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What CFD do we want to do at exascale?
• Industrial simulations at high Reynolds 

numbers


• Things that RANS struggles with: high-
fidelity, detachment, vortex interaction


• SVV LES formulation of incompressible NS

the possible re-laminarization of the vortex as it is shed from the wing [1] and the origin of meandering [2, 3, 4],
the low-frequency movement of the vortex core and the evolution of the vortex structure. Vortices shed from
lifting surfaces pose challenges to model in many an industrial context such as wind turbines, helicopter blades,
high-lift configuration of aircraft and high-performance automotive industry [5, 6, 7, 8, 9]. Developing a better
understanding of the near-wake of the vortex, lying within one chord length of the trailing edge of the lifting
surface, is therefore essential in understanding the complex flow-structure interactions of interest in these
problems. The far-field properties of these vortices are also a challenge for the aeronautics industry, where
their persistence imposes strict limits on distances between landing aircraft [10]. For these reasons we are
interested in refining modeling methods for investigating the growth of the vortex in the near-field.

Conceptually, the simplest approach to ensure that the flow physics are accurately simulated is to perform
a direct numerical simulation (DNS), in which all necessary scales are resolved at a given Reynolds number.
For cases at even moderately high Re however, this approach is clearly unfeasible. To demonstrate this, let us
assume the Kolmogorov hypothesis holds for this flow and as a very rough approximation that the length scale
l0 associated to the largest eddies is of the same order as the chord length l0 ⇡ c. The number of grid points
needed to resolve the Kolmogorov length-scale relates with the Reynolds number as ⌘ ⇠ Re

�3/4 , meaning
that three-dimensional simulation of a uniformly turbulent flow requires a resolution of Re

9/4 grid points. For
aeronautical test cases, where Re is typically O(106) or O(107), we therefore require O(1014) to O(1016) grid
points to resolve the flow. Even accounting for variations in geometry which may permit varying resolution
throughout the domain, based on the current rate of advancement of high-performance computing (HPC)
facilities, resolving fully developed three-dimensional flow at high Reynolds number in a timely manner will
continue to be well out of reach for the foreseeable future.

Figure 1: Wingtip vortex developing over a NACA 0012 profile with rounded wing cap in a wind tunnel,
modeling the experimental setup of Chow et al.[1] Both wing surface and streamlines are colored by static
pressure coefficient Cp = 2 · (p� p1)/⇢1U
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2
1 = 1 and ⇢1 = 1.

Consequently, there has been ongoing development of modeling methods where small turbulent scales are
not explicitly computed. Traditional Reynolds Averaged Navier Stokes (RANS) methods, alongside more
recent advanced such as the Reynolds Stress methods [11], have been developed to simulate both the complex
three-dimensional transitioning boundary layer on the wing and the highly curved flow within the vortex. More
computationally-intensive methods, such as LES and Lattice Boltzman VLES[12] have also been developed
or adapted to investigate such flows, in correlating the simulated results to experimental data. The lattice
Boltzman method has been used in conjunction with a modified k � " two-equation turbulence model as well
as turbulence wall shear stress model were used to perform a VLES where the walls were the turbulent flow
at the wall was modelled.

The key feature of these studies is in their use of reduced equations or turbulence models, all of which require
parameters to tune their performance. Since the underlying physical processes that dictate the development
and evolution of vortices is not well understood, it is therefore difficult a priori to determine appropriate
settings for these models. The aim of this work is therefore to demonstrate how an implicit LES method,
in which the number of parameters is comparably very small and is used to provide additional stability, can
successfully be leveraged to obtain accurate comparisons against experimental data. We appreciate that
there may be different views of the definition of implicit LES. We have adopted the definition of Sagaut [13],
who explicitly refers to SVV as an implicit LES model and states that “using a numerical viscosity with no
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Why is exascale CFD hard?

• Ideally, want really fast single-core nodes with lots of memory 
bandwidth


• Instead, many cores per node @ lower clock speed


• Very limited memory bandwidth, complicated memory hierarchies


Therefore need algorithms with high arithmetic intensities that can 
actually use FLOPS available


✓ high-order methods
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Spectral/hp element method
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Figure 1: Du↵y transformation from the standard quadrilateral element ⌦
quad
st with collapsed coordinates

(⌘1, ⌘2) to triangular element ⌦
tri
st with coordinates (⇠1, ⇠2). We also show how ⌦

tri
st is taken to a general

curvilinear element through the isoparametric mapping ~�. Interior lines demonstrate how quadrature points,

taken to be equally spaced in this example, are transformed under each mapping.

u(~⇠) =
P1X

p=0

P2X

q=0

P3X

r=0

ûpqr p(⇠1) q(⇠2) r(⇠3). (2)

In tetrahedral and prismatic elements, we use a collapsed coordinate system (⌘1, ⌘2, ⌘3) 2
[�1, 1]3, obtained through one or more applications of the square-to-triangle Du↵y transfor-
mation [9], to obtain a similar tensorial decomposition. Figure 1 demonstrates the Du↵y
transformation in a two-dimensional setting through the mapping

⌘1 = 2
1 + ⇠1

1� ⇠2
� 1, ⌘2 = ⇠2.

