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NUMERICAL MATHEMATICS AND SCIENTIFIC COMPUTATION is 
a series designed to provide texts and monographs for graduate students 
and researchers on a wide range of mathematical topics at the interface 
of computational science and numerical analysis.

George Em Karniadakis and Spencer Sherwin

Spectral methods have long been popular in direct and large eddy simulation 
of turbulent flows, but their use in areas with complex-geometry computational
domains has historically been much more limited. More recently the need to find
accurate solutions to the viscous flow equations around complex configurations
has led to the development of high-order discretisation procedures on unstruc-
tured meshes, which are also recognised as more efficient for solution of time-
dependent oscillatory solutions over long time periods. 

Here Karniadakis and Sherwin present a much-updated and expanded version 
of their successful first edition covering the recent and significant progress in
multi-domain spectral methods at both the fundamental and application level.
Containing over 50% new material, including discontinuous Galerkin methods,
non-tensorial nodal spectral element methods in simplex domains, and stabilisa-
tion and filtering techniques, this text aims to introduce a wider audience to the
use of spectral/hp element methods with particular emphasis on their application
to unstructured meshes. It provides a detailed explanation of the key concepts
underlying the methods along with practical examples of their derivation and
application, and is aimed at students, academics and practitioners in computa-
tional fluid mechanics, applied and numerical mathematics, computational
mechanics, aerospace and mechanical engineering and climate/ocean modelling.
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Spectral/hp element methods Sec. 4: Spectral/hp elements in 2D
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Figure 17: Construction of a two-dimensional expansion basis from the tensor product of two
one-dimensional expansions of order P = 4. A modal expansion (top) and a nodal
expansion (bottom) are shown.

expansion. Since a large part of the efficiency of the quadrilateral expansion (particu-
larly at larger polynomial orders) arises from the tensor product construction, we would
like to use a similar procedure to construct expansions within the triangular domains.
Therefore, to extend the tensor product expansion to simplex regions such as a triangle
we need to generalise the tensor product expansion concept, which can be achieved by
using a collapsed coordinate system.

4.1.3 Collapsed coordinate system

In this section we will focus on 2D expansions defined on the standard triangle Tst,
defined as

Tst = {(ξ1 , ξ2)|− 1 ≤ ξ1 , ξ2 ; ξ1 + ξ2 ≤ 0} .

In the quadrilateral expansions discussed in section 4.1.1 we generated a multidi-
mensional expansion by forming a tensor product of one-dimensional expansions based
on a Cartesian coordinate system. The one-dimensional expansion was defined between
constant limits and therefore an implicit assumption of the tensor extension was that the
coordinates in the two-dimensional region were bounded between constant limits. How-
ever this is not the case in the standard triangular region as the bounds of the Cartesian
coordinates (ξ1, ξ2) are dependent upon each other.

4-2

Spectral/hp element methods Sec. 4: Spectral/hp elements in 2D

 φpq(ξ1,ξ2) = ψp(ξ1) ψq(ξ2)

ψp(ξ1)

ξ1

ξ2

ψq(ξ2)

p

q

p

qa

a

a a

 φpq(ξ1,ξ2) = hp(ξ1) hq(ξ2)

hp(ξ1)

ξ1

ξ2

hq(ξ2)

p

q

p

q

Figure 17: Construction of a two-dimensional expansion basis from the tensor product of two
one-dimensional expansions of order P = 4. A modal expansion (top) and a nodal
expansion (bottom) are shown.

expansion. Since a large part of the efficiency of the quadrilateral expansion (particu-
larly at larger polynomial orders) arises from the tensor product construction, we would
like to use a similar procedure to construct expansions within the triangular domains.
Therefore, to extend the tensor product expansion to simplex regions such as a triangle
we need to generalise the tensor product expansion concept, which can be achieved by
using a collapsed coordinate system.

4.1.3 Collapsed coordinate system

In this section we will focus on 2D expansions defined on the standard triangle Tst,
defined as

Tst = {(ξ1 , ξ2)|− 1 ≤ ξ1 , ξ2 ; ξ1 + ξ2 ≤ 0} .

In the quadrilateral expansions discussed in section 4.1.1 we generated a multidi-
mensional expansion by forming a tensor product of one-dimensional expansions based
on a Cartesian coordinate system. The one-dimensional expansion was defined between
constant limits and therefore an implicit assumption of the tensor extension was that the
coordinates in the two-dimensional region were bounded between constant limits. How-
ever this is not the case in the standard triangular region as the bounds of the Cartesian
coordinates (ξ1, ξ2) are dependent upon each other.

4-2

hp finite element - hierarchicalSpectral element method - nodal 

Computational cost ~ P4 Computational error ~ hP

• Continuous Galerkin
• Discontinuous Galerkin
• Flux Reconstruction

Depends on how we bolt 
elements together!



Mesh A Mesh B

Mesh C Mesh D

Mesh E Mesh F

~Work

Er
ro

r

Degrees of freedom

Er
ro

r



Nel=128, P=1

Nel=32, P=3 Nel=8, 
P=8

 P accuracy 

Bolis, Cantwell, Kirby, Sherwin Int J Num Meth. fluid, 2014

Dof = 384

Dof = 288Dof = 192



Nektar++: Spectral/hp element 
modelling

(a) (b)

(c)

Figure 4: Examples of external aerodynamics problems solved using the CompressibleFlowSolver. (a) Flow over a cylinder at Re = 3, 900. (b) Euler simulation
over a NACA0012 aerofoil at Ma1 = 0.8. (c) Temperature of flow passing over a T106C low-pressure turbine blade at Re = 80, 000.

where U = [⇢, ⇢u, ⇢v, ⇢w, E]> is the vector of conserved vari-
ables in terms of density ⇢, velocity (u1, u2, u3) = (u, v,w), E is
the specific total energy, and

F(U) =

2
666666666666666664

⇢u ⇢v ⇢w
p + ⇢u2 ⇢uv ⇢uw
⇢uv ⇢v2 + p ⇢vw
⇢uw ⇢vw ⇢w2 + p

u(E + p) u(E + p) v(E + p)
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where p is the pressure. To close the system we need to specify
an equation of state, in this case the ideal gas law p = ⇢RT
where T is the temperature and R is the gas constant. For the
Euler equations, the tensor of viscous forces Fv(U) = 0, and for
Navier-Stokes

Fv(U) =

2
666666666666666664

0 0 0
⌧xx ⌧yx ⌧zx
⌧xy ⌧yy ⌧zy
⌧xz ⌧yz ⌧zz
A B C

3
777777777777777775

A = u⌧xx + v⌧xy + w⌧xz + k@xT,
B = u⌧yx + v⌧yy + w⌧yz + k@yT,
C = u⌧zx + v⌧zy + w⌧zz + k@zT

where in tensor notation the stress tensor ⌧xi x j = 2µ(@xi ui +

@xi u j �
1
3@xk uk�i j), µ is the dynamic viscosity calculated using

Sutherland’s law and k is the thermal conductivity.
To discretise these equations in space, we adopt an approach

which allows for the resolution of discontinuities and shocks
that may appear in the solution at transonic and supersonic flow
speeds. We therefore use approximations to our solution com-
prised of functions which are not continuous across element
boundaries. Traditionally, we follow a Galerkin approach by
utilising the variational form of the equations in order to ob-
tain the discontinuous Galerkin method. One of the key fea-
tures of Nektar++ is the ability to select a wide range of nu-
merical options, and to this end we support both discontinuous

Galerkin and flux reconstruction spatial discretisations, which
have various numerical equivalences [22] but may possess dif-
ferent performance characteristics. In the flux reconstruction
formulation, we instead use the equation in di↵erential form in
combination with correction functions which impose continuity
of fluxes between elements.

