Targeting the spectral/hp element method for exascale platforms

David Moxey

College of Engineering, Maths & Physical Sciences, University of Exeter

Chris Cantwell & Spencer Sherwin

Department of Aeronautics, Imperial College London

Mike Kirby

Scientific Computing and Imaging Institute, University of Utah

Platform for Advanced Scientific Computing Conference, Lugano, Switzerland

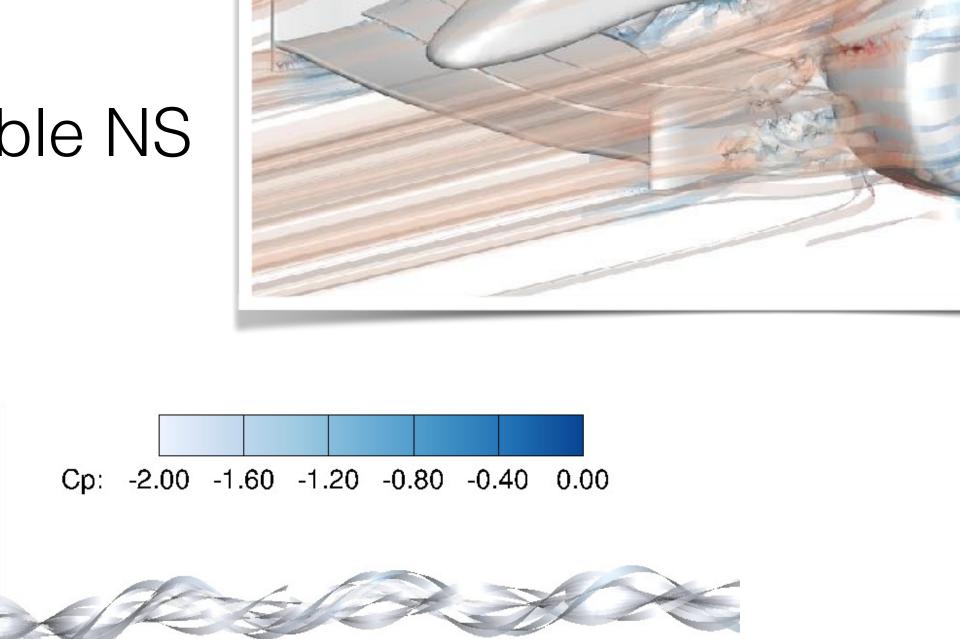
26th June 2017

Outline

- Challenges for exascale: hardware landscape
- The spectral/hp element method
- Collections & libxsmm
- Summary

What CFD do we want to do at exascale?

- Industrial simulations at high Reynolds numbers
- Things that RANS struggles with: detachment, vortex interaction
- SVV-LES formulation of incompressible NS



Lombard, Moxey, Hoessler, Dhandapani, Taylor and Sherwin *Implicit large-eddy simulation of a wingtip vortex*, AIAA Journal **54** (2), 2016

Why is exascale (CFD) hard?

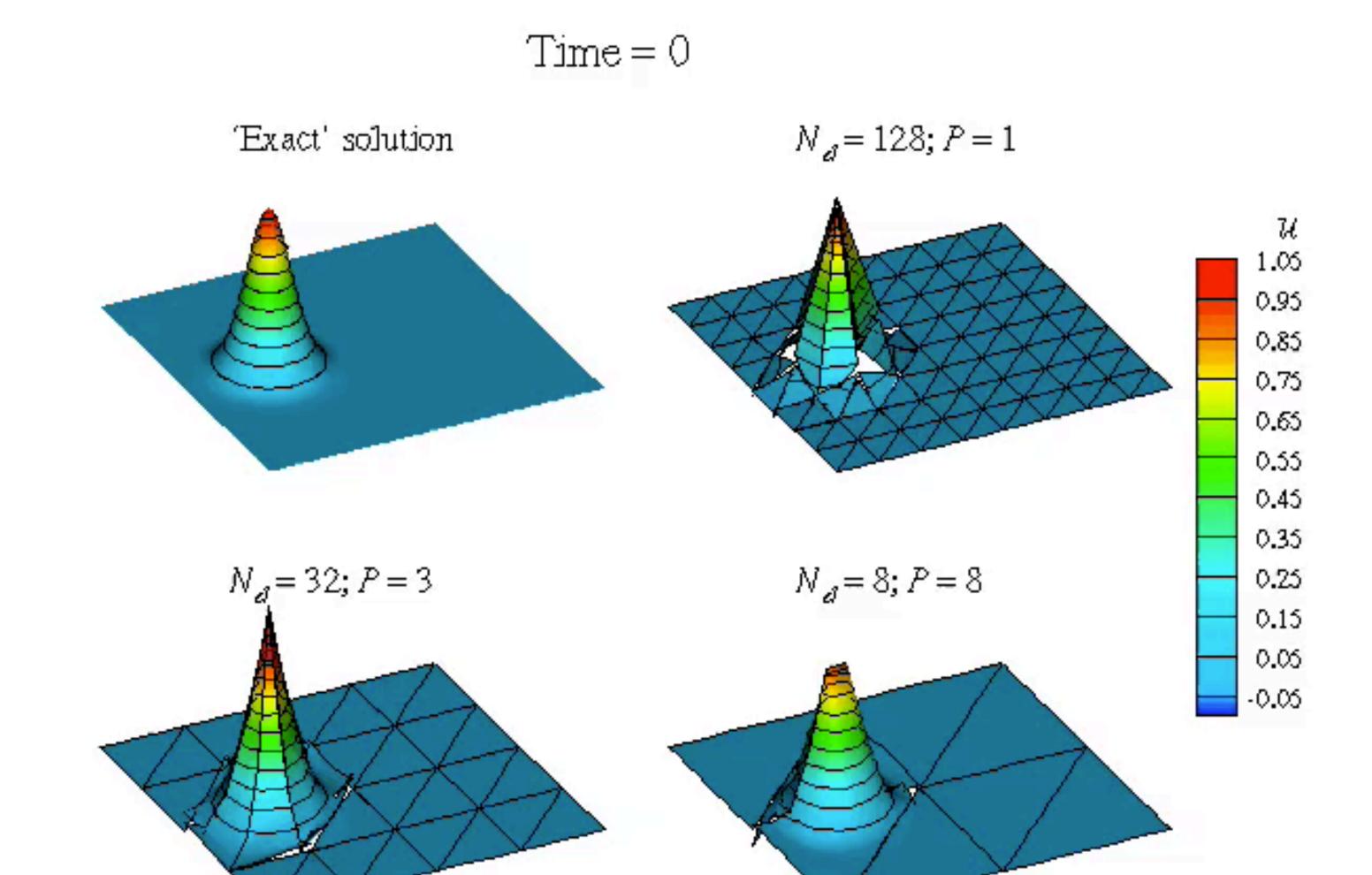
- Ideally: we want really fast single-core nodes with lots of memory bandwidth
- Instead, we get lots of FLOPS using many cores per node, lower clock speed

Main problem (asides from communication):

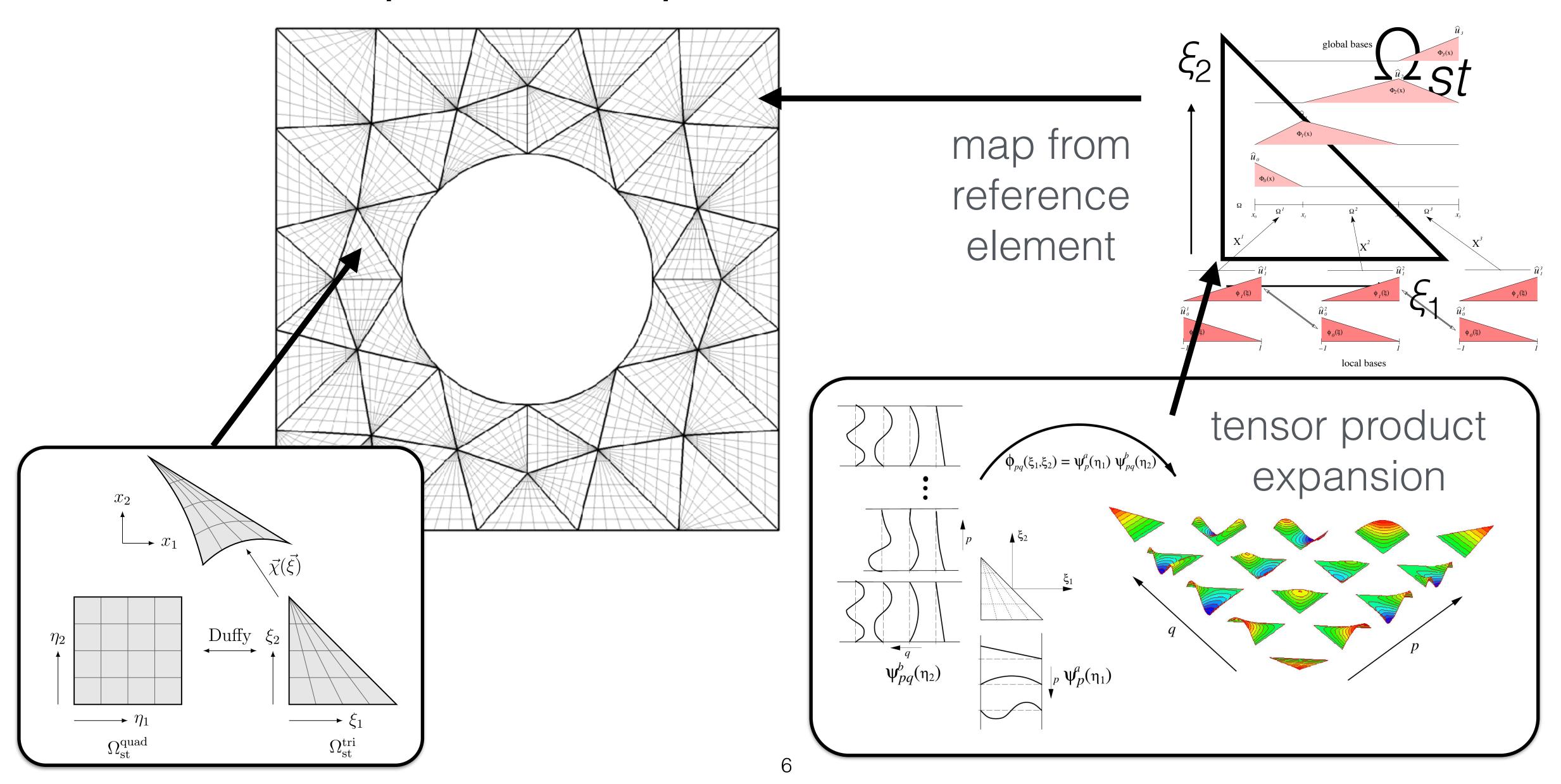
- Complicated memory hierarchies
- Very limited memory bandwidth