Consequently, the summation over each mode i as a function of p, q and r, then becomes
more complex, as indicated by the indexing sets above. For example, a prismatic element
has the general expansion

u(~⇠) =
P1X

p=0

P2X

q=0

P3�pX

r=0

ûpqr 
a
p(⇠⌘:1) 

a
q (⇠⌘:2) 

b
pr(⇠⌘:3), (3)

where we note that
:::::::::::
⌘i 2 [�1, 1]

:::
is

::::
the

::::::::::
collapsed

::::::::::::
coordinate

::::::
and,

:::::::::::::
additionally,

::
 

b depends
on both p and r. We note that although the number of modes has been reduced, we still
maintain a complete polynomial space on ⌦st. The basis functions  =  

a
:::
 

a
:
and  b are the

tensor-product modified hierarchical basis functions defined in [13], which combines
::::::::
combine

a set of orthogonal Jacobi polynomials with linear finite element basis functions to achieve a
separation of boundary and interior modes.

We must additionally discuss how a given PDE will be discretised. For the problems
we consider here, the continuous or discontinuous Galerkin methods will be used, where the
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Why high order?
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Figure 4: Examples of external aerodynamics problems solved using the CompressibleFlowSolver. (a) Flow over a cylinder at Re = 3, 900. (b) Euler simulation
over a NACA0012 aerofoil at Ma1 = 0.8. (c) Temperature of flow passing over a T106C low-pressure turbine blade at Re = 80, 000.

where U = [⇢, ⇢u, ⇢v, ⇢w, E]> is the vector of conserved vari-
ables in terms of density ⇢, velocity (u1, u2, u3) = (u, v,w), E is
the specific total energy, and

F(U) =

2
666666666666666664

⇢u ⇢v ⇢w
p + ⇢u2 ⇢uv ⇢uw
⇢uv ⇢v2 + p ⇢vw
⇢uw ⇢vw ⇢w2 + p

u(E + p) u(E + p) v(E + p)

3
777777777777777775

where p is the pressure. To close the system we need to specify
an equation of state, in this case the ideal gas law p = ⇢RT
where T is the temperature and R is the gas constant. For the
Euler equations, the tensor of viscous forces Fv(U) = 0, and for
Navier-Stokes

Fv(U) =

2
666666666666666664

0 0 0
⌧xx ⌧yx ⌧zx
⌧xy ⌧yy ⌧zy
⌧xz ⌧yz ⌧zz
A B C

3
777777777777777775

A = u⌧xx + v⌧xy + w⌧xz + k@xT,
B = u⌧yx + v⌧yy + w⌧yz + k@yT,
C = u⌧zx + v⌧zy + w⌧zz + k@zT

where in tensor notation the stress tensor ⌧xi x j = 2µ(@xi ui +

@xi u j �
1
3@xk uk�i j), µ is the dynamic viscosity calculated using

Sutherland’s law and k is the thermal conductivity.
To discretise these equations in space, we adopt an approach

which allows for the resolution of discontinuities and shocks
that may appear in the solution at transonic and supersonic flow
speeds. We therefore use approximations to our solution com-
prised of functions which are not continuous across element
boundaries. Traditionally, we follow a Galerkin approach by
utilising the variational form of the equations in order to ob-
tain the discontinuous Galerkin method. One of the key fea-
tures of Nektar++ is the ability to select a wide range of nu-
merical options, and to this end we support both discontinuous

Galerkin and flux reconstruction spatial discretisations, which
have various numerical equivalences [22] but may possess dif-
ferent performance characteristics. In the flux reconstruction
formulation, we instead use the equation in di↵erential form in
combination with correction functions which impose continuity
of fluxes between elements.

In either case, information is transferred between elements
by solving a one-dimensional Riemann problem at the interface
between two elements. For the non-viscous terms there is sup-
port for a wide variety of Riemann solvers, including an exact
solution or a number of appproximate solvers such as HLLC,
Roe and Lax-Friedrichs solvers [23]. For the viscous terms, we
utilise a local discontinuous Galerkin method (or the equivalent
flux reconstruction version). Various versions of the discontin-
uous Galerkin method which are available throughout the lit-
erature, mostly relating to the choices of modal functions and
quadrature points, can also be readily selected by setting appro-
priate options in the session file.

Given the complexity and highly nonlinear form of these
equations, we adopt a fully explicit formulation to discre-
tise the equations in time, allowing us to use any of the ex-
plicit timestepping algorithms implemented through the gen-
eral linear methods framework [16], including 2nd and 4th order
Runge-Kutta methods. Finally, in order to stabilise the flow
in the presence of discontinuities we utilise a shock capturing
technique which makes use of artificial viscosity to damp os-
cillations in the solution, in conjunction with a discontinuity
sensor adapted from the approach taken in [24] to decide where
the addition of artificial viscosity is needed.