In either case, information is transferred between elements
by solving a one-dimensional Riemann problem at the interface
between two elements. For the non-viscous terms there is sup-
port for a wide variety of Riemann solvers, including an exact
solution or a number of appproximate solvers such as HLLC,
Roe and Lax-Friedrichs solvers [23]. For the viscous terms, we
utilise a local discontinuous Galerkin method (or the equivalent
flux reconstruction version). Various versions of the discontin-
uous Galerkin method which are available throughout the lit-
erature, mostly relating to the choices of modal functions and
quadrature points, can also be readily selected by setting appro-
priate options in the session file.

Given the complexity and highly nonlinear form of these
equations, we adopt a fully explicit formulation to discre-
tise the equations in time, allowing us to use any of the ex-
plicit timestepping algorithms implemented through the gen-
eral linear methods framework [16], including 2nd and 4th order
Runge-Kutta methods. Finally, in order to stabilise the flow
in the presence of discontinuities we utilise a shock capturing
technique which makes use of artificial viscosity to damp os-
cillations in the solution, in conjunction with a discontinuity
sensor adapted from the approach taken in [24] to decide where
the addition of artificial viscosity is needed.

Figure 4 shows representative results from compressible flow
simulations of a number of industrially-relevant test cases. We
first highlight two simulations which utilise the Navier-Stokes
equations. Fig. 4(a) demonstrates the three-dimensional ver-
sion of the compressible solver by investigating the flow over a
cylinder at Re = 3,900. In this figure we visualise isocontours
of the pressure field and colour the field according to the den-
sity ⇢. To demonstrate the shock capturing techniques available
in the code, Fig. 4(b) shows the results of an Euler simulation
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Figure 5: Contours of the magnitude of velocity in a periodic hill simulation at
Re = 2800.

for flow over a NACA0012 aerofoil at a farfield Mach number
Ma1 = 0.8 and a 1.5� angle of attack. The transonic mach
number of this flow leads to the development of a strong and
weak shock along the upper and lower surfaces of the wing re-
spectively. This figure shows isocontours of the mach number
where the presence of the shocks are clearly identified. Finally,
In Fig. 4(c), we visualise the temperature field from flow pass-
ing over a T106C low-pressure turbine blade at Re = 80,000
to highlight applications to high Reynolds number flow simula-
tions.

4.2. Transitional turbulent flow dynamics

Transient problems in which turbulence dominates the flow
domain, or in which the transition to turbulence dominates the
simulation, remain some of the most challenging problems to
resolve in computational fluid simulations. Here, accurate nu-
merical schemes and high resolution of the domain is critical.
Moreover, any choice of scheme must be e�cient in order to ob-
tain results in computationally feasible time-scales. Tradition-
ally, highly resolved turbulence simulations, such as the Taylor-
Green vortex problem, lie firmly in the class of spectral meth-
ods. However, spectral methods typically lead to strong geom-
etry restrictions which limits the domain of interest to simple
shapes such as cuboids or cylinders.

Whilst spectral element methods may seem the ideal choice
for such simulations, particularly when the domain of interest
is geometrically complex, they can be more computationally
expensive in comparison to spectral methods. However, when
the domain of interest has a geometrically homogeneous com-
ponent – that is, the domain can be seen to be the tensor prod-
uct of a two-dimensional ‘complex’ part and a one-dimensional
segment – we can combine both the spectral element and tradi-
tional spectral methods to create a highly e�cient and spectrally
accurate technique [4].

We consider the application of this methodology to the prob-
lem of flow over a periodic hill, depicted in Fig. 5, where the
flow is periodic in both streamwise and spanwise directions.
This case is a well-established benchmark problem in the DNS
and LES communities [25], and is challenging to resolve due to
the smooth detachment of the fluid from the surface and recir-
culation region. Here we consider a Reynolds number of 2800,
normalised by the bulk velocity at the hill crest and the height
of the hill, with an appropriate body forcing term to drive the
flow over the periodic hill configuration.

The periodicity of this problem makes it an ideal candidate
for the hybrid technique described above. We therefore con-

struct a two-dimensional mesh of 3626 quadrilateral elements
at polynomial order P = 6, and exploit the domain symmetry
with a Fourier pseudospectral method consisting of 160 collo-
cation points in the spanwise direction to perform the simula-
tion. This yields a resolution of 20.9M degrees of freedom per
field variable and allows us to obtain excellent agreement with
the benchmark statistics.

4.3. Flow stability
In addition to direct numerical simulation of the full

non-linear incompressible Navier-Stokes equations, the
IncNavierStokesSolver supports global flow stability
analysis through the linearised Navier-Stokes equations with
respect to a steady or periodic base flow. This process identifies
whether a steady flow is susceptible to a fundamental change
of state when perturbed by an infinitesimal disturbance. The
linearisation takes the form

@u0

@t
+ (u0 · r)U + (U · r)u0 = �rp0 + ⌫r2u0

r · u0 = 0,

where U is the base flow and u0 is now the infinitesimal pertur-
bation. The time-independent base flow is computed through
evolving Equs. 9 to steady-state with appropriate boundary con-
ditions. For time-period base flows, the flow is sampled at reg-
ular intervals and interpolated.

The linear evolution of a perturbation under Equs. 10 can be
expressed as

u0(t) = A(t)u00

for some initial state u00, and we seek, for some arbitrary time
T, the dominant eigenvalues and eigenmodes of the operator
A(T ), which are solutions to the equation

A(T )ũ j = � jũ j.

The sign of the leading eigenvalues � j are used to establish the
global stability of the flow. An iterative Arnoldi method [26]
is applied to a discretisation M of A(T ). Repeated actions
of M are applied to the initial state u0 using the same time-
integration code as for the non-linear equations [27]. The re-
sulting sequence of vectors spans a Krylov subspace of M and,
through a partial Hessenberg reduction, the leading eigenval-
ues and eigenvectors can be e�ciently determined. The same
approach can be applied to the adjoint form of the linearised
Navier-Stokes evolution operatorA⇤ to examine the receptivity
of the flow and, in combination with the direct mode, identify
the sensitivity of the flow to base flow modification and local
feedback. The direct and adjoint methods can also be combined
to identify convective instabilities over di↵erent time horizons
⌧ in a flow by computing the leading eigenmodes of (A⇤A)(⌧).
This is referred to as transient growth analysis.

To illustrate the linear analysis capabilities of Nektar++, we
use the example of two-dimensional flow past a circular cylin-
der at Re = 42, just below the critical Reynolds number for
the onset of the Bénard-von Kármán vortex street. This is a
well-established test case for which significant analysis is avail-
able in the literature. We show in Fig. 6 the leading eigen-
modes for the direct (A) and adjoint (A⇤) linear operators for
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Figure 7: Solitary wave impinging a cylinder. (a) t = 4.5 s; (b) t = 5.5 s; (c)
t = 8.5 s; (d) t = 12.5 s;

substrate modification to restore normal rhythm is often partic-
ularly challenging and may benefit from insight derived from
computer modelling.

The CardiacEPSolver models the conduction process us-
ing the monodomain equations

�

 
Cm
@u
@t
+ Iion

!
= r · �ru,

where the Iion term captures the complex movement of ions
in and out of cells and is itself modelled as a set of ordinary
di↵erential equations. Additionally, � captures the potentially
heterogeneous and anisotropic nature of the tissue which af-
fects the speed of electrical propagation. While full 3D simula-
tions of myocardium are traditionally performed, the left atrium
is su�ciently thin that it can be reasonably represented as a
two-dimensional manifold embedded in three dimensions and
solved at significantly reduced computational cost [32]. The
geometry of the left atrium is created through segmentation of
magnetic resonance images of the heart.