Therefore need algorithms with **high arithmetic intensities** that can actually use FLOPS available

Higher p means more work



Spectral/hp element method



Nektar++ high-order framework

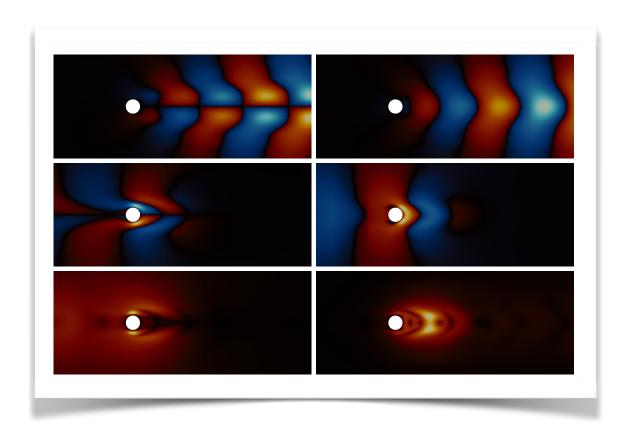
Framework for spectral(/hp) element method:

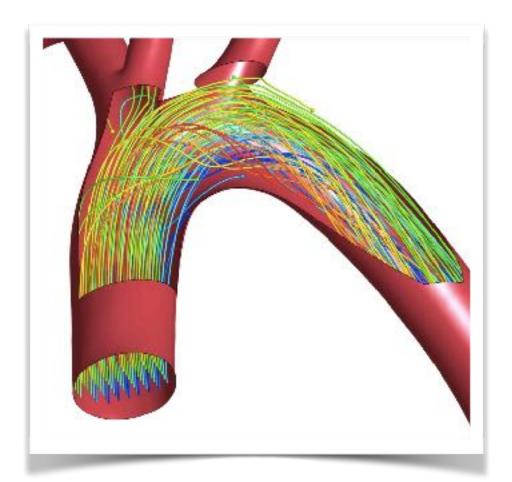
- Dimension independent, supports CG/DG/HDG
- Mixed elements (quads/tris, hexes, prisms, tets, pyramids) using hierarchical modal and classical nodal formulations
- Solvers for (in)compressible Navier-Stokes, advection-diffusion-reaction, shallow water equations, ...
- Parallelised with MPI, tested scaling up to ~10k cores