Figure 4 shows representative results from compressible flow
simulations of a number of industrially-relevant test cases. We
first highlight two simulations which utilise the Navier-Stokes
equations. Fig. 4(a) demonstrates the three-dimensional ver-
sion of the compressible solver by investigating the flow over a
cylinder at Re = 3,900. In this figure we visualise isocontours
of the pressure field and colour the field according to the den-
sity ⇢. To demonstrate the shock capturing techniques available
in the code, Fig. 4(b) shows the results of an Euler simulation

8

(a) (b)

(c)

Figure 4: Examples of external aerodynamics problems solved using the CompressibleFlowSolver. (a) Flow over a cylinder at Re = 3, 900. (b) Euler simulation
over a NACA0012 aerofoil at Ma1 = 0.8. (c) Temperature of flow passing over a T106C low-pressure turbine blade at Re = 80, 000.
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To discretise these equations in space, we adopt an approach

which allows for the resolution of discontinuities and shocks
that may appear in the solution at transonic and supersonic flow
speeds. We therefore use approximations to our solution com-
prised of functions which are not continuous across element
boundaries. Traditionally, we follow a Galerkin approach by
utilising the variational form of the equations in order to ob-
tain the discontinuous Galerkin method. One of the key fea-
tures of Nektar++ is the ability to select a wide range of nu-
merical options, and to this end we support both discontinuous

Galerkin and flux reconstruction spatial discretisations, which
have various numerical equivalences [22] but may possess dif-
ferent performance characteristics. In the flux reconstruction
formulation, we instead use the equation in di↵erential form in
combination with correction functions which impose continuity
of fluxes between elements.

In either case, information is transferred between elements
by solving a one-dimensional Riemann problem at the interface
between two elements. For the non-viscous terms there is sup-
port for a wide variety of Riemann solvers, including an exact
solution or a number of appproximate solvers such as HLLC,
Roe and Lax-Friedrichs solvers [23]. For the viscous terms, we
utilise a local discontinuous Galerkin method (or the equivalent
flux reconstruction version). Various versions of the discontin-
uous Galerkin method which are available throughout the lit-
erature, mostly relating to the choices of modal functions and
quadrature points, can also be readily selected by setting appro-
priate options in the session file.

Given the complexity and highly nonlinear form of these
equations, we adopt a fully explicit formulation to discre-
tise the equations in time, allowing us to use any of the ex-
plicit timestepping algorithms implemented through the gen-
eral linear methods framework [16], including 2nd and 4th order
Runge-Kutta methods. Finally, in order to stabilise the flow
in the presence of discontinuities we utilise a shock capturing
technique which makes use of artificial viscosity to damp os-
cillations in the solution, in conjunction with a discontinuity
sensor adapted from the approach taken in [24] to decide where
the addition of artificial viscosity is needed.

Figure 4 shows representative results from compressible flow
simulations of a number of industrially-relevant test cases. We
first highlight two simulations which utilise the Navier-Stokes
equations. Fig. 4(a) demonstrates the three-dimensional ver-
sion of the compressible solver by investigating the flow over a
cylinder at Re = 3,900. In this figure we visualise isocontours
of the pressure field and colour the field according to the den-
sity ⇢. To demonstrate the shock capturing techniques available
in the code, Fig. 4(b) shows the results of an Euler simulation
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Figure 5: Contours of the magnitude of velocity in a periodic hill simulation at
Re = 2800.

for flow over a NACA0012 aerofoil at a farfield Mach number
Ma1 = 0.8 and a 1.5� angle of attack. The transonic mach
number of this flow leads to the development of a strong and
weak shock along the upper and lower surfaces of the wing re-
spectively. This figure shows isocontours of the mach number
where the presence of the shocks are clearly identified. Finally,
In Fig. 4(c), we visualise the temperature field from flow pass-
ing over a T106C low-pressure turbine blade at Re = 80,000
to highlight applications to high Reynolds number flow simula-
tions.

4.2. Transitional turbulent flow dynamics

Transient problems in which turbulence dominates the flow
domain, or in which the transition to turbulence dominates the
simulation, remain some of the most challenging problems to
resolve in computational fluid simulations. Here, accurate nu-
merical schemes and high resolution of the domain is critical.
Moreover, any choice of scheme must be e�cient in order to ob-
tain results in computationally feasible time-scales. Tradition-
ally, highly resolved turbulence simulations, such as the Taylor-
Green vortex problem, lie firmly in the class of spectral meth-
ods. However, spectral methods typically lead to strong geom-
etry restrictions which limits the domain of interest to simple
shapes such as cuboids or cylinders.

Whilst spectral element methods may seem the ideal choice
for such simulations, particularly when the domain of interest
is geometrically complex, they can be more computationally
expensive in comparison to spectral methods. However, when
the domain of interest has a geometrically homogeneous com-
ponent – that is, the domain can be seen to be the tensor prod-
uct of a two-dimensional ‘complex’ part and a one-dimensional
segment – we can combine both the spectral element and tradi-
tional spectral methods to create a highly e�cient and spectrally
accurate technique [4].

We consider the application of this methodology to the prob-
lem of flow over a periodic hill, depicted in Fig. 5, where the
flow is periodic in both streamwise and spanwise directions.
This case is a well-established benchmark problem in the DNS
and LES communities [25], and is challenging to resolve due to
the smooth detachment of the fluid from the surface and recir-
culation region. Here we consider a Reynolds number of 2800,
normalised by the bulk velocity at the hill crest and the height
of the hill, with an appropriate body forcing term to drive the
flow over the periodic hill configuration.