An example of a left atrium simulation is illustrated in Fig-
ure 8. Electrophysiological characteristics vary spatially, with
regions of scar and fibrosis more resistive to activation, re-

Figure 8: Illustrative simulation of a depolarising electrochemical wavefront
on a two-dimensional manifold representation of a human left atrium. Blue
areas denote regions of unexcited (polarised) tisue, while green denotes areas
of excited (depolarised) cells. The red areas highlight the wavefront.

sulting in more complex activation patterns. The geometry is
derived from segmented magnetic resonance imaging (MRI)
data, while tissue heterogeneity is prescribed based on late
gadolinium-enhanced MRI. A human atrial ionic model [33]
is used as the reactive term in the model and represents the ex-
changes of ions between the interior and exterior of the cell,
along with other cellular biophysics.

4.6. Biological flow
1D modelling of the vasculature (arterial network) represents

an insightful and e�cient tool for tackling problems encoun-
tered in arterial biomechanics as well as other engineering prob-
lems. In particular, 3D modelling of the vasculature is relatively
expensive. 1D modelling provides an alternative in which the
modelling assumptions provide a good balance between physi-
ological accuracy and computational e�ciency. To describe the
flow and pressure in this network we consider the conservation
of mass and momentum applied to an impermeable, deformable
tube filled with an incompressible fluid, the nonlinear system
of partial di↵erential equations presented in non-conservative
form is given by

@U
@t
+H@U
@x
= S (14)

U =
"
U
A

#
, H =

"
U A
⇢ @p
@A U

#
, S =

"
0

1
⇢

⇣
f
A � s

⌘
#

in which A is the Area (related to pressure), x is the axial coor-
dinate along the vessel, U(x, t) the axial velocity, P(x, t) is the
pressure in the tube, ⇢ is the density and finally f the frictional
force per unit length. The unknowns in equation 14 are u, A and
p; hence we must provide an explicit algebraic relationship to
close this system. Typically, closure is provided by an algebraic
relationship between A and p.

For a thin elastic tube this is given by

p = p0 + �
⇣p

A �
p

A0
⌘
, � =

p
⇡hE

(1 � ⌫2)A0
(15)

where p0 is the external pressure, A0 is the initial cross-
sectional area, E is the Young’s modulus, h is the vessel wall
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Figure 9: Geometry used for the simulation. Insets show how flow and pressure
vary with time and di↵erent locations in the geometry.

thickness and ⌫ is the Poisson’s ratio. Other more elaborate
pressure - area relationships are currently being implemented
into the framework. Application of Riemann’s method of char-
acteristics to Equations 14 and 15 indicates that velocity and
area are propagated through the system by forward and back-
ward travelling waves. These waves are reflected within the
network by appropriate treatment of interfaces and boundaries
(see for example [34, 35]). The final system of equations are
discretised in the Nektar++ framework using a discontinuous
Galerkin projection.

To illustrate the capabilities of the PulseWaveSolver, a 1D
geometry was created by extracting the centreline directly from
a 3D segmentation of a carotid bifurcation (the extracted cen-
treline with the segmented geometry overlaid is shown in Fig-
ure 9). At the inlet a half-sinusoidal flow profile was applied
during the systolic phase, whist during the diastolic phase a no-
flow condition was applied. Although this profile is not rep-
resentative of the carotid wave, it is useful for demonstrating
essential dynamics of the system e.g. reflection of backward
travelling waves only during the diastolic phase. At the outflow
RCR boundary conditions were utilised [35]. These boundary
conditions take into account the peripheral resistance and com-
pliance of the vasculature. The pressure and flow results are
shown in Figure 9. The insets demonstrate that the pressure
needs about 4 cycles to reach a periodic state.

To conclude this section, we illustrate the flexibility of the
software in combining two solvers to understand mass trans-
port in the aorta. We consider the simulation of blood-flow
through a pair of intercostal branches in the decending aorta.
The three-dimensional geometry is derived from CT scans and
is meshed using a combination of tetraheda and prismatic el-
ements. Prisms are used to better capture the boundary layer
close to the wall, while tetrahedra fill the remaining interior of
the domain. The embedded manifold discretisation code can
be used to compute boundary conditions for three-dimensional
simulations where the complexity of the geometry precludes the
use of analytic conditions.

The flow is modelled using the incompressible Navier-Stokes
equations (see Section 4.1). In this case, the inlet flow profile
f in Equ. 9 is the solution of the Poisson problem, computed
using the ADRSolver, on the two-dimensional inlet boundary

surface for a prescribed body force, as shown in Fig. 10(a).
The resulting profile is imposed on the three-dimensional flow
problem as illustrated. The steady-state velocity field from the
flow simulation at Reynolds number Re = 300 is shown in
Fig. 10(b). A single boundary layer of prismatic elements is
used for this simulation and both the prismatic and tetrahedral
elements use a polynomial expansion order of P = 4. This is
su�cient to capture the boundary layer at the walls.

We now solve the advection-di↵usion equation,

r · (�Drc + cu) = 0,

to model transport of oxygen along the arterial wall. Here, c
is the concentration and u is the steady-state flow solution ob-
tained previously. D = 1/Pe is the di↵usivity of the species
considered (Pe = 7.5 ⇥ 105 for oxygen). For most of the do-
main, the non-dimensional concentration remains constant at
c = 1. However, a particularly high gradient in concentration
forms at the wall. It is this gradient which is of particular inter-
est and needs to be captured accurately. The existing mesh used
for the flow simulation is unable to resolve the gradients close
to the wall. We therefore refine the boundary layer in the wall-
normal direction using element heights following a geometric
progression. To reduce computational cost, we also exploit the
spectral/hp discretisation and reduce the polynomial order of
the prisms in the directions parallel to the wall, since the con-
centration shows negligible variation in these directions. Fur-
thermore, the domain-interior tetrahedra may also be discarded
and a dirichlet c = 1 condition imposed on the resulting interior
prism boundary.

Fig. 10(c) shows the resulting concentration gradient field on
the surface of the arterial wall. Regions of low concentration
gradient are observed upstream of the branches, while high con-
centration gradients are observed downstream. Fig.10(d) shows
close-ups of the branches to illustrate this.

5. Discussion & Future Directions

The Nektar++ framework provides a feature-rich platform
with which to develop numerical methods and solvers in the
context of high-order finite element methods. It has been de-
signed in such a way that the libraries reflect the mathematical
abstractions of the method, to simplify uptake for new users,
as well as being written in a modular way to improve the ro-
bustness of the code, minimise duplication of functionality and
promote sustainability.

Development
The development of a complex and extensive software

project such as Nektar++ necessitates the adoption of certain
development practices to enable developers to easily write new
code for their features without breaking the code for other peo-
ple. The code is managed using the git distributed version
control system [36] due to its performance, enhanced support
for branching, as well as supporting o↵-line development. All
development is performed in branches and only after rigor-
ous multi-architecture testing and internal peer-review is new
code merged into the main codebase, thereby always maintain-
ing a stable distribution. Any new bugs or feature requests
are tracked using the Trac issue-management system, which
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ularly challenging and may benefit from insight derived from
computer modelling.