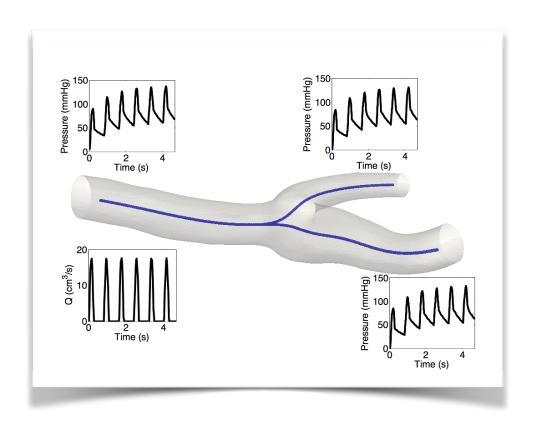
http://www.nektar.info/

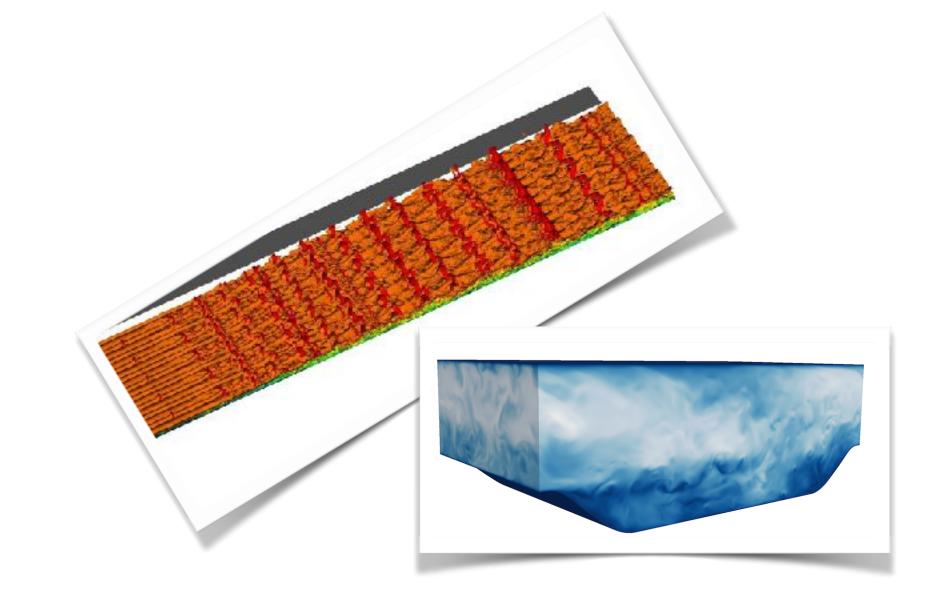
nektar-users@imperial.ac.uk

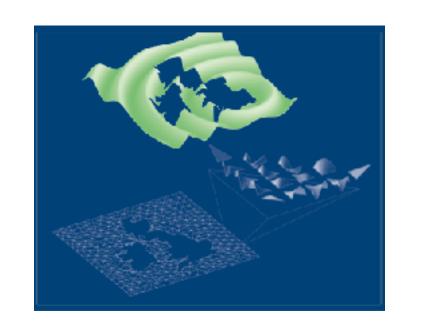
https://gitlab.nektar.info/

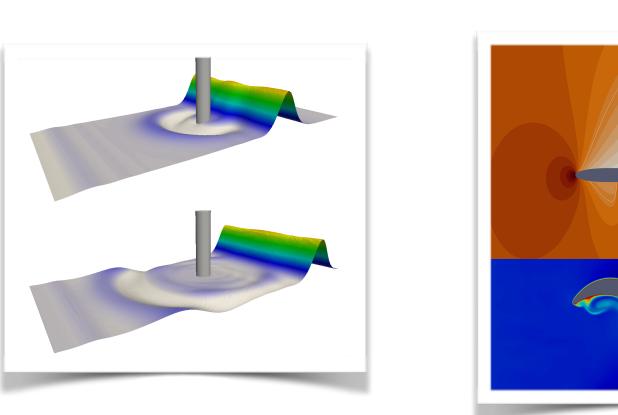


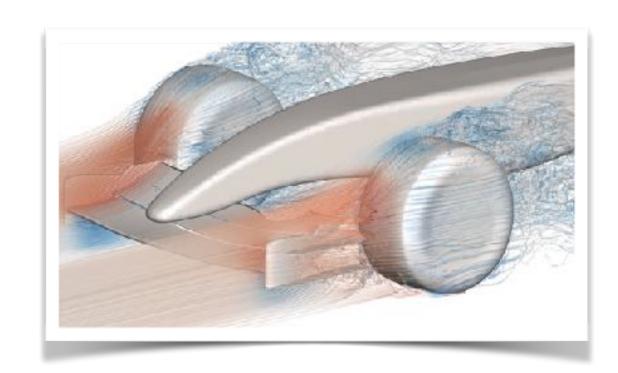


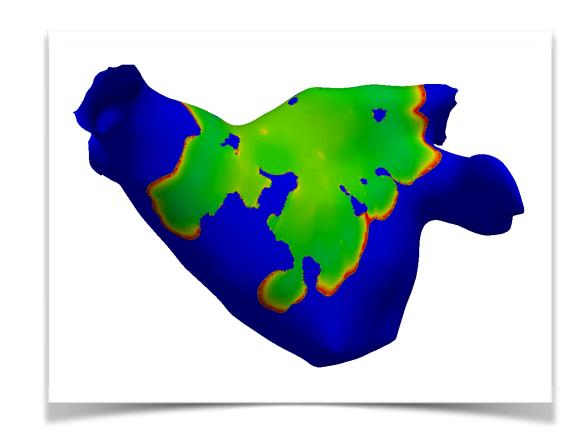


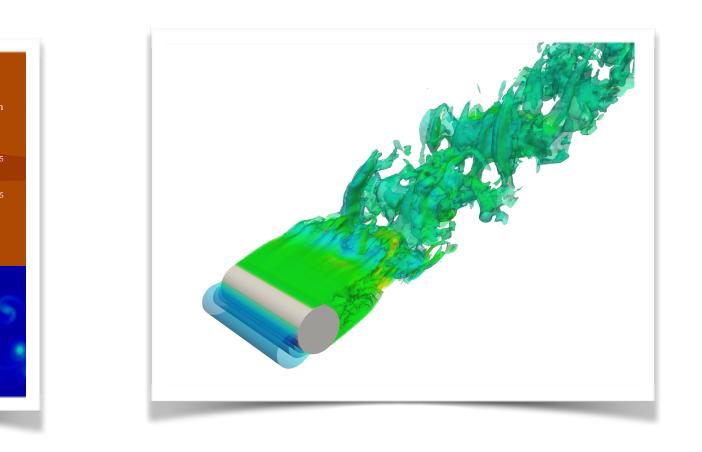












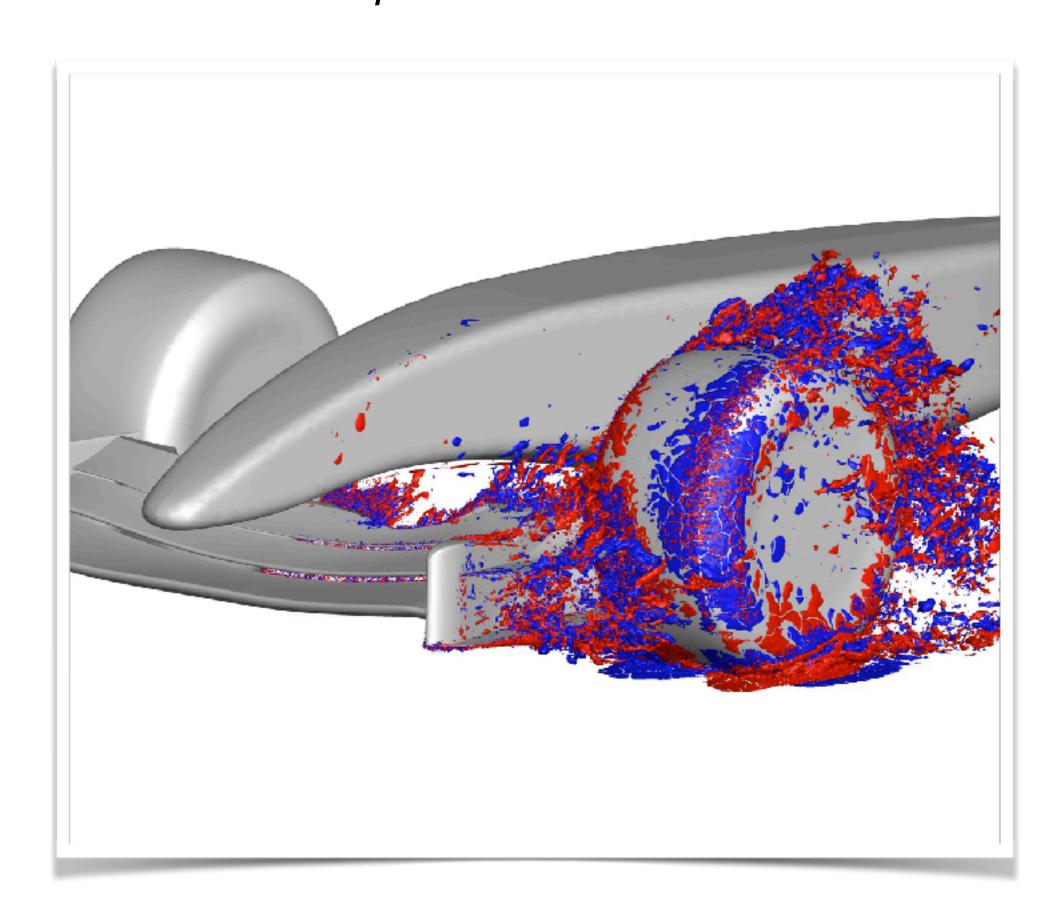
Nektar++

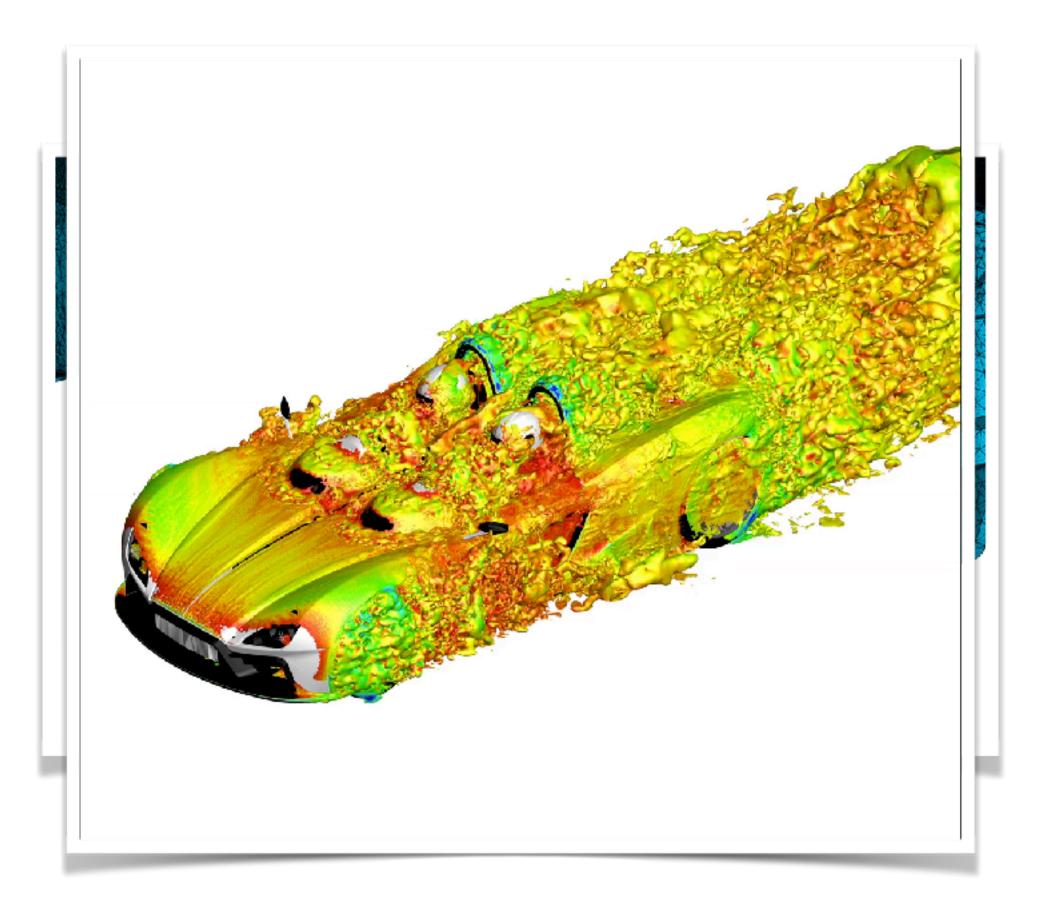
- Make it simpler/quicker to create high-order solvers for a range of fields and applications (including CG/DG/HDG)
- Support 1/2/3D and unstructured hybrid meshes for complex geometries: tets, prisms, etc.
- Scale to large numbers of processors
- Be efficient across a range of polynomial orders and core counts
- Bridge current and future hardware diversity

Unstructured simulations

Commonly known that hexes yield best performance because they have *tensor* product structure

Complex geometries **require** unstructured meshes - how to improve performance?