The periodicity of this problem makes it an ideal candidate
for the hybrid technique described above. We therefore con-

struct a two-dimensional mesh of 3626 quadrilateral elements
at polynomial order P = 6, and exploit the domain symmetry
with a Fourier pseudospectral method consisting of 160 collo-
cation points in the spanwise direction to perform the simula-
tion. This yields a resolution of 20.9M degrees of freedom per
field variable and allows us to obtain excellent agreement with
the benchmark statistics.

4.3. Flow stability
In addition to direct numerical simulation of the full

non-linear incompressible Navier-Stokes equations, the
IncNavierStokesSolver supports global flow stability
analysis through the linearised Navier-Stokes equations with
respect to a steady or periodic base flow. This process identifies
whether a steady flow is susceptible to a fundamental change
of state when perturbed by an infinitesimal disturbance. The
linearisation takes the form

@u0

@t
+ (u0 · r)U + (U · r)u0 = �rp0 + ⌫r2u0

r · u0 = 0,

where U is the base flow and u0 is now the infinitesimal pertur-
bation. The time-independent base flow is computed through
evolving Equs. 9 to steady-state with appropriate boundary con-
ditions. For time-period base flows, the flow is sampled at reg-
ular intervals and interpolated.

The linear evolution of a perturbation under Equs. 10 can be
expressed as

u0(t) = A(t)u00

for some initial state u00, and we seek, for some arbitrary time
T, the dominant eigenvalues and eigenmodes of the operator
A(T ), which are solutions to the equation

A(T )ũ j = � jũ j.

The sign of the leading eigenvalues � j are used to establish the
global stability of the flow. An iterative Arnoldi method [26]
is applied to a discretisation M of A(T ). Repeated actions
of M are applied to the initial state u0 using the same time-
integration code as for the non-linear equations [27]. The re-
sulting sequence of vectors spans a Krylov subspace of M and,
through a partial Hessenberg reduction, the leading eigenval-
ues and eigenvectors can be e�ciently determined. The same
approach can be applied to the adjoint form of the linearised
Navier-Stokes evolution operatorA⇤ to examine the receptivity
of the flow and, in combination with the direct mode, identify
the sensitivity of the flow to base flow modification and local
feedback. The direct and adjoint methods can also be combined
to identify convective instabilities over di↵erent time horizons
⌧ in a flow by computing the leading eigenmodes of (A⇤A)(⌧).
This is referred to as transient growth analysis.

To illustrate the linear analysis capabilities of Nektar++, we
use the example of two-dimensional flow past a circular cylin-
der at Re = 42, just below the critical Reynolds number for
the onset of the Bénard-von Kármán vortex street. This is a
well-established test case for which significant analysis is avail-
able in the literature. We show in Fig. 6 the leading eigen-
modes for the direct (A) and adjoint (A⇤) linear operators for
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Figure 6: Linear stability analyses of two-dimensional flow past a circular
cylinder at Re = 42. Illustrative plots of (a) streamwise (left) and transverse
(right) components of velocity for the dominant direct mode, (b) streamwise
(left) and transverse (right) velocity for the dominant adjoint mode and (c)
structural sensitivity to base flow modification (left) and local feedback (right).

both the streamwise and cross-stream components of velocity.
The modes are characterised by the asymmetry in the stream-
wise component and symmetry in the cross-stream component.
We also note the spatial distribution of the modes with the
leading direct modes extending far downstream of the cylin-
der, while the adjoint modes are predominantly localised up-
stream but close to the cylinder. This separation is a result of
the non-normality of the A operator. We also show the struc-
tural sensitivity of the flow to base flow modification and local
feedback. The latter highlights regions where localised forcing
would have greatest impact on the flow.

4.4. Shallow water modelling

The ShallowWaterSolver simulates depth-averaged wave
equations, often referred to as “long-wave” approximations.
These equations are often used for engineering applications
where the vertical dimension of the flow is small compared
to the horizontal. Examples of applications include tidal flow,
river flooding and nearshore phenomena such as wave-induced
circulation and wave disturbances in ports.

The governing equations are derived from potential flow:
the Laplace equation inside the flow domain and appropriate
boundary conditions at the free surface and bottom. The two
key steps are (i) the expansion of the velocity potential with re-
spect to the vertical coordinate and (ii) the integration of the
Laplace equation over the fluid depth. This results in sets of
equations expressed in horizontal dimensions only. Depending
on the order of truncation in nonlinearity and dispersion, nu-
merous long-wave equations with di↵erent kinematic behavior
have been derived over the years [28, 29, 30].

Many depth-averaged equations can be written in a generic
form as

@U
@t
+ r · F(U) + D(U) = S(U) , (11)

where U = [H ,Hu ,Hv]T is the vector of conserved variables.
The horizontal velocity is denoted by u = [u(x, t) , v(x, t)]T ,
H(x, t) = ⌘(x, t) + d(x) is the total water depth, ⌘ is the free
surface elevation and d the still water depth. The flux vector

F(U) is given as

F(U) =

2
666666664

Hu Hv
Hu2 + gH2/2 Huv

Huv Hv2 + gH2/2

3
777777775 , (12)

in which g is the acceleration due to gravity. The source term
S(U) contains forcing due to, for example, Coriolis e↵ects, bed-
slopes and bottom friction. Importantly, D(U) contains all the
dispersive terms. The actual form of the dispersive terms di↵ers
between di↵erent wave equations and the term can be highly
complex with many high-order mixed and spatial derivatives.