The CardiacEPSolver models the conduction process us-
ing the monodomain equations
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where the Iion term captures the complex movement of ions
in and out of cells and is itself modelled as a set of ordinary
di↵erential equations. Additionally, � captures the potentially
heterogeneous and anisotropic nature of the tissue which af-
fects the speed of electrical propagation. While full 3D simula-
tions of myocardium are traditionally performed, the left atrium
is su�ciently thin that it can be reasonably represented as a
two-dimensional manifold embedded in three dimensions and
solved at significantly reduced computational cost [32]. The
geometry of the left atrium is created through segmentation of
magnetic resonance images of the heart.

An example of a left atrium simulation is illustrated in Fig-
ure 8. Electrophysiological characteristics vary spatially, with
regions of scar and fibrosis more resistive to activation, re-

Figure 8: Illustrative simulation of a depolarising electrochemical wavefront
on a two-dimensional manifold representation of a human left atrium. Blue
areas denote regions of unexcited (polarised) tisue, while green denotes areas
of excited (depolarised) cells. The red areas highlight the wavefront.

sulting in more complex activation patterns. The geometry is
derived from segmented magnetic resonance imaging (MRI)
data, while tissue heterogeneity is prescribed based on late
gadolinium-enhanced MRI. A human atrial ionic model [33]
is used as the reactive term in the model and represents the ex-
changes of ions between the interior and exterior of the cell,
along with other cellular biophysics.

4.6. Biological flow
1D modelling of the vasculature (arterial network) represents

an insightful and e�cient tool for tackling problems encoun-
tered in arterial biomechanics as well as other engineering prob-
lems. In particular, 3D modelling of the vasculature is relatively
expensive. 1D modelling provides an alternative in which the
modelling assumptions provide a good balance between physi-
ological accuracy and computational e�ciency. To describe the
flow and pressure in this network we consider the conservation
of mass and momentum applied to an impermeable, deformable
tube filled with an incompressible fluid, the nonlinear system
of partial di↵erential equations presented in non-conservative
form is given by
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in which A is the Area (related to pressure), x is the axial coor-
dinate along the vessel, U(x, t) the axial velocity, P(x, t) is the
pressure in the tube, ⇢ is the density and finally f the frictional
force per unit length. The unknowns in equation 14 are u, A and
p; hence we must provide an explicit algebraic relationship to
close this system. Typically, closure is provided by an algebraic
relationship between A and p.

For a thin elastic tube this is given by

p = p0 + �
⇣p

A �
p

A0
⌘
, � =

p
⇡hE

(1 � ⌫2)A0
(15)

where p0 is the external pressure, A0 is the initial cross-
sectional area, E is the Young’s modulus, h is the vessel wall
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Generalised Mapping
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a Fourier expansion, leading to a more e�cient solution that can compensate
for the extra computational costs of solving the Navier-Stokes in the general
coordinates. This idea is illustrated in figure 1, which shows how we can ob-
tain a simpler representation of a complex geometry by changing the coordinate
system.

(a) Cartesian system (b) Transformed system

Figure 1: Example of how a complex geometry in the physical Cartesian coordinate system
can be mapped into a simpler geometry in a di↵erent coordinate system.

Although being able to employ the Spectral/hp Methods in general coordi-
nates would be desirable, the Velocity-Correction Scheme (Karniadakis et al.,
1991; Guermond and Shen, 2003), a common choice for the time discretization
of the incompressible Navier-Stokes equations in this method, has not been ex-
tended to account to general coordinate transformations. As far as the authors
are aware, only specialised situations have been considered, like the constant-
Jacobian time-dependent transformation of Newman and Karniadakis (1997),
and the constant-Jacobian time-independent mappings of Darekar and Sherwin
(2001). However, no extensions have been proposed for cases where the Jacobian
of the transformation is not constant.

Considering other approximations of the Navier-Stokes equations, Carlson
et al. (1995) proposed a method for accounting for general coordinate transfor-
mations in the context of pseudo-spectral methods, using iterative procedures
to solve for the pressure and velocity fields. Although this method leads to the
appropriate equations that can be used with the Velocity-Correction Scheme, it
does not provide the required high-order pressure boundary conditions that are
essential to the accuracy of this time-integration scheme.

The paper proposes two methods for including coordinate transformations in
the Velocity-Correction Scheme. The first one is a generalization of the approach
of Darekar and Sherwin (2001) and Newman and Karniadakis (1997), with the
mapping being treated explicitly. On the other hand, the second method is a
modified version of the iterative procedure employed by Carlson et al. (1995),
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ticular, we note that the Jacobian for both cases is e↵ectively of fourth order,
but in the case of Figure 9(a) we have nonzero modes only in the x-direction
up to the fifth coe�cient whereas in the case of Figure 9(b) the nonzero modes
span both x� and y� directions again up to the fifth coe�cient. The sixth
coe�cient in both directions is zero, showing adequate support for the Jacobian
determinant expansion.
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Figure 8: Examples of 4
th

order meshes employed to investigate geometrical aliasing
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The test case we consider is identical to that of Eq. (38), aside from the use of
spatially-constant advection velocities

ax = ⇡
2

g(t), ay = �
⇡
2

g(t), (43)

where g(t) is defined in Eq. (39). We choose a period T = 0.5 and a final time
40T . For the time-integration we used a 2nd-order Runge-Kutta scheme while
the polynomial order was P = 14 in order to have a su�ciently resolved problem.
The initial condition was applied using a collocation projection. Throughout
the results in this subsection, we used a Global dealiasing technique in order to
target the geometrical aliasing.
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2 Mathematical and Algorithmic Description

2.1 Motivation

Tadmor [9] first introduced the concept of spectral vanishing viscosity (SVV) using the
inviscid Burgers equation

∂

∂t
u(x, t) +

∂

∂x

[

u2(x, t)

2

]

= 0, (1)

subject to given initial and boundary conditions. The distinct feature of solutions to this
problem is that spontaneous jump discontinuities (shock waves) may develop, and hence a
class of weak solutions can be admitted. Within this class, there are many possible solutions,
and in order to single out the physically relevant solution an additional entropy condition is
applied, of the form

∂

∂t

[

u2(x, t)

2

]

+
∂

∂x

[

u3(x, t)

3

]

≤ 0. (2)

In numerical implementations, spectral methods are often augmented with smoothing proce-
dures in order to reduce the Gibbs oscillations [10] associated with discontinuities arising at
the domain boundaries or due to under-resolution. However, with nonlinear problems, con-
vergence of the Fourier method, for example, may fail despite additional smoothing of the
solution. Tadmor [9] introduced the spectral vanishing viscosity method, which adds a small
amount of controlled dissipation that satisfies the entropy condition, yet retains spectral
accuracy. It is based on viscosity solutions of nonlinear Hamilton-Jacobi equations, which
have been studied systematically in [11]. Specifically, the viscosity solution for the Burgers
equation has the form

∂

∂t
u(x, t) +

∂

∂x

[

u2(x, t)

2

]

= ε
∂

∂x

[

Qε

∂u

∂x

]

, (3)

where ε(→ 0) is a viscosity amplitude and Qε is a viscosity kernel, which may be nonlinear
and, in general, a function of x. Convergence may then be established by compensated
compactness estimates combined with entropy dissipation arguments [9]. To respect spectral
accuracy, the SVV method makes use of viscous regularisation and equation (3) may be
rewritten in discrete form (retaining N modes) as

∂

∂t
uN(x, t) +

∂

∂x

[

PN

(

u2(x, t)

2

)]

= ε
∂

∂x

[

QN ∗
∂uN

∂x

]

, (4)

where the star (∗) denotes convolution and PN is a projection operator. QN is a (possibly
nonlinear) viscosity kernel, which is only activated for high wave numbers. In Fourier space,
this kind of spectral viscosity can be efficiently implemented as multiplication of the Fourier
coefficients of ûN with the Fourier coefficients of the kernel Q̂N , i.e.,

ε
∂

∂x

[

QN ∗
∂uN

∂x

]

= −ε
∑

Pcut≤|k|≤N

k2Q̂k(t)ûk(t)e
ikx,

3

where k is the wave number, N the number of Fourier modes, and Pcut the wavenumber
above which the spectral vanishing viscosity is activated.