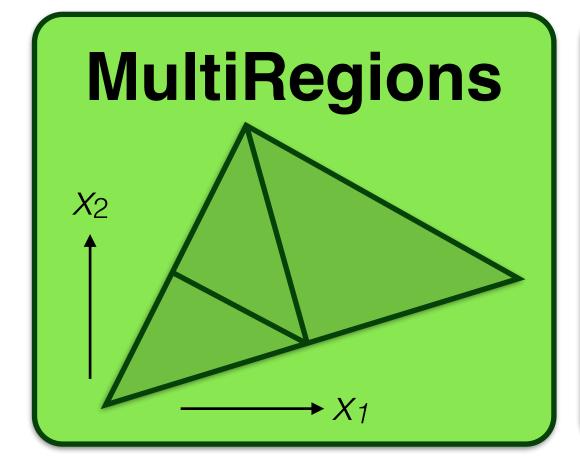


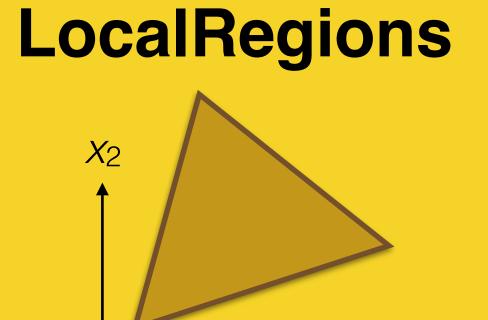


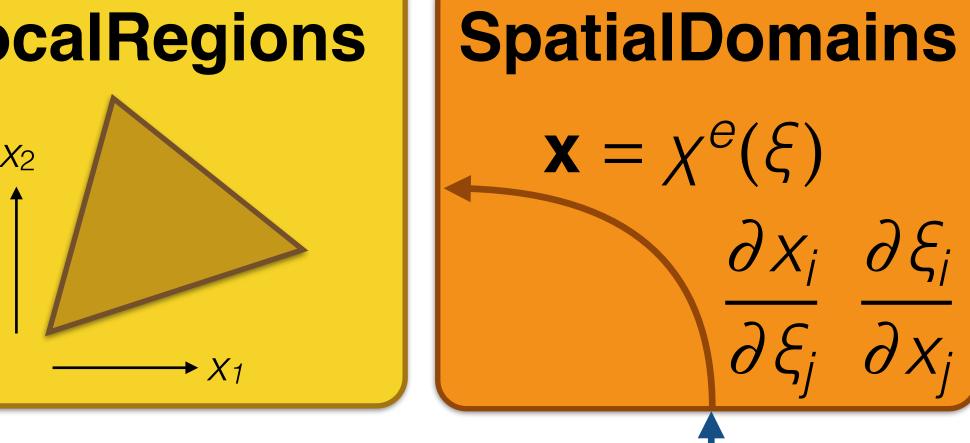
Framework design

$$u^{\delta} = \sum_{i} \hat{u}_{i} \Phi_{i}(x)$$

$$U_e^{\delta} = \sum_{p} \hat{u}_p \phi_p(x)$$



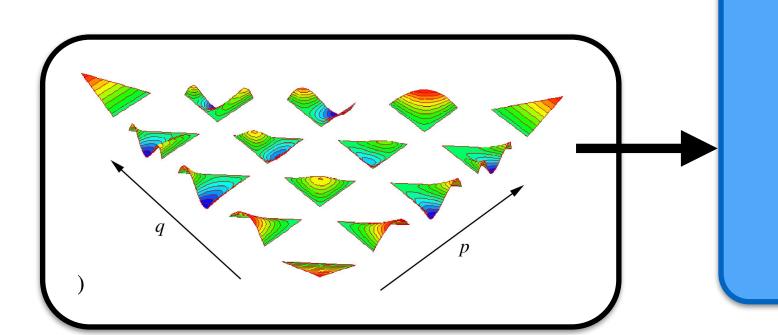




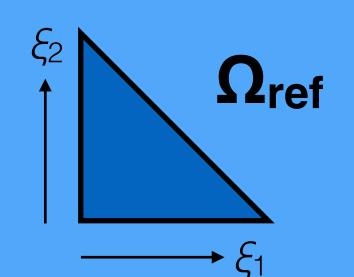
$$f[i] = \int_{\Omega} f(x) \Phi_i(x) dx$$

$$f[i] = \int_{\Omega} f(x)\Phi_i(x) dx$$

$$f[i] = \sum_{e=1}^{N_{el}} \int_{\Omega^e} f(x)\psi_i^e(x) dx$$



StdRegions



"Defining" features of spectral/hp

Generally not collocated

$$u(\xi_{1i}, \xi_{2j}) = \sum_{n=1}^{P^2} \hat{u}_n \phi_n(\vec{\xi}) = \sum_{p=1}^{P} \sum_{q=1}^{Q} \hat{u}_{pq} \phi_p(\xi_{1i}) \phi_q(\xi_{2j})$$

quadrature points

modal coefficients

Uses tensor products of 1D basis functions, *even for non-tensor product shapes*, but indexing harder

$$U(\xi_{1i}, \xi_{2j}, \xi_{3k}) = \sum_{p=1}^{P} \sum_{q=1}^{Q-p} \sum_{r=1}^{R-p-q} \hat{u}_{pqr} \phi_p^a(\xi_{1i}) \phi_{pq}^b(\xi_{2j}) \phi_{pqr}^c(\xi_{3k})$$

Sum-factorisation

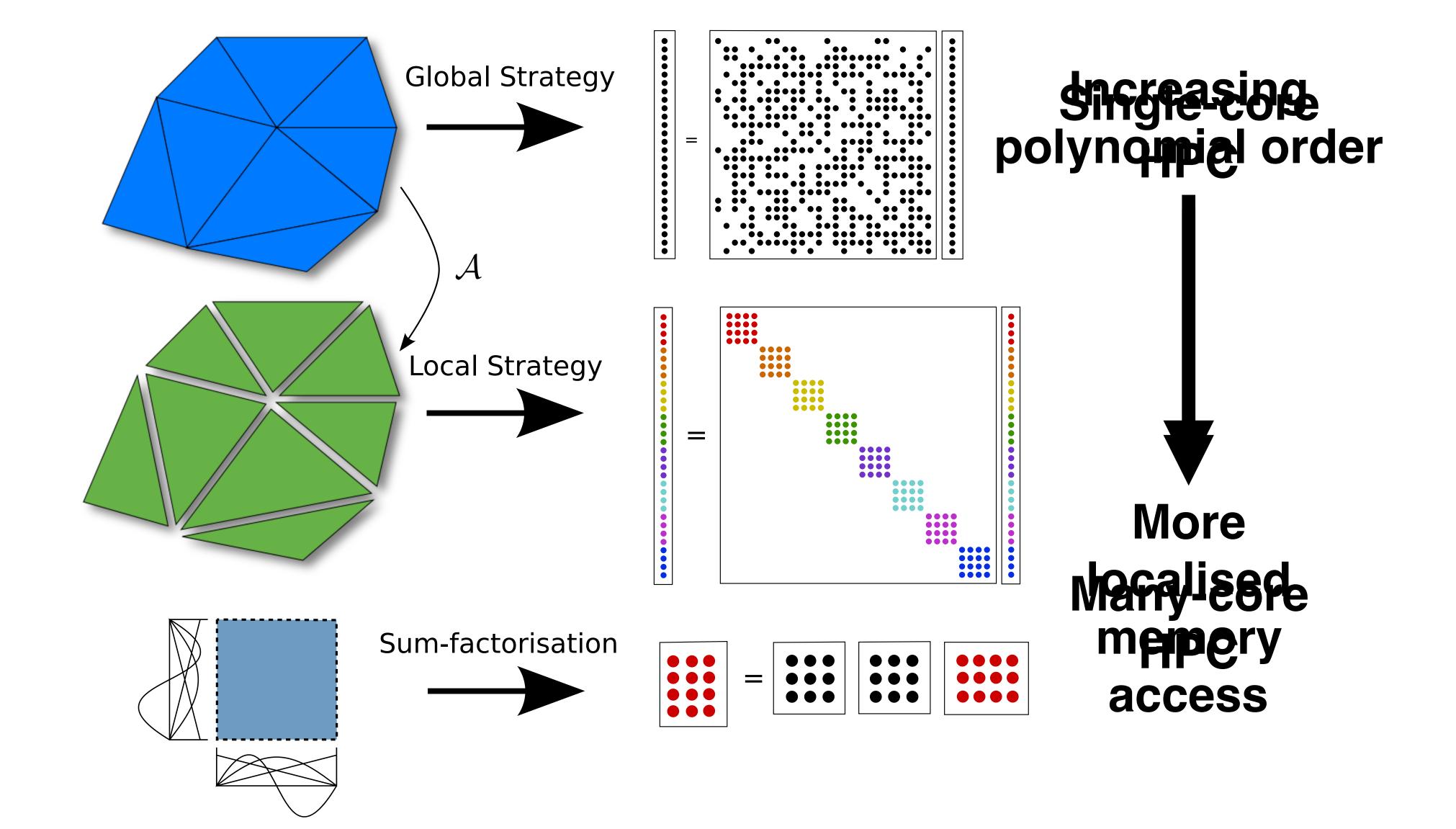
Essential for performance at high polynomial orders

$$\sum_{p=1}^{P} \sum_{q=1}^{Q} \hat{u}_{pq} \phi_{p}(\xi_{1i}) \phi_{q}(\xi_{2j}) = \sum_{p=1}^{P} \phi_{p}(\xi_{1i}) \left[\sum_{q=1}^{Q} \hat{u}_{pq} \phi_{q}(\xi_{2j}) \right]$$
store this

2D: $O(P^4) \to O(P^3)$ 3D: $O(P^6) \to O(P^4)$

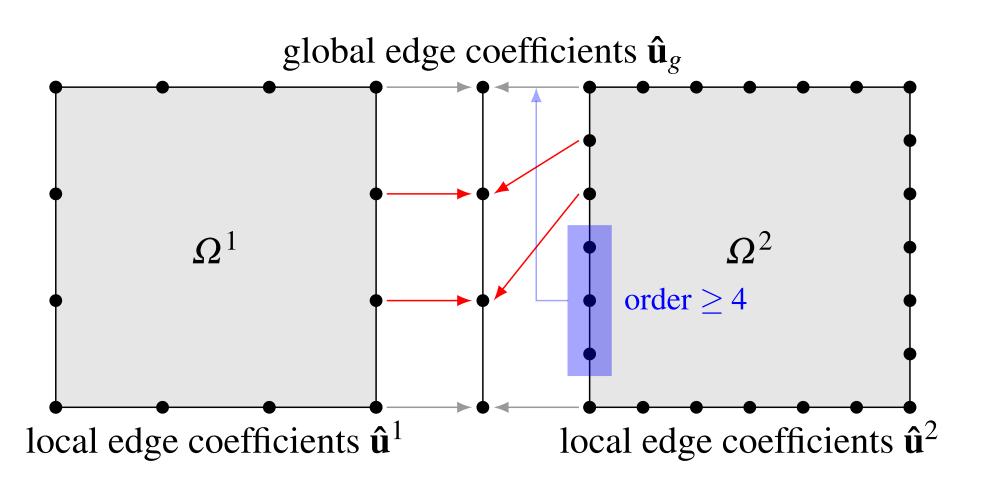
Key point: **We can still do this** for tris, tets, prisms... but have to cope with harder indexing and smaller matrices