At present, the ShallowWaterSolver supports the non-
dispersive shallow-wter equations (SWE) and the weakly dis-
persive Boussinesq equations of Peregrine [28]. The SWE are
recovered if D(U) ⌘ 0 while for the Peregrine equation the ex-
pression is:

D(U) = @t

2
666666664

0
(d3/6)@x (r · (Hu/d)) � (d2/2)@x (r · (Hu))
(d3/6)@y (r · (Hu/d)) � (d2/2)@y (r · (Hu))

3
777777775

(13)

The Boussinesq equations are solved using the wave conti-
nuity approach [31]. The momentum equations are first recast
into a scalar Helmholtz type equation and solved for the aux-
iliary variable z = r · @t (Hu). The conservative variables are
recovered in a subsequent step.

A frequently used test-case for Boussinesq models is the
scattering of a solitary wave impinging a vertical cylinder. Here
a solitary wave with nonlinearity ✏ = 0.1 is propagating over a
still water depth of 1 m (✏ = A/d, where A is the wave ampli-
tude). The initial solitary wave condition is given by Laitone’s
first order solution. The cylinder has a diameter of 4 m, giving
a Keulegan-Carpenter number well below unity and di↵raction
number on the order of 2. Hence, the viscous e↵ects are small
while the di↵raction and scattering are significant.

We compute the solution in the domain x 2 [�25 , 50] me-
ters and y 2 [�19.2 , 19.2] meters, discretized into 552 triangles
using P = 5. Snapshots of the free surface elevation at four
di↵erent times are shown in Fig. 7. In Fig. 7a the solitary wave
reaches its maximum run-up on the cylinder, while in Fig. 7b
the peak of solitary wave has reached the center of the cylin-
der and a depression in the free surface around the cylinder is
clearly visible. The propagation of the scattered, and later re-
flected from the side walls, waves are seen in Figs. 7c and 7d.

4.5. Cardiac electrophysiology
The cardiac electrical system in the heart is the signalling

mechanism used to ensure coordinated contraction and e�cient
pumping of blood. Conduction occurs due to a complex se-
quence of active ion exchanges between intracellular and extra-
cellular spaces, initiated due to a potential di↵erence between
the inside and outside of the cell exceeding a threshold, pro-
ducing an action potential. This causes a potential di↵erence
across boundaries with adjacent cells, resulting in a flow of ions
between cells and triggering an action potential in the adjacent
cell. Disease, age and infarction lead to interruption of this
signalling process and may produce abnormal conduction pat-
terns known as arrhythmias. Clinically this can be treated using
catheter ablation, however acurately selecting the most e↵ective
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Figure 7: Solitary wave impinging a cylinder. (a) t = 4.5 s; (b) t = 5.5 s; (c)
t = 8.5 s; (d) t = 12.5 s;

substrate modification to restore normal rhythm is often partic-
ularly challenging and may benefit from insight derived from
computer modelling.

The CardiacEPSolver models the conduction process us-
ing the monodomain equations

�

 
Cm
@u
@t
+ Iion

!
= r · �ru,

where the Iion term captures the complex movement of ions
in and out of cells and is itself modelled as a set of ordinary
di↵erential equations. Additionally, � captures the potentially
heterogeneous and anisotropic nature of the tissue which af-
fects the speed of electrical propagation. While full 3D simula-
tions of myocardium are traditionally performed, the left atrium
is su�ciently thin that it can be reasonably represented as a
two-dimensional manifold embedded in three dimensions and
solved at significantly reduced computational cost [32]. The
geometry of the left atrium is created through segmentation of
magnetic resonance images of the heart.

An example of a left atrium simulation is illustrated in Fig-
ure 8. Electrophysiological characteristics vary spatially, with
regions of scar and fibrosis more resistive to activation, re-

Figure 8: Illustrative simulation of a depolarising electrochemical wavefront
on a two-dimensional manifold representation of a human left atrium. Blue
areas denote regions of unexcited (polarised) tisue, while green denotes areas
of excited (depolarised) cells. The red areas highlight the wavefront.

sulting in more complex activation patterns. The geometry is
derived from segmented magnetic resonance imaging (MRI)
data, while tissue heterogeneity is prescribed based on late
gadolinium-enhanced MRI. A human atrial ionic model [33]
is used as the reactive term in the model and represents the ex-
changes of ions between the interior and exterior of the cell,
along with other cellular biophysics.

4.6. Biological flow
1D modelling of the vasculature (arterial network) represents

an insightful and e�cient tool for tackling problems encoun-
tered in arterial biomechanics as well as other engineering prob-
lems. In particular, 3D modelling of the vasculature is relatively
expensive. 1D modelling provides an alternative in which the
modelling assumptions provide a good balance between physi-
ological accuracy and computational e�ciency. To describe the
flow and pressure in this network we consider the conservation
of mass and momentum applied to an impermeable, deformable
tube filled with an incompressible fluid, the nonlinear system
of partial di↵erential equations presented in non-conservative
form is given by
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in which A is the Area (related to pressure), x is the axial coor-
dinate along the vessel, U(x, t) the axial velocity, P(x, t) is the
pressure in the tube, ⇢ is the density and finally f the frictional
force per unit length. The unknowns in equation 14 are u, A and
p; hence we must provide an explicit algebraic relationship to
close this system. Typically, closure is provided by an algebraic
relationship between A and p.