Originally, Tadmor [9] used

Q̂k =











0, | k |≤ Pcut

1, | k |> Pcut,
(5)

with εPcut ∼ 0.25 based on the consideration of minimising the total-variation of the nu-
merical solution. In subsequent work, however, a smooth kernel was used, since it was found
that the C∞ smoothness of Q̂k improves the resolution of the SVV method. For Legendre
pseudo-spectral methods, Maday, Kaber & Tadmor [12] used ε ≈ N−1, activated for modes
k > Pcut ≈ 5

√
N , with

Q̂k = e
− (k−N)2

(k−Pcut)
2 , k > Pcut. (6)

Karamanos & Karniadakis [8] made the first extension of the spectral vanishing viscosity
concept to spectral/hp element methods. In [8], the general form of the SVV operation as
presented by Tadmor is maintained; however, polynomial filtering is used to mimic the con-
volution operator in Tadmor’s formulation. In this work, SVV filtering was applied directly
to the C0 hierarchical (linearly independent but non-orthogonal) basis. Kirby & Karni-
adakis [13] proposed SVV filtering with respect to orthogonal expansions, and demonstrated
the concept in the context of LES modelling on incompressible turbulent channel flows. Xu
& Pasquetti [14] formulated SVV for nodal spectral elements and demonstrated the stabil-
isation effect within the context of cylinder flows. Finally Sirisup & Karniadakis [15] have
demonstrated the use of SVV stabilisation in the context of principle component analysis.

We present in the next section a formulation of SVV for spectral/hp elements [3] using a
continuous Galerkin formulation which filters on an orthogonal basis. This work extends the
concepts mentioned in [13] by formulating SVV using orthogonal expansions for one-, two-
and three-dimensional spectral element discretisations, and we further demonstrate that the
operator obtained is symmetric and semi-positive definite.

2.2 SVV for Spectral/hp Element Methods

We define the multi-dimensional SVV operator over the solution domain as

SV V (u) = ε
Dim
∑

i=1

∂

∂xi

[

QDim #
∂u

∂xi

]

. (7)

To develop the spectrally vanishing viscosity approach in a multi-dimensional polynomial
expansion, as typically applied in a spectral/hp element expansion, we need to construct
the Galerkin projection of equation (7). Following standard finite element construction we
take the inner product of (7) with respect to a C0 continuous test function v and apply the

4

Tadmor, (89) Maday, Kaber & Tadmor (93) :
Figure 2 (left) shows the solution with no SVV; figure 2 (centre) shows the solution with SVV
(Pcut = 7, εSV V = 0.1); and figure 2 (right) shows the solution with SVV (Pcut = 3, εSV V =
0.1).

Fig. 2. Standard diffusion to time T = 0.1 (left); standard diffusion with SVV Pcut = 7, εSV V = 0.1
(centre); and standard diffusion with SVV Pcut = 3, εSV V = 0.1 (right)

From this example we see that the SVV dissipation added to the high mode numbers with
respect to the spectral element discretisation does indeed yield dissipation at the global high
wavenumber scales of the solution (as exhibited in Figure 2 (centre and right)). Decreasing
the SVV wavenumber cutoff (Pcut) from eight to four produces further dissipation of the
high wavenumber features within the solution.

3 Incorporation of SVV into the Navier-Stokes Equations

In this section we discuss how SVV can be incorporated into a velocity-correction splitting
scheme to discretise the incompressible Navier-Stokes equations [17]. The incompressible
Navier-Stokes equations can be written as:

∂u

∂t
+ N(u) =−

1

ρ
∇p + νL(u) (20)

N(u) = (u ·∇)u (21)

L(u) =∇2u (22)

The temporal discretisation adopted in this work is a projection scheme, based on backwards
differencing in time. As originally described [17], this was characterised as an operator-
splitting scheme, but more recently [18] it has been shown that the method is one of a class
of velocity-correction projection schemes.

The projection scheme requires the solution of a pressure Poisson equation to (approximately)
maintain solenoidality of the velocity. Backwards time differencing is used to approximate a
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No SVV Pcut = 3,

✏SV V = 0.1
Pcut = 7,

✏SV V = 0.1

Spectral vanishing viscosity
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Figure 7: Dispersion-di↵usion eigencurves for P = 3 for the advection-di↵usion problem with Pe⇤ = 102, Pe⇤ = 103, Pe⇤ = 1 and Pe⇤ = 10�1 (top
to bottom). The thick highlighted branches represent primary eigencurves while dotted curves indicate the exact behaviour.
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to bottom). The thick highlighted branches represent primary eigencurves while dotted curves indicate the exact behaviour.
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to bottom). The thick highlighted branches represent primary eigencurves while dotted curves indicate the exact behaviour.
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DG-like properties of CG+SVV

R. C. Moura, S. J. Sherwin, and J. Peiró, J. computational physics, 307. 401-422, 2016.

restricted by the choice of an upwind numerical flux, the CG-SVV scheme is more flexible due to the larger number
of SVV control parameters. Depending on the simulation considered and polynomial order used, DG dissipation
levels are likely to be either too weak or stronger than necessary, whereas SVV could be adjusted to provide higher
dissipation levels or an improved resolution power through a reduced maximum dissipation.

Figure 15: Dispersion and di↵usion curves for full upwind DG (top) and the optimized CG-SVV scheme (bottom) for P = 2, . . . , 8. Thin dotted
lines represent the exact behaviour for linear advection.

5. Conclusion

This study assessed the spectral/hp continuous Galerkin (CG) formulation through the linear dispersion-di↵usion
analysis framework. The discretization of the advection-di↵usion equation was addressed first and the role of primary
and secondary eigencurves was discussed. Those have been verified to behave in agreement with the perspective
introduced in [9], by which secondary eigencurves peculiar to spectral/hp methods are perceived as replications of
the primary one. Potentially undesirable non-smooth features have been observed on primary dispersion and di↵usion
curves for problems strongly dominated by either convection or di↵usion. These have been found mostly at moderately
high wavenumbers, indicating that high-order spectral/hp CG discretizations might be unsuited for under-resolved
simulations of either advection or di↵usion dominated problems.

Subsequently, the spectral vanishing viscosity (SVV) technique was analysed and, owing to a dependency of the
traditional SVV operator on the Péclet number, the standard CG-SVV formulation was again found to feature non-
smooth characteristics when convection is much stronger than dissipation or vice-versa. A new approach has been
proposed where the base SVV magnitude is made locally proportional to both the advection speed and the mesh
spacing. This way, the Péclet number is held constant globally and SVV e↵ects are kept close to their design point.
In addition, a “power kernel” function has been devised for the advocated SVV operator to provide a consistent
increase in resolution power (per degree of freedom) when the polynomial order is increased — a feature not naturally
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Spatial analysis:   (ω  real find  k = k(ω))
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Figure 6: Numerical dispersion (left) and di↵usion (right) curves for CG-based linear advection-di↵usion
with P = 4 and Pe⇤ varying from 0.8 to 1.28 (top), 1.35 to 1.75 (centre) and 2 to 100 (bottom). Arrows
are used to indicate the direction of increasing Pe⇤ for each set of curves.
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Example of CG or DG (Hyper upwinding) problem
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A first point deserving some comments is the non-monotonic behaviour of the kernel entries above,

as intuition indicates that this should also yield non-monotonic dissipation curves. Although it is not

clear at this point why this is not the case here, a possible explanation is that SVV needs only to provide

a dissipation distribution to fill the gap between the (monotonic) DG curve of order P � 2 and that

of inviscid CG of order P , which features (non-monotonic) bubbles. Another important point is that

matching was performed mostly for the regions of constant slope in log-log plots, as will be described

below. This caused the dissipation levels that are more evident in linear scale plots (cf. right-hand side

of Fig. 8) to be basically a by-product of the optimisation process. However, the matching at higher

frequencies does not need to be perfect, and the fact the CG dissipation levels in this range were typically

stronger than expected is actually good for robustness.