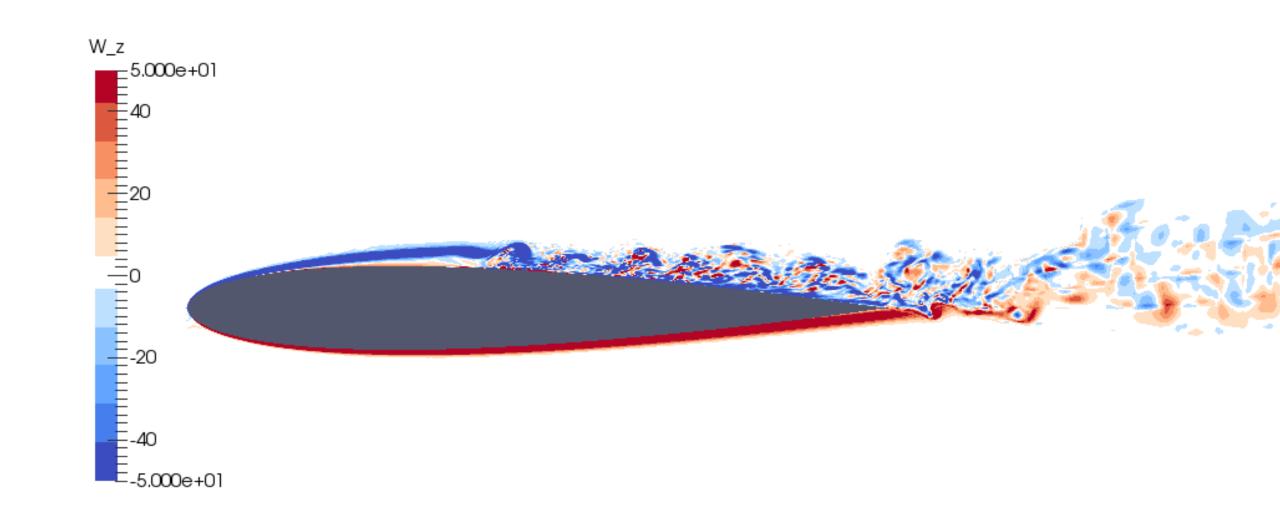
Implementation choices

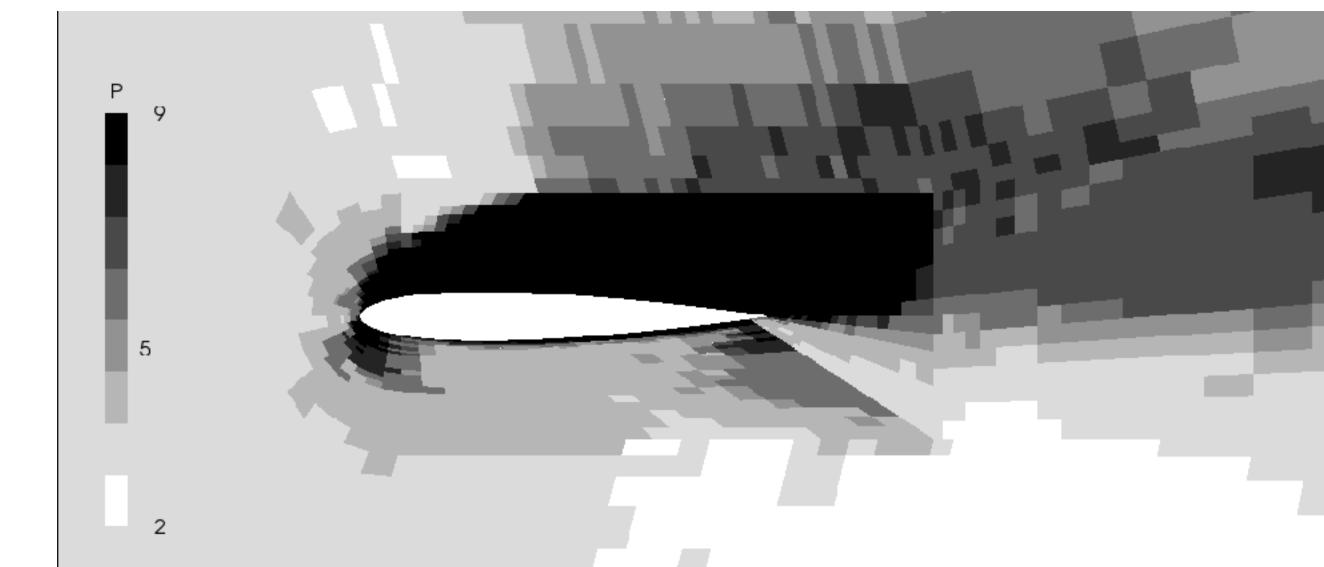


h-to-p efficiently

- Approach performance varies wildly depending on many factors that are not a priori determinable
- Allow us to explore the space of flops/byte ratio
- Also important for e.g. variable-p simulations





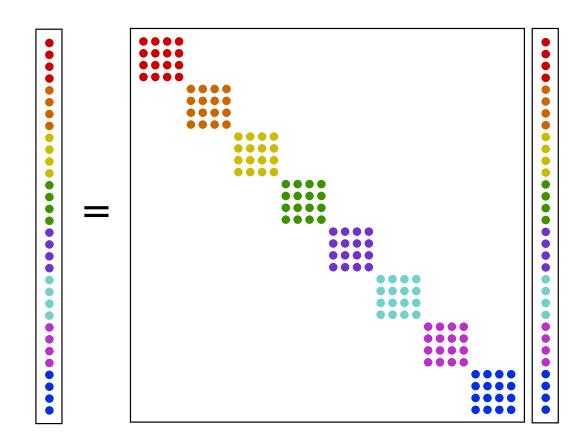


Collections

- Reformulate implementation choices into kernel operations over multiple elements
- Group geometric terms $\frac{\partial X_i}{\partial \xi_i}$
- Focus around key components of Laplacian:
 - Backward transformation: $u_e^\delta = \sum_p \hat{u}_p \phi_p(x)$ Inner product: (Φ_i, Φ_i)
 - → Derivatives: $\partial u/\partial x_i$
 - → Inner product w.r.t. derivative: $(\Phi_i, \nabla \Phi_j)$

Schemes

Local Matrix



IterPerExp

- Apply Jacobian
 (L1)
- 2. Apply local sum fact. (N x L3)

StdMat (standard matrix)

1. Apply Jacobian (L1)

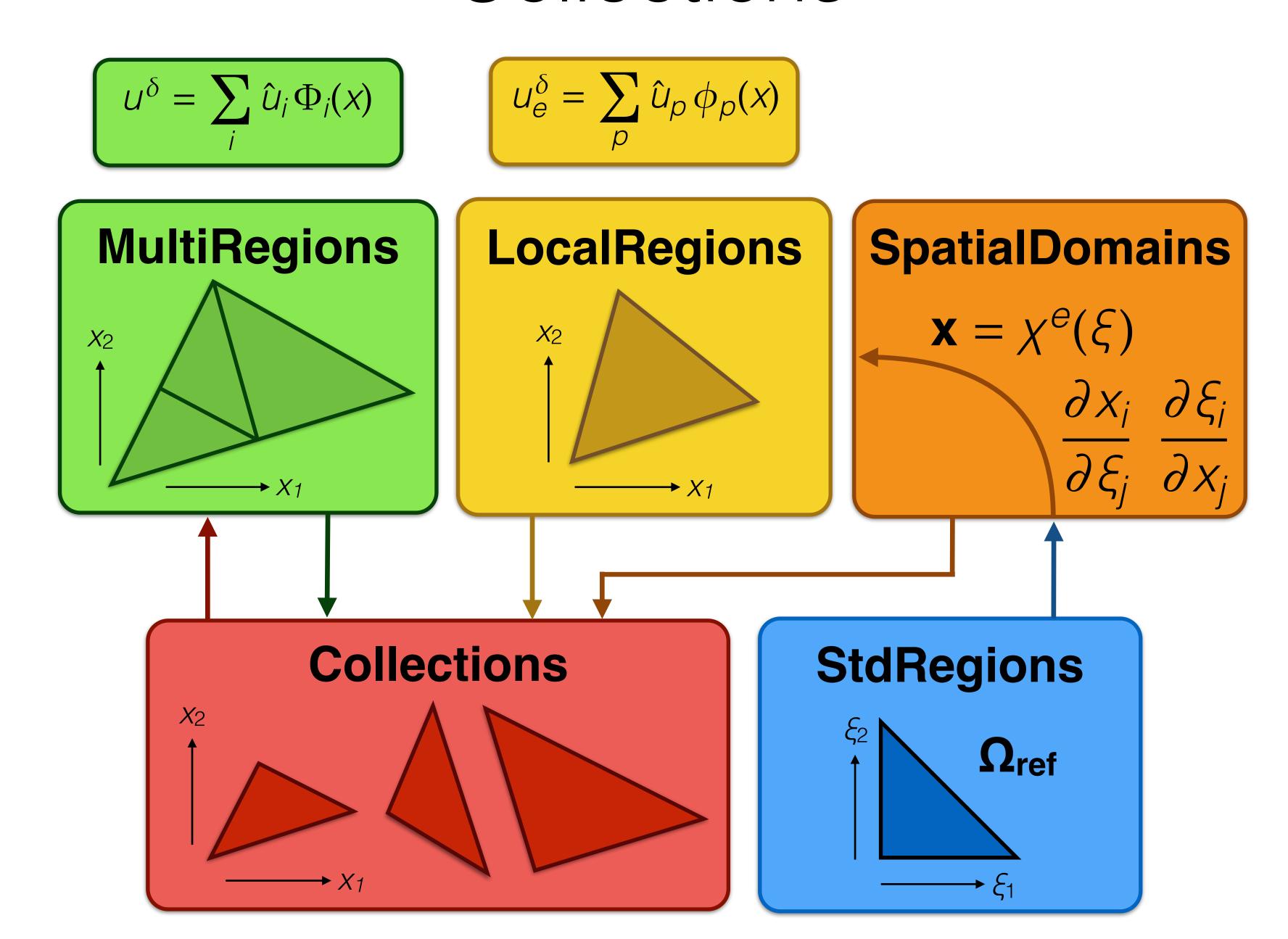
2. Multiply by ref. matrix (L3)