For a thin elastic tube this is given by
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where p0 is the external pressure, A0 is the initial cross-
sectional area, E is the Young’s modulus, h is the vessel wall
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Figure 9: Geometry used for the simulation. Insets show how flow and pressure
vary with time and di↵erent locations in the geometry.

thickness and ⌫ is the Poisson’s ratio. Other more elaborate
pressure - area relationships are currently being implemented
into the framework. Application of Riemann’s method of char-
acteristics to Equations 14 and 15 indicates that velocity and
area are propagated through the system by forward and back-
ward travelling waves. These waves are reflected within the
network by appropriate treatment of interfaces and boundaries
(see for example [34, 35]). The final system of equations are
discretised in the Nektar++ framework using a discontinuous
Galerkin projection.

To illustrate the capabilities of the PulseWaveSolver, a 1D
geometry was created by extracting the centreline directly from
a 3D segmentation of a carotid bifurcation (the extracted cen-
treline with the segmented geometry overlaid is shown in Fig-
ure 9). At the inlet a half-sinusoidal flow profile was applied
during the systolic phase, whist during the diastolic phase a no-
flow condition was applied. Although this profile is not rep-
resentative of the carotid wave, it is useful for demonstrating
essential dynamics of the system e.g. reflection of backward
travelling waves only during the diastolic phase. At the outflow
RCR boundary conditions were utilised [35]. These boundary
conditions take into account the peripheral resistance and com-
pliance of the vasculature. The pressure and flow results are
shown in Figure 9. The insets demonstrate that the pressure
needs about 4 cycles to reach a periodic state.

To conclude this section, we illustrate the flexibility of the
software in combining two solvers to understand mass trans-
port in the aorta. We consider the simulation of blood-flow
through a pair of intercostal branches in the decending aorta.
The three-dimensional geometry is derived from CT scans and
is meshed using a combination of tetraheda and prismatic el-
ements. Prisms are used to better capture the boundary layer
close to the wall, while tetrahedra fill the remaining interior of
the domain. The embedded manifold discretisation code can
be used to compute boundary conditions for three-dimensional
simulations where the complexity of the geometry precludes the
use of analytic conditions.

The flow is modelled using the incompressible Navier-Stokes
equations (see Section 4.1). In this case, the inlet flow profile
f in Equ. 9 is the solution of the Poisson problem, computed
using the ADRSolver, on the two-dimensional inlet boundary

surface for a prescribed body force, as shown in Fig. 10(a).
The resulting profile is imposed on the three-dimensional flow
problem as illustrated. The steady-state velocity field from the
flow simulation at Reynolds number Re = 300 is shown in
Fig. 10(b). A single boundary layer of prismatic elements is
used for this simulation and both the prismatic and tetrahedral
elements use a polynomial expansion order of P = 4. This is
su�cient to capture the boundary layer at the walls.

We now solve the advection-di↵usion equation,

r · (�Drc + cu) = 0,

to model transport of oxygen along the arterial wall. Here, c
is the concentration and u is the steady-state flow solution ob-
tained previously. D = 1/Pe is the di↵usivity of the species
considered (Pe = 7.5 ⇥ 105 for oxygen). For most of the do-
main, the non-dimensional concentration remains constant at
c = 1. However, a particularly high gradient in concentration
forms at the wall. It is this gradient which is of particular inter-
est and needs to be captured accurately. The existing mesh used
for the flow simulation is unable to resolve the gradients close
to the wall. We therefore refine the boundary layer in the wall-
normal direction using element heights following a geometric
progression. To reduce computational cost, we also exploit the
spectral/hp discretisation and reduce the polynomial order of
the prisms in the directions parallel to the wall, since the con-
centration shows negligible variation in these directions. Fur-
thermore, the domain-interior tetrahedra may also be discarded
and a dirichlet c = 1 condition imposed on the resulting interior
prism boundary.

Fig. 10(c) shows the resulting concentration gradient field on
the surface of the arterial wall. Regions of low concentration
gradient are observed upstream of the branches, while high con-
centration gradients are observed downstream. Fig.10(d) shows
close-ups of the branches to illustrate this.

5. Discussion & Future Directions

The Nektar++ framework provides a feature-rich platform
with which to develop numerical methods and solvers in the
context of high-order finite element methods. It has been de-
signed in such a way that the libraries reflect the mathematical
abstractions of the method, to simplify uptake for new users,
as well as being written in a modular way to improve the ro-
bustness of the code, minimise duplication of functionality and
promote sustainability.

