from
reference
element

tensor product

_ : - | \ \ \
x A : expansion
2 7T TN _
' | | L = :
\ ; e < —
D\ /| 9 | "
J é | X f

pq\N2

AN

AN collap_sed
P\ | coordinates

g for quadrature

5

Why high order?

Time = 0

‘Exact’ solution N,=125; F=1

1.05
0.95
0.83
0.75
0.65

0.335
0.45

0.35
- 025
0.135
0.05
-0.00

Pressure (mmHg)

—y
[
(=]

-
[=}
o

(4]
Q

20
10
00 2
Time (s)
T —

Time (s)

4

Pressure (mmHg)

ey
(1]
(=]

100

[42]
[=]

o

Pressure (mmHg)

Implementation choices

5

m

—>

‘ Local Strategy

Sum-factorisation

—P

Global Strategy || | -t it s

Increasing
polynomial order

More
localised
memory

access

h-to-p efficiently

o Approach performance varies
wildly depending on many factors
that are not a priori determinable

=

__5000e+01

5

3
o

* Allow us to explore the space of
flops/byte ratio

]

P2
-

Imlln||||||||||||||||||||||||
é 5

. e+01

* Also important for e.qg. variable-p
simulations

global edge coefficients U,

* o o ° 9« ¢ —0—0—0—0—0—9
° ¢

Ql /. QZ ® -
° *o—>o ® order >4 °
O ¢

® ® @ ® > @ @ @ ® @ @ @ ®

local edge coefficients @i local edge coefficients Gi” 2

Sum-factorisation

Essential for performance at high polynomial orders

P Q P Q
DD Upg®p(E1)Pg(E) = D, D& | D) Upg®a(Er))
p=1qg=1 p=1 g=1 \
store this

2D: O(P4) = O(P3) 3D: O(P6) = O(P4)

P
Can still do this for tets: o _
harder indexing Ui o G3k) = Z

Z Upagr®3 (1) Poa(E0) D5a(Eak)

Unstructured simulations

Hexes yield best performance Can't use for complex geometries
can efficiently exploit sum factorisation How to iImprove performance?

11

EXploiting vectorisation

Key to achieving peak performance is exploiting
vectorisation (SSE, FMA, AVX, AVX-512, ...)

Recent work has focused on achieving this with
tuned kernels for key operators

Particular focus on matrix-free approaches that
avoid construction of a matrix per-element

Try to exploit tensor-product construction of basis

12

Collections

o Reformulate implementation choices into kernel
operations over multiple elements

. d X
o (Group geometric terms —

d&;
 Focus around key Componjents of Laplacian:
= Backward transformation: u3 = »; &, ¢p(X)
= |nner product: (¥, O)) °
= Derivatives: 0u/oXx;

= |[nner product w.r.t. derivative: (@, vd))

13

Collections

Use BLAS calls throughout
Various implementation strategies for performance across p

’ ’ 1 large dgemm
) B,
E— SumPac: |ee|[oeenns
o P . =
o0 [0e0] [00] |
[N BBAEN N NN NN
0] Lol Lood L _
O 0 O

+ 4 smaller dgemm

4 quad mesh

Can also do this for non-TP elements, but
data ordering harder, matrices smaller (bad for BLAS)

14

Small matrices with L 1bxsmm

Most of the matrix-matrix multiplies done in collections are small,
at least in one rank

Trialling use of L1bxsmm for small matrix multiplications

Ilboxsmm yields encouraging performance gains over standard
MKL/BLAS, particularly for non-TP elements

Bottleneck: transposes (current out-of-place)

= Appears to be very challenging for non-tensor product elements

15

400 -

350

300

DO
oy
-

GFLOP/s
)
-
S

150 A

100 -

50 7

1boxsmm vs Intel MKL

Hexahedral elements

B Intel MKL
Bl libxsmm

2 4 6 8
P

2 X Intel ES-2670v4
~1.2 TFLOP/s peak

Tetrahedral elements

B Intel MKL
B libxsmm

2 4 6 8
P

Good performance gains
at low/moderate orders

Anything else we can do?

16

Data layout

Natural to consider data laid out element by element

degrees of freedom =——»

elements

Data layout

May be able to exploit vectorisation by grouping DokFs by vector width

degrees of freedom =——»

elements

Data layout

elements

Operations then occur over
groups of elements of
size of vector width

basis functions

Possible downside:

requires duplicating

basis data for each
vector lane

19

Implementation details

 Benchmark against L1bxsmm and MKL

 Hand-written loops for sum-factorisation
o EXxplicit intrinsics for vector operations
e AVX: 4 double multiplications/cycle

e combined with FMA

* non-temporal stores where appropriate

20

GFLOP/s

400 -

300

100 A

Fairly mediocre hex performance

Hexahedral elements

Performance

B Intel MKL
B libxsmm

B AVX

GFLOP/s

200 -

175 A

150 A

—
DO
(@)

—_
-]
-]

50 A

25

Tetrahedral elements

B Intel MKL
B libxsmm

B AVX

Pretty good for tets at low-order

Indexing

Indexing for tets is a bit complex

Could we do better by giving compiler more
information for unrolling loops?

Might also help hex performance

Use some C++ templating

Templated performance

Templating gives good performance gains across the board

Hexahedral elements Tetrahedral elements
_ 250 T
Bl AVX (untemplated) Bl AVX (untemplated)
[AVX (templated) [AVX (templated)
200 -~
£ 150 -
A
O
]
&
O 100
50 -
0
2 4 §) 8 10 2 4 §) 8 10
P P

GFLOP/s

400

390

300 A

DO
Ot
-

(\W)
-
-

150 A

100 -

50 A

Final comparison

Hexahedral elements

B Intel MKL
B libxsmm

B AVX

250 A

200 A

90

Tetrahedral elements

B Intel MKL
B libxsmm

B AVX

Templating gives good performance gains across the board

Other operators

¢ mﬂer pI’OdUCt I’GQUII’GS more WOI’k Tetrahedral elements
B Inte]l] MKL

: | 400 - B AVX
 multiply by elemental Jacobian 350 -
300 -
« multiply by quadrature weights 5
200 -

O

. . . 150 -
e avoid storage of premultiplied 100 -
quadrature weights 50 -

 |nitial results seem fairly promising

summary

 Need to think very hard about data layout to
properly exploit underlying hardware

o Efficient use of data layout can significantly improve
performance, at least for operators considered here

A work In progress!
* Full Helmholtz operator

e Wider vector lanes (AVX-512)

20

Thanks for listening!

https://davidmoxey.uk/ @davidmoxey

d.moxey@exeter.ac.uk

www.nektar.info

https://davidmoxey.uk
mailto:d.moxey@exeter.ac.uk
http://www.nektar.info

Nektar++ high-order framework

v

AY/
VA

Framework for spectral/hp element method:

 Dimension independent and supports various discretisations (CG/DG/HDG)

 Mixed elements (quads/tris, hexes, prisms, tets, pyramids) using hierarchical
modal and classical nodal formulations

» Solvers for (in)compressible Navier-Stokes, advection-diffusion-reaction, shallow
water equations, ...

e Parallelised with MPI, tested scaling up to ~10k cores

http://www.nektar.info/ nektar-users@imperial.ac.uk https://qitlab.nektar.info/

28

http://www.nektar.info/
mailto:nektar-users@imperial.ac.uk
https://gitlab.nektar.info/