SumFac

- 1. Apply Jacobian (L1)
- 2. Mult. first dimension (L3)

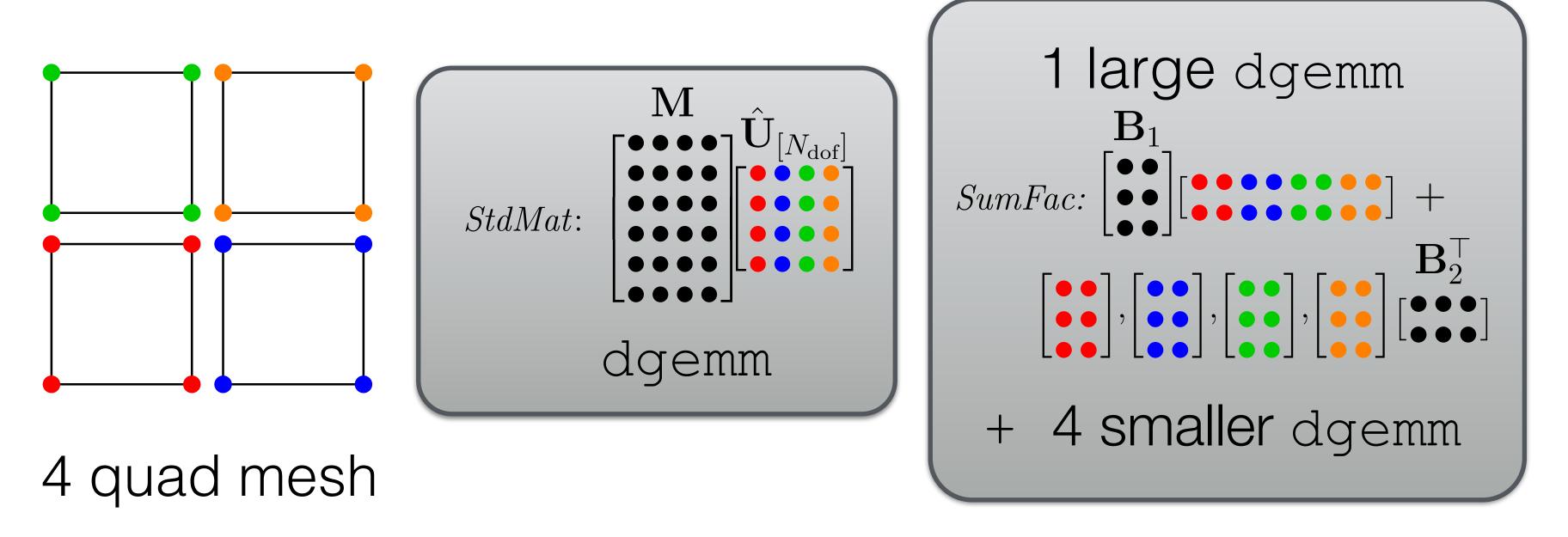
3. Mult. second dimension (N x L3)

Collections



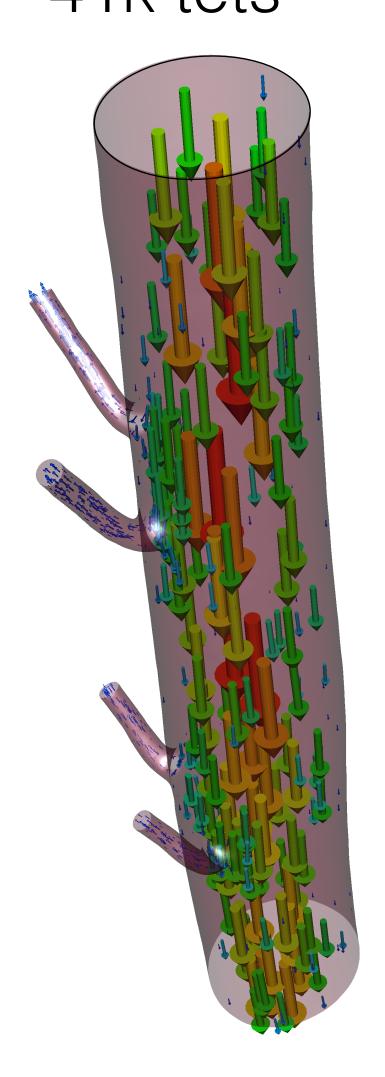
Collections

Use BLAS calls throughout

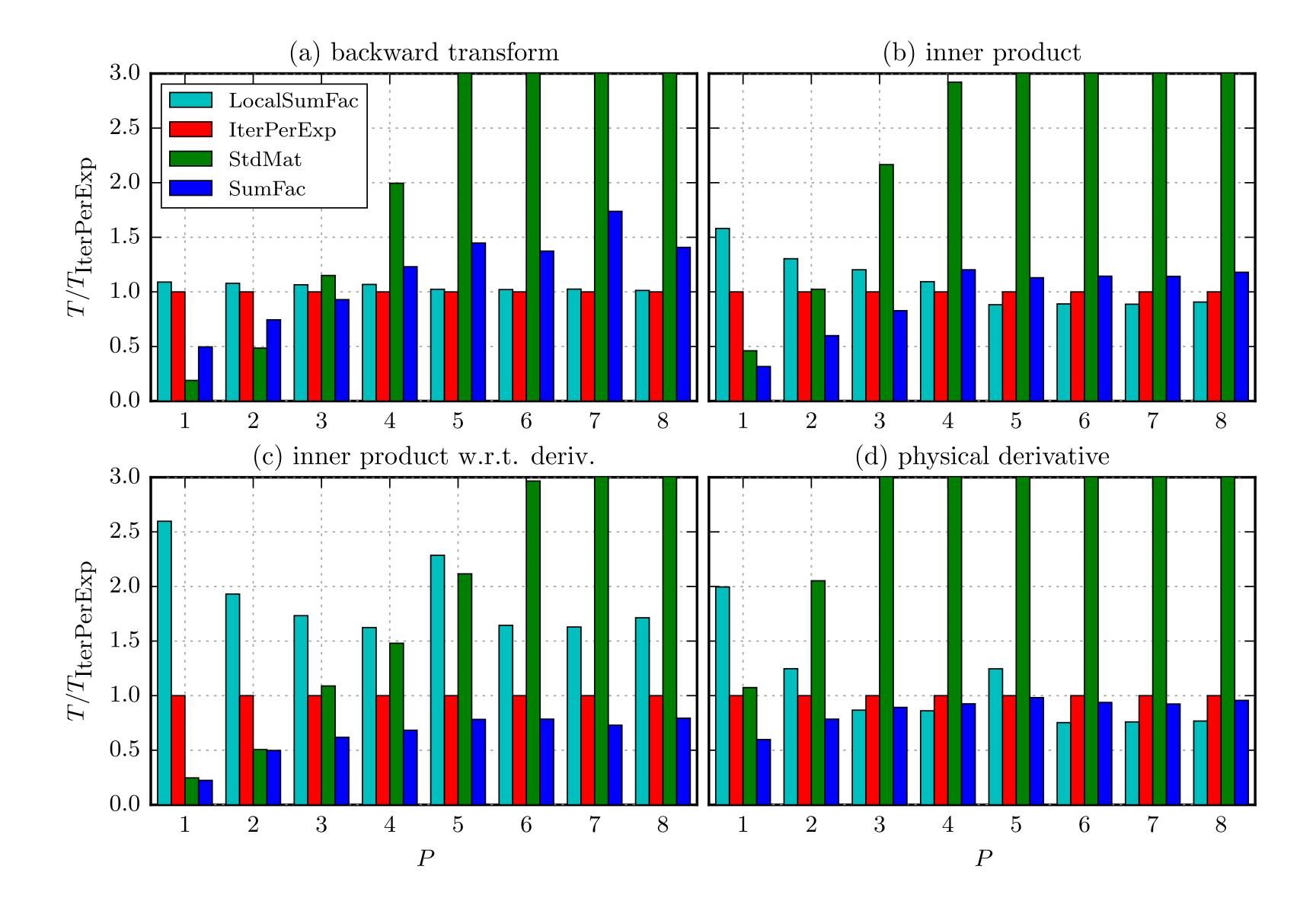


Can also do this for non-TP elements: data ordering harder, matrices smaller (bad for BLAS)