Development
The development of a complex and extensive software

project such as Nektar++ necessitates the adoption of certain
development practices to enable developers to easily write new
code for their features without breaking the code for other peo-
ple. The code is managed using the git distributed version
control system [36] due to its performance, enhanced support
for branching, as well as supporting o↵-line development. All
development is performed in branches and only after rigor-
ous multi-architecture testing and internal peer-review is new
code merged into the main codebase, thereby always maintain-
ing a stable distribution. Any new bugs or feature requests
are tracked using the Trac issue-management system, which
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(a)

(b)

(c)

(d)

Figure 7: Solitary wave impinging a cylinder. (a) t = 4.5 s; (b) t = 5.5 s; (c)
t = 8.5 s; (d) t = 12.5 s;

substrate modification to restore normal rhythm is often partic-
ularly challenging and may benefit from insight derived from
computer modelling.

The CardiacEPSolver models the conduction process us-
ing the monodomain equations

�
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where the Iion term captures the complex movement of ions
in and out of cells and is itself modelled as a set of ordinary
di↵erential equations. Additionally, � captures the potentially
heterogeneous and anisotropic nature of the tissue which af-
fects the speed of electrical propagation. While full 3D simula-
tions of myocardium are traditionally performed, the left atrium
is su�ciently thin that it can be reasonably represented as a
two-dimensional manifold embedded in three dimensions and
solved at significantly reduced computational cost [32]. The
geometry of the left atrium is created through segmentation of
magnetic resonance images of the heart.

An example of a left atrium simulation is illustrated in Fig-
ure 8. Electrophysiological characteristics vary spatially, with
regions of scar and fibrosis more resistive to activation, re-

Figure 8: Illustrative simulation of a depolarising electrochemical wavefront
on a two-dimensional manifold representation of a human left atrium. Blue
areas denote regions of unexcited (polarised) tisue, while green denotes areas
of excited (depolarised) cells. The red areas highlight the wavefront.

sulting in more complex activation patterns. The geometry is
derived from segmented magnetic resonance imaging (MRI)
data, while tissue heterogeneity is prescribed based on late
gadolinium-enhanced MRI. A human atrial ionic model [33]
is used as the reactive term in the model and represents the ex-
changes of ions between the interior and exterior of the cell,
along with other cellular biophysics.

4.6. Biological flow
1D modelling of the vasculature (arterial network) represents

an insightful and e�cient tool for tackling problems encoun-
tered in arterial biomechanics as well as other engineering prob-
lems. In particular, 3D modelling of the vasculature is relatively
expensive. 1D modelling provides an alternative in which the
modelling assumptions provide a good balance between physi-
ological accuracy and computational e�ciency. To describe the
flow and pressure in this network we consider the conservation
of mass and momentum applied to an impermeable, deformable
tube filled with an incompressible fluid, the nonlinear system
of partial di↵erential equations presented in non-conservative
form is given by
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in which A is the Area (related to pressure), x is the axial coor-
dinate along the vessel, U(x, t) the axial velocity, P(x, t) is the
pressure in the tube, ⇢ is the density and finally f the frictional
force per unit length. The unknowns in equation 14 are u, A and
p; hence we must provide an explicit algebraic relationship to
close this system. Typically, closure is provided by an algebraic
relationship between A and p.

For a thin elastic tube this is given by

p = p0 + �
⇣p
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where p0 is the external pressure, A0 is the initial cross-
sectional area, E is the Young’s modulus, h is the vessel wall
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Implementation choices

8

Implementation strategies

=

Global Strategy

=

Local Strategy

=
Sum-factorisation

Increasing
polynomial order

More
localised
memory
access



h-to-p efficiently
• Approach performance varies 

wildly depending on many factors 
that are not a priori determinable


• Allow us to explore the space of 
flops/byte ratio


• Also important for e.g. variable-p 
simulations

108

Figure 8.11: Time-averaged contours of spanwise velocity at z = 0.125 for L05h10 wing
with ↵ = 6� and Re = 50, 000.

(a) baseline

(b) L05h10, trough

(c) L05h10, peak

Figure 8.12: Slices with contours of instantaneous spanwise vorticity (on the left) and of
turbulence kinetic energy (on the right) for simulations with ↵ = 6�.

Towards p-adaptive spectral/hp element methods for modelling industrial flows 7

order � 4
W 1 W 2

local edge coefficients û1 local edge coefficients û2

global edge coefficients ûg

Fig. 2: Diagram describing assembly operation between a P3 and P6 quadrilateral.
The nodes here correspond to vertex and edge modes of the hierarchical basis. Red
arrows indicate the usual connectivity; blue arrows indicate modes that are zeroed
using the sign array.

Fig. 3: Convergence of Helmholtz problem for simple square case.

edge can be of equal polynomial order. In this case, the above procedure needs to be
modified to perform a polynomial interpolation onto the correct space, rather than
simply zeroing elements of the sign array.

As a test of the validity of this approach, we consider the Helmholtz problem in
the a square [�1,1]2, in which f is defined to obtain a prescribed solution u(x,y) =
sin(px)sin(py). We consider a series of meshes with h elements in each direction.
We then solve Eq. (5) using the continuous Galerkin formulation for four cases.



Sum-factorisation

10

Essential for performance at high polynomial orders
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Unstructured simulations

11

Hexes yield best performance

can efficiently exploit sum factorisation

Can’t use for complex geometries

How to improve performance?