Figure 8: Comparison between optimised CG-SVV dissipation (colour) for PCG = 3, . . . , 9 and their
reference DG curves (dashed) for PDG = 1, . . . , 7. The polynomial order of the curves increases from left
to right in both the log-log (left) and linear scale (right) plot.

The optimisation procedure conducted consisted essentially in minimizing the distance between a

reference DG curve and that yielded by a trial SVV kernel at a set of equispaced points along the DG

curve. Their position covered mostly the region of constant slope (in log-log plots) for each DG curve.

The number of points was chosen to be twice the number of free kernel entries for each case. Note

that the first entry is always zero for a proper SVV operator, whereas the last one is a (unit) dummy

entry that actually does not a↵ect the eigencurves [13]. Hence, the CG discretization with P = 3, for

example, had only two free kernel entries to be adjusted. optimisation was performed via MATLAB’s

global optimisation toolbox. Di↵erent algorithms have been tested, but the best results were achieved

with the so-called Particle Swarm approach, see e.g. [24], through MATLAB’s function particleswarm.

At this point, it is worth explaining why the unit Péclet number (Pe⇤ = µ�1
0 = 1) was chosen for the

SVV operators considered in this study. It happens that the SVV characteristics are actually defined

by the product between µ0 and the kernel entries. However, the optimal entries found were observed

to be inversely proportional to whichever value of µ0 was set for the optimisation. For example, when

optimisations were performed with µ0 = 10, the optimal kernel entries obtained were exactly ten times

smaller than the ones tabulated previously, resulting in the same dissipation curves. Hence, the reference

Péclet value adopted for the SVV is not important in itself, and the unit value has only been chosen

here for convenience.

The optimised SVV operators obtained with the proposed approach were found to improve

discretization robustness significantly, as will be discussed in Sec. 5. The accuracy at moderate orders
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P-2 to remove bubbles
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• SVV coefficient scaled to 

maintain mesh Peclet no. Dissipation

Figure 9: Numerical dispersion (left) and di↵usion (right) characteristics of the CG-SVV approach
proposed for P = 3, . . . , 8. Results are shown on the usual DOF-based plots and indicate superior
resolution power per DOF at higher polynomial orders (arrows).

was however not so good due to the fact that DG dissipation curves of order P � 2 were used as

reference. For example, CG at P = 3 had the dissipation levels of DG order P = 1, which are know to

be too large e.g. for under-resolved turbulence computations [9, 25]. Nevertheless, at higher polynomial

orders, much smaller dissipation levels are achieved and the CG-SVV approach proposed becomes

suitable for high-fidelity simulations. It should be stressed that, for well-resolved computations (e.g.

laminar flows), CG’s standard nominal order of accuracy of P + 1 is maintained. This is because, even

though we match DG’s dissipation at order P � 2, the resulting CG di↵usion error still superconverges

as =(⇤h) / ($h)2(P�2)+2. Therefore, given su�cient resolution ($h ⌧ 1) and assuming that di↵usion

error dominates, mesh refinement yields an algebraic decay slope of 2P � 2, which is larger than P + 1

provided that P > 2.

Finally, the dispersion/di↵usion eigencurves obtained with the optimised SVV operators are shown

in Fig. 9 with the usual DOF-based plots. These confirm that a superior resolution power (based on

the extent of the frequency range of negligible error) is achieved on a per DOF basis as the polynomial

order is increased, for both dispersion and di↵usion. An additional condition used in the optimisation

process was the penalization of eigencurves whose dissipation values of the spurious mode were too small.

More specifically, a requirement of =(⇤}) < �0.1 was set for the spurious modes. This of course made

more di�cult the attainment of low dissipation levels for the physical modes. The threshold of �0.1 was

considered su�ciently strong to damp reflected waves over a short distance, based on the experiments

conducted in connection with Fig. 3. The optimised SVV operators are tested against more physical

test cases in the next section.

5 Numerical experiments in under-resolved vortical flows

This section is devoted to the simulation of spatially developing vortex-dominated flows as a means

to assess the fidelity and robustness of high-order CG discretisations with and without SVV. This is a
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Challenges in modern HPC
• Ideally: we want really fast single-core nodes 

with lots of memory bandwidth


• Instead, we get lots of FLOPS using many 
cores per node, lower clock speed


• Complicated memory hierarchies


• Very limited memory bandwidth


Need algorithms with high arithmetic intensities 
that can use available FLOPS: high-order methods



Performance
Implementation strategies
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Implementations
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Figure 2: Diagramatic representation of each amalgamation scheme. Four quadrilateral elements with P1 =

P2 = 1 and Q1 = Q2 = 3 are considered for the backward transform operator.

can be used for the tetrahedron and prism, although it is typically less e�cient than the
hexahedron due to the inter-dependency of the p, q and r indices. With a little more work,
we can again use linear algebra packages by rewriting the summation as a series of matrix-
matrix operations, ⇣

(Û>
[P1]B

>
1 )

>
[Q2]B

>
2

⌘>

[Q3]
B

>
3 , (4)

where Û[P1]is :
,
:::
for

::::::::::
example,

::::::::
denotes

:
the reinterpretation of the vector û as a P1⇥P2P3 matrix

stored in column-major format. The parentheses also highlight where temporary storage is
required to store intermediate steps. Whilst intuition may point towards sum-factorisation
being the quickest way to evaluate these operators due to the reduction in operator count,
our previous work demonstrates that the fastest technique depends heavily on polynomial
order, element type and the

:::::
type

::
of

:
operator under consideration. This points towards there

being the need for a number of di↵erent amalgamation schemes in order to attain optimal
performance.

2.3. Amalgamation schemes

Our earlier studies applied the strategies of the previous section by iterating over each
element, evaluating the operator and measuring the total execution time for the entire mesh.
However, in the context of memory e�ciency and using the CPU cache e↵ectively, this
approach may not prove to be the most optimal if matrices are not stored contiguously in
memory. Additionally, since local matrices must be generated for each element, there is a
large cost incurred in moving them from main memory to the processor.

The purpose of this work is therefore to reformulate these strategies in the context of
multiple elements. We aim to remove local matrices wherever possible, thereby reducing
data movement and increasing data locality. We will leverage both the tensor-product de-
composition of the spectral/hp element method and the use of a standard region, on which
we can define an operator for many elements simultaneously. Then, through grouping local
elemental storage of the coe�cient and physical spaces, we aim to apply standard level-3
BLAS operations such as dgemm for matrix multiplication wherever possible. These routines,
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Fig. 3.2. Initial performance characteristics for the four key operators with prismatic elements.

prohibitively expensive. As the polynomial order increases further, it is clear that the the sum-factorised
variants of either SumFac, IterPerExp or the baseline LocalSumFac are generally the correct scheme to
select. We note that, broadly speaking, the IterPerExp and LocalSumFac methods appear to perform at
similar levels. Here, we posit that the local sum-factorized matrix sizes are large enough that, regardless of
whether matrices are allocated contiguously in memory or not, a local approach to sum-factorization still
provides a highly-e�cient implementation.