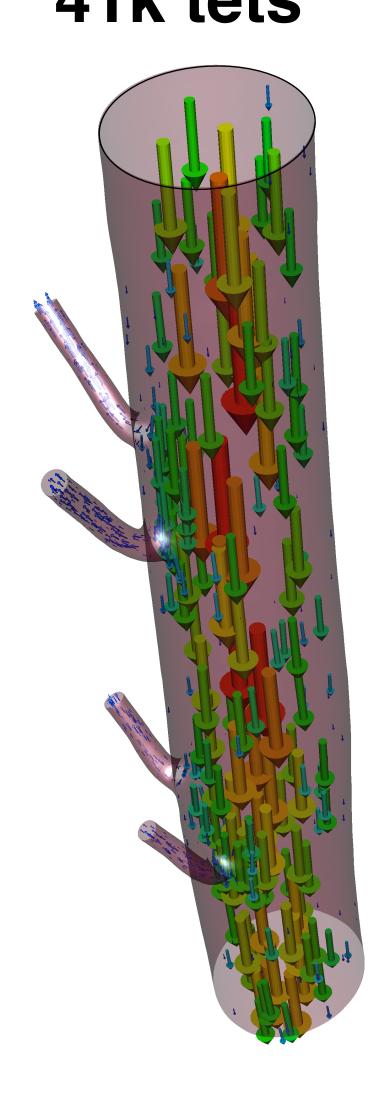
Intercostal pair 21k prisms 41k tets



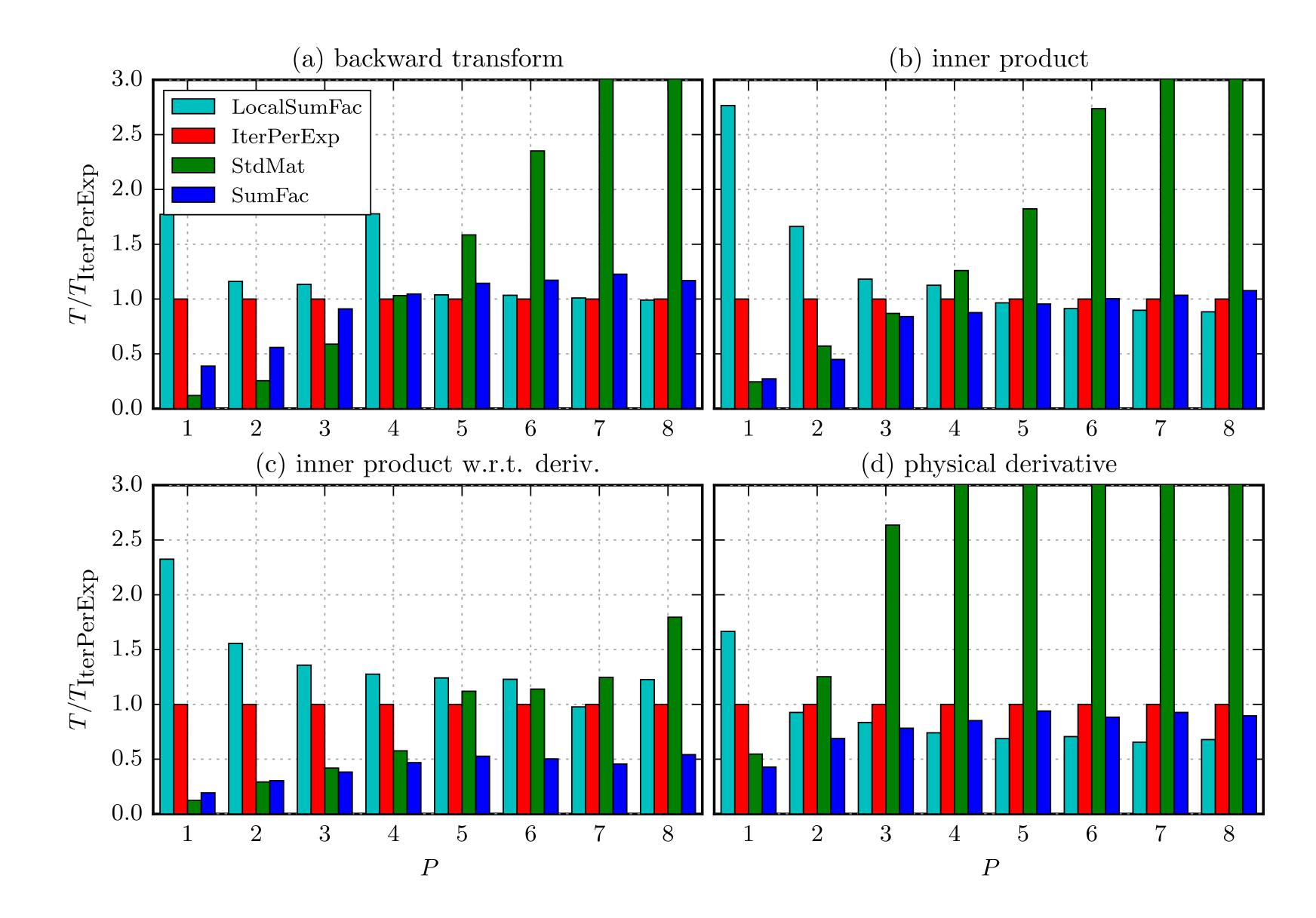
Test case



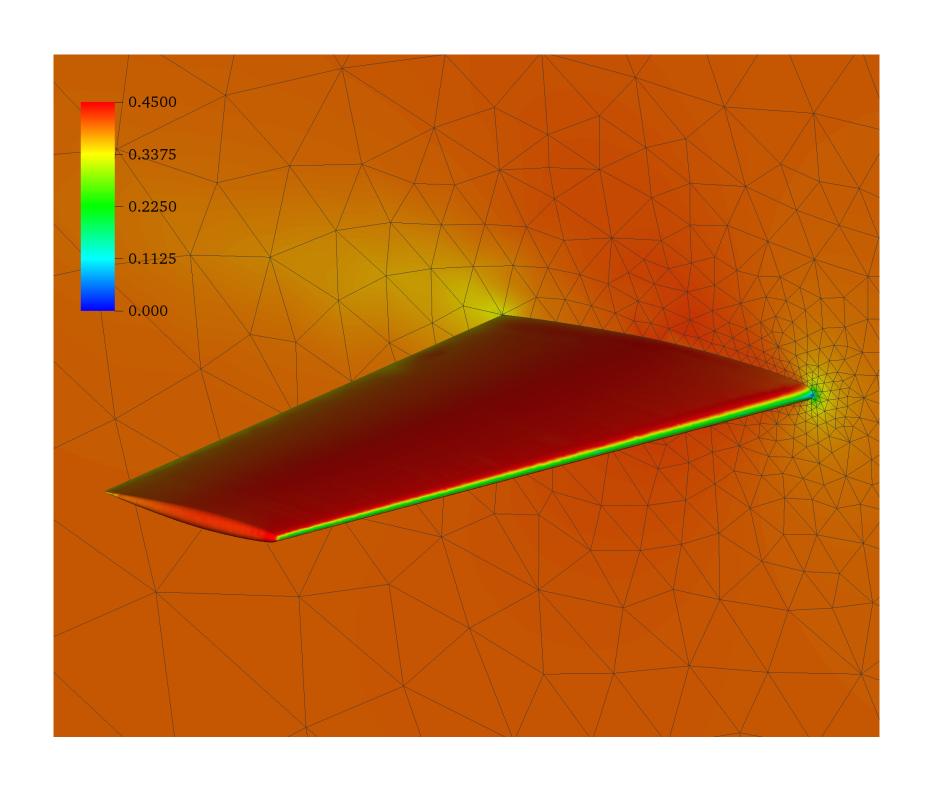
Intercostal pair 21k prisms 41k tets



Test case



Example: ONERA M6 wing



		Scheme timings [s]			
Machine	Operator	Local Sum Fac	IterPerExp	StdMat	SumFac
cx2	BwdTrans IProductWRTBase	0.00213393 0.00245141	0.00209944 0.00200234	$0.000202192 \\ 0.000233064$	0.000534608 0.000521411
	IProductWRTDerivBase PhysDeriv	$0.0266448 \\ 0.00485056$	$0.017248 \\ 0.00492247$	0.00201284 0.00389733	0.00298702 0.00319892
ARCHER	BwdTrans IProductWRTBase IProductWRTDerivBase PhysDeriv	0.000643393 0.000754697 0.00827777 0.00075556	$\begin{array}{c} 0.000638955 \\ 0.000712303 \\ 0.00530682 \\ 0.000595179 \end{array}$	2.36882e-05 2.78743e-05 0.00019947 0.000287773	4.74285e-05 0.000150587 0.000643919 0.000318533

	Wall-tin		
Machine	Local Sum Fac	Auto-tuned collections	Improvement
ARCHER	1.308	0.744	43%
cx2	0.356	0.135	62%

Compressible Euler flow Fully explicit, P = 2, 960 cores, ~150k tets Inner product w.r.t derivative very important Runtime improvement: 40-60%