Exploiting vectorisation

• Key to achieving peak performance is exploiting 
vectorisation (SSE, FMA, AVX, AVX-512, …)


• Recent work has focused on achieving this with 
tuned kernels for key operators


• Particular focus on matrix-free approaches that 
avoid construction of a matrix per-element


• Try to exploit tensor-product construction of basis
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Collections
• Reformulate implementation choices into kernel 

operations over multiple elements


• Group geometric terms       


• Focus around key components of Laplacian:

➡ Backward transformation: 

➡ Inner product: (Φi, Φj)

➡ Derivatives: ∂u/∂xi

➡ Inner product w.r.t. derivative: (Φi, 𝛻Φj)
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Collections
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Figure 2: Diagramatic representation of each amalgamation scheme. Four quadrilateral elements with P1 =

P2 = 1 and Q1 = Q2 = 3 are considered for the backward transform operator.

We see that if the bracketed summations are stored in memory, the application of sum-
factorisation leads to a reduction to O(P 4) floating point operations. A similar technique
can be used for the tetrahedron and prism, although it is typically less e�cient than the
hexahedron due to the inter-dependency of the p, q and r indices. With a little more work,
we can again use linear algebra packages by rewriting the summation as a series of matrix-
matrix operations, ⇣
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where Û[P1]is :
,
:::
for

::::::::::
example,

::::::::
denotes

:
the reinterpretation of the vector û as a P1⇥P2P3 matrix

stored in column-major format. The parentheses also highlight where temporary storage is
required to store intermediate steps. Whilst intuition may point towards sum-factorisation
being the quickest way to evaluate these operators due to the reduction in operator count,
our previous work demonstrates that the fastest technique depends heavily on polynomial
order, element type and the

:::::
type

::
of

:
operator under consideration. This points towards there

being the need for a number of di↵erent amalgamation schemes in order to attain optimal
performance.

2.3. Amalgamation schemes

Our earlier studies applied the strategies of the previous section by iterating over each
element, evaluating the operator and measuring the total execution time for the entire mesh.
However, in the context of memory e�ciency and using the CPU cache e↵ectively, this
approach may not prove to be the most optimal if matrices are not stored contiguously in
memory. Additionally, since local matrices must be generated for each element, there is a
large cost incurred in moving them from main memory to the processor.

The purpose of this work is therefore to reformulate these strategies in the context of
multiple elements. We aim to remove local matrices wherever possible, thereby reducing
data movement and increasing data locality. We will leverage both the tensor-product de-
composition of the spectral/hp element method and the use of a standard region, on which
we can define an operator for many elements simultaneously. Then, through grouping local
elemental storage of the coe�cient and physical spaces, we aim to apply standard level-3
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dgemm

Can also do this for non-TP elements, but

data ordering harder, matrices smaller (bad for BLAS)



Small matrices with libxsmm
• Most of the matrix-matrix multiplies done in collections are small, 

at least in one rank


• Trialling use of libxsmm for small matrix multiplications


• libxsmm yields encouraging performance gains over standard 
MKL/BLAS, particularly for non-TP elements


• Bottleneck: transposes (current out-of-place)


➡ Appears to be very challenging for non-tensor product elements
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libxsmm vs Intel MKL
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at low/moderate orders

Anything else we can do?



Data layout
Natural to consider data laid out element by element

degrees of freedom
elements



Data layout
May be able to exploit vectorisation by grouping DoFs by vector width

degrees of freedom
elements



Data layout

19

Operations then occur over

groups of elements of

size of vector width

elements

Possible downside: 
requires duplicating 
basis data for each 

vector lane

basis functions
✖

✖

✖

✖



Implementation details

• Benchmark against libxsmm and MKL


• Hand-written loops for sum-factorisation


• Explicit intrinsics for vector operations


• AVX: 4 double multiplications/cycle


• combined with FMA


• non-temporal stores where appropriate
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Performance
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Fairly mediocre hex performance Pretty good for tets at low-order



Indexing

• Indexing for tets is a bit complex


• Could we do better by giving compiler more 
information for unrolling loops?


• Might also help hex performance


• Use some C++ templating



Templated performance
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Final comparison
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Other operators
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• Inner product requires more work:


• multiply by elemental Jacobian


• multiply by quadrature weights


• avoid storage of premultiplied 
quadrature weights


• Initial results seem fairly promising 



Summary

• Need to think very hard about data layout to 
properly exploit underlying hardware


• Efficient use of data layout can significantly improve 
performance, at least for operators considered here


• A work in progress!


• Full Helmholtz operator


• Wider vector lanes (AVX-512)
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Thanks for listening!

https://davidmoxey.uk/        @davidmoxey


d.moxey@exeter.ac.uk


www.nektar.info 

https://davidmoxey.uk
mailto:d.moxey@exeter.ac.uk
http://www.nektar.info


Nektar++ high-order framework
Framework for spectral/hp element method:

• Dimension independent and supports various discretisations (CG/DG/HDG)


• Mixed elements (quads/tris, hexes, prisms, tets, pyramids) using hierarchical 
modal and classical nodal formulations


• Solvers for (in)compressible Navier-Stokes, advection-diffusion-reaction, shallow 
water equations, …


• Parallelised with MPI, tested scaling up to ~10k cores


http://www.nektar.info/      nektar-users@imperial.ac.uk      https://gitlab.nektar.info/
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