3.2. E↵ect of group size. An additional factor to consider is the number of elements in the amalga-
mation group. Since BLAS is known to utilise less of the peak CPU performance for smaller matrix ranks,
increasing the number of elements in an amalgamation group will lead to larger matrix sizes and thus may
increase performance. To this end, we repeat the previous procedure, examining the inner product operator
with the IterPerExp scheme for tetrahedral elements, as they have the smallest local matrix sizes. The num-
ber of elements in the amalgamation is limited to factors of 10 until the entire mesh of tetrahedral elements is
recovered. The measured execution time is then scaled to estimate the time required to evaluate the action of
the operator on the whole mesh. The results, depicted in Figure 3.4, show that with some minor exceptions,
the runtime is broadly equal across the range of element sizes. Other tests performed with di↵erent BLAS
implementations also did not show a significant di↵erence in performance. However, we note that this factor
may be more important when considering two-dimensional elements, which will generally have smaller matrix
sizes. For the purposes of the rest of this paper however, this parameter is not considered further.

4. Auto-tuning strategy. Whilst from the previous section we see that the performance improvements
that can be obtained with amalgamation schemes are significant, it is clear that the choice of scheme in an a
priori fashion is highly nontrivial. As we have seen in both this and previous work, operator count calculations
alone are not su�cient to give an accurate estimation of the most e�cient scheme. In reality, the number of
variables involved in analysing the e�ciency of each scheme is highly problem- and hardware-dependent. For
example, let us consider the e↵ects of switching from the Netlib BLAS implementation to the OpenBLAS
library [2], widely regarded to be highly e�cient on modern hardware. To obtain a general idea of the

8
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Exploiting vectorisation
• Key to achieving peak performance is 

exploiting vectorisation (SSE, FMA, AVX, 
AVX-512, …)


• Recent work has focused on achieving this 
with tuned kernels for key operators


• Particular focus on ‘matrix-free’ approaches 
that avoid construction of a matrix per-
element




Data layout
Natural to consider data laid out element by element

degrees of freedom

elements



Data layout
Instead, could consider blocks that are equivalent  
to processor vector width (e.g. AVX = 4 doubles)

degrees of freedom

elements



Exploiting vectorisation

• Perform multiple operations in a single cycle


• Combine with:


• Hand-written loops for sum-factorisation


• Explicit intrinsics for vector operations


• C++ templating to allow for loop unrolling
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Significant performance gains against benchmark 
solutions (libxsmm, Intel MKL) for backward transform

Still ongoing work!
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High-order mesh 



High-order mesh generation
Curving coarse meshes leads to invalid elements
Most existing MG packages cannot deal with this
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Surface mesh sliding

�0.5

0

0.5

1
Qe

Figure 10: Cross-section of a semi-sphere case highlighting the sliding of CAD curves along the surface. The left-hand image shows the initial
mesh and the right-hand figure shows the optimised mesh. Note that the colour of the surface triangles is not related to mesh quality.

5.7. CAD sliding
Fig. 10 highlights the e↵ects of the CAD sliding outlined in section 5.7. In this example, we take a flat surface and

place a semi-sphere onto it. This generates an initial curved mesh, visualised on the left hand side, which possesses 8
invalid elements. Taking a closer look at the initial mesh, it is very clear that the surface mesh induces an invalidity
where the sphere meets the flat plane. The ability to slide the element edges along the flat plane and additionally the
surface of the sphere is therefore required in order to have any chance of generating a valid mesh. The optimised mesh
on the right-hand side shows how the deformation is incorporated into the surface edges, deforming them appropriately
in order to produce a valid and very high-quality mesh, as can be see from the quality metric.

5.8. Boeing reduced landing gear
In our final example, we show results for optimisation of another well-known complex geometric example: the

Boeing reduced landing gear. In this case, we have created a hybrid mesh containing a prismatic boundary layer, filled
with tetrahedra in the interior. The purpose of the prism layers is to capture the wall-normal flow physics, where very
large gradients of the flow velocities occur close to the surface. Since this region contains very high shear, the prismatic
elements should substantially decrease in thickness near the wall so that they become highly stretched relative to the
tangential surface direction. This poses a substantial challenge for curved boundary layer generation. If we apply
curvature to a standard linear boundary layer mesh, it is all but guaranteed for all but the most simple geometries that
there will be a large number of invalid elements. Given that there is very little space available to accommodate the
curvature of the boundary, correcting these boundary layer elements becomes very di�cult. Further, the number of
elements to optimise also increases substantially, thus increasing the computational cost of the method.

As has been noted in previous work it is far more practical and robust for high-order meshing to generate a single
‘macro’ isotropic prism at the geometric boundary, in which the curvature of the surface can be readily applied, and
then use a method of isoparametric splitting to produce the anisotropic elements [37]. Adopting this approach here,
we first generate a linear hybrid mesh combining tetrahedral elements and triangular prismatic ‘macro’ elements,
introduce the boundary curvature and then apply the variational optimisation to optimize the quality of the mesh. We
then finish the mesh by applying isoparametric splitting to obtain the desired boundary-layer thickness.

Fig. 11 shows the ‘macro’ mesh before and after optimisation, for which we have used the hyperelastic functional
since this has been shown to produce the highest quality meshes. We also show the final mesh created after the macro
layer has been split. For the purposes of clarity, the tetrahedra have been removed. Overall the figure shows that whilst
the initial configuration before optimisation is of a reasonable quality, there are a number of lower-quality elements
on the shoulders of the tyres. The quality in this area, as well as throughout the mesh generally, is then improved in
optimisation across all of the elements shown. The figure also show the quality of the prismatic layers after splitting,
where in general it can be seen that this approach produces a high quality mesh.

20

Often surface mesh will never yield valid volume
to be generated: solve by sliding elements on the

CAD surface
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Hasegawa-Wakatani 
• Model for drift wave instability in fusion edge 

turbulence simulations


• State variables: ɸ is the electrostatic 
potential, ζ is vorticity, n is the perturbed 
number density


• Parameters: α is the adiabaticity operator, κ 
is a constant density gradient scale-length


• Determine how to implement these equations 



Hasegawa-Wakatani equations

{a,b} is the canonical Poisson bracket operator

]B�C_ � BY CZ ˞ BZ CY

ЈU  ]З� Ј_ � Ѓ
З ˞ O� ˞ ç˓�ЈOU  ]З�O_ � Ѓ
З ˞ O� ˞ Ќ
ЗZ ˞ ç˓�O˓�З � Ј



• Mixture of convective term and elliptic solve 
for ζ from ɸ


• Therefore can leverage mixed formulation: CG 
for elliptic solve, DG for convection


• Since we're using DG, omit the hyper diffusion 
term for stability


• Rewrite in conservative form


• Leverage Nektar++ framework for rapid 
development

Hasegawa-Wakatani equations



Hasegawa-Wakatani equations

X& � ഡ˞ЗZ � ЗY ത]З� Ј_ � ˓ Α 
X&Ј�]O� Ј_ � ˓ Α 
X&O�
Apply DG formulation with uE and upwinding



Sample output

• spectral/hp 
simulation of the 
Hasegawa-
Wakatani 
equations

• Joint CG/DG 
implementation

• Simple model for 
drift-wave 
turbulence



N(u) = u ·⇥u

Pressure 

Poisson: ⇥2pn+1 =

1
�t
⇥ · u�

Navier-Stokes Time-stepping
⇥tu + N(u) = �⇥p + �⇥2uNavier–Stokes:

Velocity correction scheme (aka stiffly stable): 
Orszag, Israeli, Deville (90), Karnaidakis Israeli, Orszag (1991), Guermond & Shen (2003)

Helmholtz: ⇥2un+1 � �0

⇥�t
un+1 = � u�

⇥�t
+

1
⇥
⇥pn+1

u ·⇥u

�⇤2u�⇤p = f
⇤ · u = 0

un

un+1

n = n + 1

u�

⇥ · u = 0

Advection: u⇥ = �
J�

q=1

�qun�q ��t
J�1�

q=0

⇥qN(un�q)



Meshing
Meshing for F1 applications

Spectral/hp element methods Sec. 4: Spectral/hp elements in 2D

 φpq(ξ1,ξ2) = ψp(ξ1) ψq(ξ2)

ψp(ξ1)

ξ1
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ψq(ξ2)
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 φpq(ξ1,ξ2) = hp(ξ1) hq(ξ2)
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hq(ξ2)

p

q

p

q

Figure 17: Construction of a two-dimensional expansion basis from the tensor product of two
one-dimensional expansions of order P = 4. A modal expansion (top) and a nodal
expansion (bottom) are shown.

expansion. Since a large part of the efficiency of the quadrilateral expansion (particu-
larly at larger polynomial orders) arises from the tensor product construction, we would
like to use a similar procedure to construct expansions within the triangular domains.
Therefore, to extend the tensor product expansion to simplex regions such as a triangle
we need to generalise the tensor product expansion concept, which can be achieved by
using a collapsed coordinate system.

4.1.3 Collapsed coordinate system

In this section we will focus on 2D expansions defined on the standard triangle Tst,
defined as

Tst = {(ξ1 , ξ2)|− 1 ≤ ξ1 , ξ2 ; ξ1 + ξ2 ≤ 0} .

In the quadrilateral expansions discussed in section 4.1.1 we generated a multidi-
mensional expansion by forming a tensor product of one-dimensional expansions based
on a Cartesian coordinate system. The one-dimensional expansion was defined between
constant limits and therefore an implicit assumption of the tensor extension was that the
coordinates in the two-dimensional region were bounded between constant limits. How-
ever this is not the case in the standard triangular region as the bounds of the Cartesian
coordinates (ξ1, ξ2) are dependent upon each other.

4-2



F1 Geometry



Elemental road car

51

P = 4



Elemental Road Race Car

Moxey, Turner,  Jassim, Taylor Sherwin
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3.3. REPROFILING ROLL HOOPS

• Another effect of the larger wake is an increased region of recirculating flow downstream of the

ramp leading to the decrease in rear surface pressure visible in Figure 3.6(b). This leads to a larger

discrepancy between front and rear static pressure further increasing pressure drag.

(a) (b)

Figure 3.6: (a) Comparison of total pressure 400 mm rearward of the vehicle trailing edge for CFD019
(right) and CFD059 (left). (b) Comparison of rear static presssure for CFD019 (left) and CFD059 (right).

Overall however, the ramp is the key addition in the search to move the balance rearward with the

substantial static pressure increase upstream of the ramp and beneficial effect of the ramp on the diffuser

producing double the amount of rear downforce generated by the initial design.

3.3 Reprofiling Roll Hoops

In an attempt to mitigate some of the drag penalty accrued by the addition of the ramp, the roll hoops

were to be re-profiled from their initially circular design, as highlighted in Figure 3.7.

(a)
(b)

Figure 3.7: Comparison of geometries for CFD059 and CFD060 showing the reprofiling of the roll hoops in
CFD060 (highlighted red).

17

CHAPTER 3. AERODYNAMIC BALANCE MIGRATION OF THE BASELINE CAR

3.1 Diffuser Ramp Packer

The initial concept to generate more °CLr
involved the addition of a diffuser ramp packer, compared to

the initial design below in Figure 3.2. This involves moving the inlet to the diffuser tunnel rearwards
and smoothing the transition from the flat floor to the rear diffuser tunnel. As with all Venturi style
underbodies, it is beneficial to extend the length of the ’throat’ region, where flow velocity is at it’s highest,
to maximise downforce produced. This also has the effect of increasing the angle of the rear diffuser
tunnel which can be beneficial to floor performance if the steeper diffuser can maintain attached flow.
The smoothed transition to the rear diffuser tunnels is designed to minimise separation by removing the
sharper transition present in CFD019.

FIGURE 3.2. Comparison of Geometries for CFD019 (left) and CFD047 (right) showing the
alteration to the diffuser tunnels on CFD047 (highlighted red).

Many of these expectations are realised in the RANS outputted underbody static pressures, shown in
Figure 3.3 (a) overleaf. The extension of the ’throat’ section of the diffuser has lead to a large increase in
the region of minimum surface pressure on the underbody with the curvature of the ramp packer further
reducing the static pressure at the inlet to the rear diffuser tunnel. These two effects contribute to the 6
point increase in rear downforce (1 point = 0.01 °CL) shown in Table 3.1.

Table 3.1: Comparison of full-car force coefficients for CFD019 and CFD047

Case Notes CD °CL -CL f
-CLr

%-CL f
L/D

CFD019 Elemental RP1 Baseline Car 0.83 1.19 0.88 0.31 74.0 1.42
CFD047 As CFD019 with Diffuser Packer 0.85 1.25 0.89 0.37 70.8 1.48

Deltas + 0.02 + 0.06 + 0.01 +0.06 - 3.2% + 0.06

There was a very slight increase in drag coefficient recorded after the diffuser adjustments were
implemented. To determine the cause of this increased CD , regions of separation in the underbody were
highlighted in Figure 3.3 (b) overleaf and this revealed a region of separation present at the inboard lip of
the diffuser tunnel inlet. This is likely contributing to the increase in CD and may be leading to the loss of
some potential °CLr

however this small separation region is not entirely unexpected due to the increased
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3.2. REAR RAMP

suction peak at the diffuser ramp packer. The benefit of the steeper diffuser angle enlarging the throat
section of the underbody is however much greater than the consequential separation that occurs in the
diffuser tunnel.

(a) (b)

Figure 3.3: (a) Comparison of underbody static presssure for CFD019 (bottom) and CFD047 (top). (b)
Regions of separation or near separation (V ∑ 0.3V1) on the underbody of CFD019 (bottom) and CFD047
(top).

3.2 Rear Ramp

While the redesign of the underbody led to a gain in rear downforce of 6 points, a gain of the order of an
additional 25 points is required in order to move the balance into the target window of 60%. Therefore
it was decided to add a ramp to the rearmost point of the baseline body geometry (case name CFD059),
highlighted in red below in Figure 3.4.

FIGURE 3.4. Comparison of geometries for CFD019 (right) and CFD059 (left) showing the
addition of a rear ramp in CFD059 (highlighted red).

The ramp was added to the initial geometry to be able to judge the benefits of the ramp in isolation
to those gained through the underbody redesign. The addition of the ramp was found to greatly aid
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Design 2: +33% Downforce 

Design 3:   +270% Downforce 

5th order  
Re=1m



Turbomachinery application

Re=1.5M

T106 using NekMesh

Re=230k Re=160k Re=88k

mean

fluctuation



Summary/Confessions
• Applying spectral/hp element techniques to 

challenging industrial flow problems. 
• Compactness of methods attractive on current/

emerging HPC architecture 
• Accurate, transient flow modelling is an enabling 

technology for high-end engineering/physics.   
• But … 

• Meshing for 3D geometries is a specialist skill 
• Robustness has required careful analysis and 

probably requires more! 

SPECTRAL/HP ELEMENT FRAMEWORK
NEKTAR++