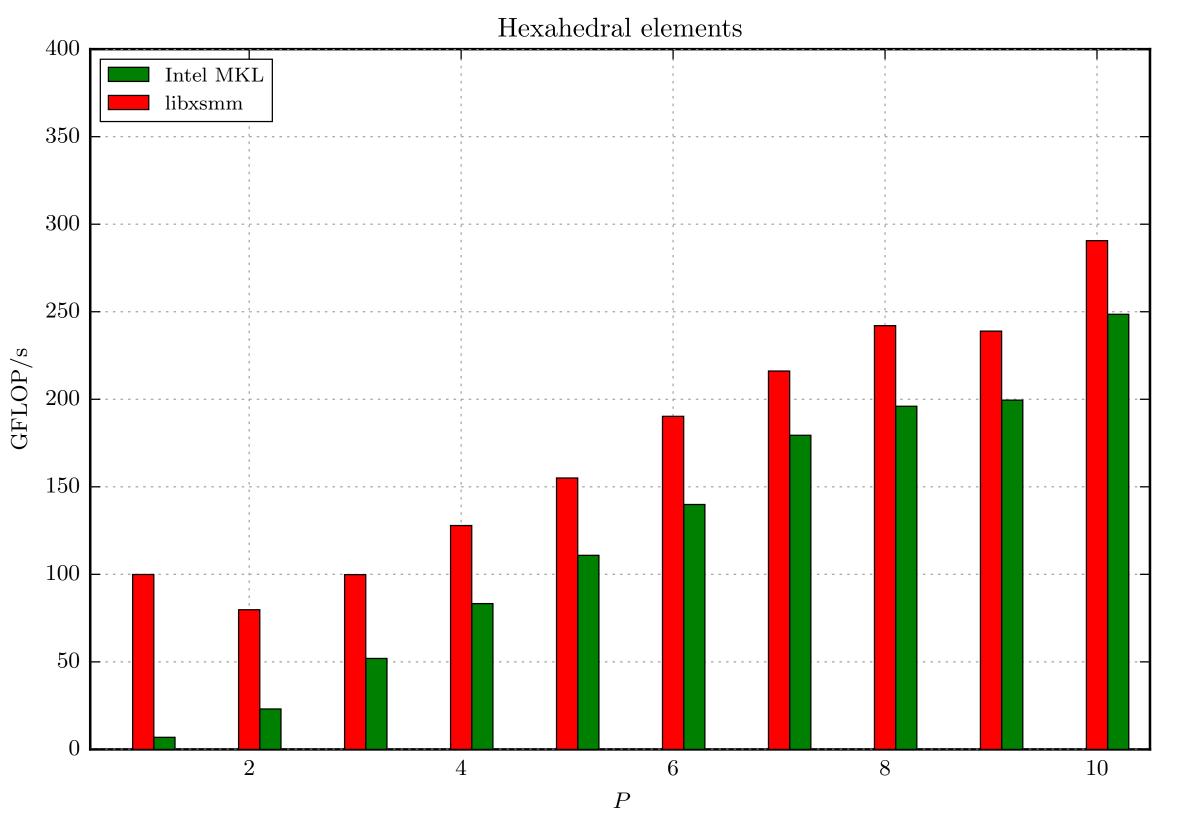
Implementation challenges: KNL + many-core

- Nektar++ written in C++ (surprise!), uses abstraction, inheritance and OO heavily
 - Great for writing code & rapid prototyping
 - X Hard to make it highly performant
 - X Also hard to track/control memory usage
- Handing memory
 - → e.g. on KNL, DRAM vs. MCDRAM or host vs. device
 - → Making this transparent to solver developers
- Threading and SIMD vectorisation

Work in progress: libxsmm

- Most of the matrix-matrix multiplies done in collections are small, at least in one rank
- libxsmm yields encouraging performance gains over standard MKL/BLAS, particularly for non-TP elements
- Challenge: our existing calls frequently use transposes - need to reorder/pretranspose
 - → This is very challenging for non-tensor product elements (tris/tets/etc)

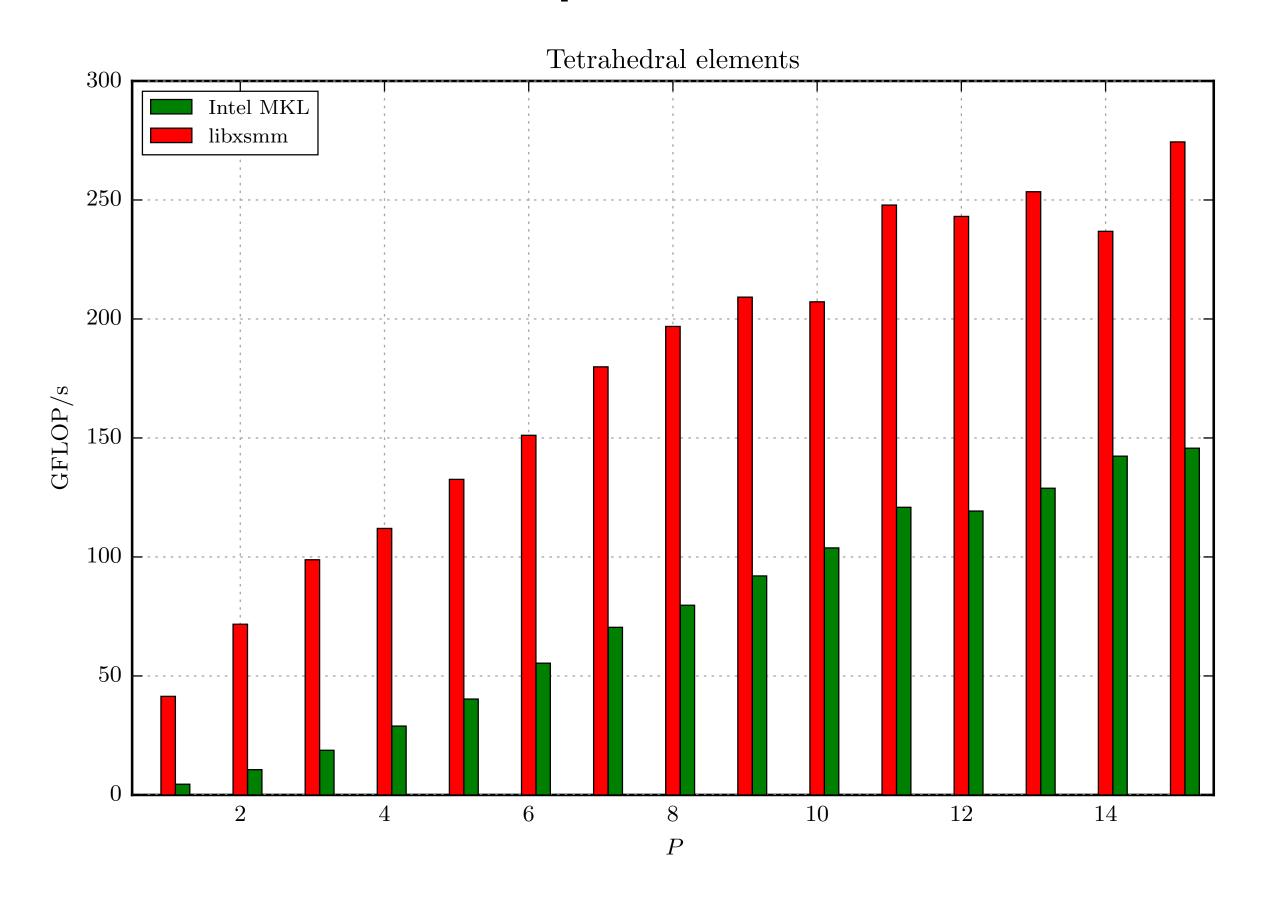
GFLOP/s performance



2 x Intel E5-2670v3 theoretical peak ~1TFLOP/s

~20-40% improvements in both flops & runtime over MKL

GFLOP/s performance



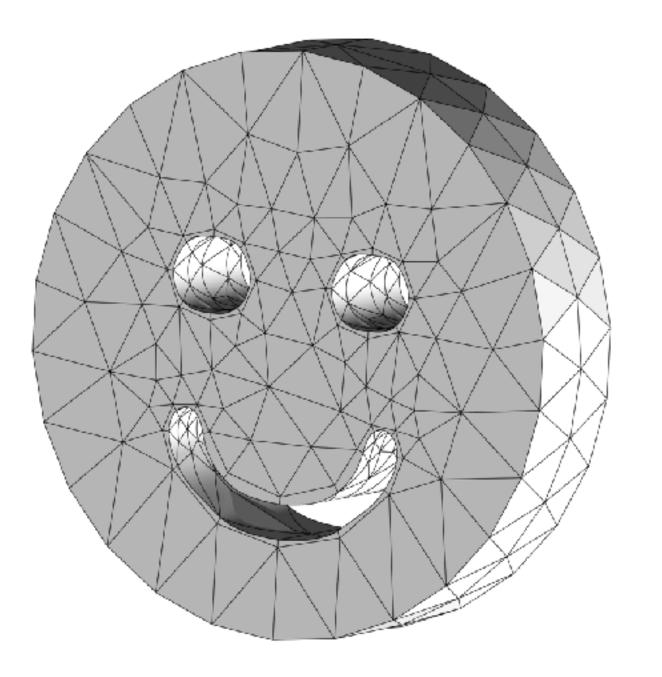
Higher performance gains Recovers hex performance

Requires us to reorder local coefficients

Summary

- Collections have sped up our code and made us think much harder about memory & hardware, particularly for current hardware such as KNL
- Transition to kernels easier to consider threading, vectorisation & tuning, but keeping transparency
- libxsmm looks encouraging for maximising hardware potential, particularly for non-TP elements
- Still need to tackle memory management, particularly for KNL & non-CPU architectures

Thanks for listening!



https://davidmoxey.uk/

@davidmoxey

d.moxey@exeter.ac.uk

www.nektar.info