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What CFD do we want to do at exascale”

* |ndustrial simulations at high Reynolds
numbpers

* Things that RANS struggles with: high-
fidelity, detachment, vortex interaction

e SVV LES formulation of incompressible NS
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Implicit large-eddy simulation of a wingtip vortex, AIAA Journal 54 (2), 2016



Why is exascale CFD hard?

» |deally, want really fast single-core nodes with lots of memory
bandwidth

* |nstead, many cores per node @ |lower clock speed
e Very [imited memory bandwidth, complicated memory hierarchies

Therefore need algorithms with high arithmetic intensities that can
actually use FLOPS available

high-order methods



Spectral/hp element method
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Why high order?

Time = 0

‘Exact’ solution N,=125; F=1
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Implementation choices
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h-to-p efficiently

o Approach performance varies
wildly depending on many factors
that are not a priori determinable
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* Allow us to explore the space of
flops/byte ratio
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* Also important for e.qg. variable-p
simulations
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Sum-factorisation

Essential for performance at high polynomial orders
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Unstructured simulations

Hexes yield best performance Can't use for complex geometries
can efficiently exploit sum factorisation How to iImprove performance?
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EXploiting vectorisation

Key to achieving peak performance is exploiting
vectorisation (SSE, FMA, AVX, AVX-512, ...)

Recent work has focused on achieving this with
tuned kernels for key operators

Particular focus on matrix-free approaches that
avoid construction of a matrix per-element

Try to exploit tensor-product construction of basis
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Collections

o Reformulate implementation choices into kernel
operations over multiple elements

. d X
o (Group geometric terms —

d&;
 Focus around key Componjents of Laplacian:
= Backward transformation: u3 = »; &, ¢p(X)
= |nner product: (¥, O)) °
= Derivatives: 0u/oXx;

= |[nner product w.r.t. derivative: (@, vd))
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Collections

Use BLAS calls throughout
Various implementation strategies for performance across p
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+ 4 smaller dgemm

4 quad mesh

Can also do this for non-TP elements, but
data ordering harder, matrices smaller (bad for BLAS)
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Small matrices with L 1bxsmm

Most of the matrix-matrix multiplies done in collections are small,
at least in one rank

Trialling use of L1bxsmm for small matrix multiplications

Ilboxsmm yields encouraging performance gains over standard
MKL/BLAS, particularly for non-TP elements

Bottleneck: transposes (current out-of-place)

= Appears to be very challenging for non-tensor product elements
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1boxsmm vs Intel MKL

Hexahedral elements
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Good performance gains
at low/moderate orders

Anything else we can do?
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Data layout

Natural to consider data laid out element by element

degrees of freedom =——»

elements




Data layout

May be able to exploit vectorisation by grouping DokFs by vector width

degrees of freedom =——»

elements




Data layout

elements

Operations then occur over
groups of elements of
size of vector width

basis functions

Possible downside:

requires duplicating

basis data for each
vector lane
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Implementation details

 Benchmark against L1bxsmm and MKL

 Hand-written loops for sum-factorisation
o EXxplicit intrinsics for vector operations
e AVX: 4 double multiplications/cycle

e combined with FMA

* non-temporal stores where appropriate
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GFLOP/s
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Fairly mediocre hex performance
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Tetrahedral elements
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B libxsmm

B AVX

Pretty good for tets at low-order



Indexing

Indexing for tets is a bit complex

Could we do better by giving compiler more
information for unrolling loops?

Might also help hex performance

Use some C++ templating



Templated performance

Templating gives good performance gains across the board
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Templating gives good performance gains across the board




Other operators

¢ mﬂer pI’OdUCt I’GQUII’GS more WOI’k Tetrahedral elements
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 |nitial results seem fairly promising




summary

 Need to think very hard about data layout to
properly exploit underlying hardware

o Efficient use of data layout can significantly improve
performance, at least for operators considered here

A work In progress!
* Full Helmholtz operator

e Wider vector lanes (AVX-512)
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Thanks for listening!

https://davidmoxey.uk/ @davidmoxey

d.moxey@exeter.ac.uk

www.nektar.info
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Nektar++ high-order framework
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Framework for spectral/hp element method:

 Dimension independent and supports various discretisations (CG/DG/HDG)

 Mixed elements (quads/tris, hexes, prisms, tets, pyramids) using hierarchical
modal and classical nodal formulations

» Solvers for (in)compressible Navier-Stokes, advection-diffusion-reaction, shallow
water equations, ...

e Parallelised with MPI, tested scaling up to ~10k cores

http://www.nektar.info/  nektar-users@imperial.ac.uk  https://qitlab.nektar.info/
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