h-to-*p* efficiently: the use of collections with accelerators within Nektar++

D. Moxey

College of Engineering, Maths & Physical Sciences, University of Exeter

C. Cantwell, S. J. Sherwin

Department of Aeronautics, Imperial College London

R. M. Kirby

Scientific Computing and Imaging Institute, University of Utah

SIAM Conference on Computational Science & Engineering, Atlanta, GA, USA

26th February 2017

Outline

- Nektar++ & spectral/hp method
- Challenges for KNL
- Collections & libxsmm
- Summary

Nektar++ goals

- Make it simpler/quicker to create high-order solvers for a range of fields and applications (including CG/DG/HDG)
- Support 1/2/3D and **unstructured hybrid meshes** for complex geometries: tets, prisms, etc.
- Scale to large numbers of processors
- Be efficient across a range of polynomial orders and core counts
- Bridge current and future hardware diversity

Unstructured simulations

Common knowledge that hexes yield best performance

Complex geometries presently **require** unstructured meshes - how to improve performance?

Framework design

"Defining" features

Generally *not* collocated

$$u(\xi_{1i}, \xi_{2j}) = \sum_{n=1}^{P^2} \hat{u}_n \phi_n(\vec{\xi}) = \sum_{p=1}^{P} \sum_{q=1}^{Q} \hat{u}_{pq} \phi_p(\xi_{1i}) \phi_q(\xi_{2j})$$
quadrature points modal coefficients

Uses tensor products of 1D basis functions, *even for nontensor product shapes*, but indexing harder

$$U(\xi_{1i},\xi_{2j},\xi_{3k}) = \sum_{p=1}^{P} \sum_{q=1}^{Q-p} \sum_{r=1}^{R-p-q} \hat{u}_{pqr} \phi_p^a(\xi_{1i}) \phi_{pq}^b(\xi_{2j}) \phi_{pqr}^c(\xi_{3k})$$

Sum-factorisation

Essential for performance at high polynomial orders

$$\sum_{p=1}^{P} \sum_{q=1}^{Q} \hat{u}_{pq} \phi_{p}(\xi_{1i}) \phi_{q}(\xi_{2j}) = \sum_{p=1}^{P} \phi_{p}(\xi_{1i}) \left[\sum_{q=1}^{Q} \hat{u}_{pq} \phi_{q}(\xi_{2j}) \right]$$

store this
2D: O(P⁴) \rightarrow O(P³) 3D: O(P⁶) \rightarrow O(P⁴)

We **can also do this** for tris, tets, prisms... but have to cope with harder indexing and smaller matrices

Implementation choices

h-to-p efficiently

Why do we care about having *all* these approaches?

- Approach performance varies wildly depending on many factors that are not *a priori* determinable
- Allow us to explore the space of flops/byte ratio
- Also important for e.g. variable-*p* simulations

Challenges for KNL

- Nektar++ written in C++ (surprise!), uses abstraction, inheritance and OO heavily
 - Great for writing code & rapid prototyping
 Hard to make it highly performant
 Also hard to track/control memory usage
- Handing memory
 - ➡ DRAM vs. MCDRAM or host vs. device
 - Making this transparent to solver developers
- Threading and SIMD vectorisation

Collections

- Reformulate implementation choices into kernel operations over multiple elements
- Group geometric terms $\frac{\partial X_i}{\partial \xi_i}$
- Focus around key components of Laplacian:
 - Backward transformation: $u_e^{\delta} = \sum \hat{u}_p \phi_p(x)$
 - → Inner product: (Φ_i, Φ_j)
 - → Derivatives: $\partial u / \partial x_i$
 - → Inner product w.r.t. derivative: $(\Phi_i, \nabla \Phi_j)$

Schemes

IterPerExp 1. Apply Jacobian (L1) 2. Apply local sum fact. (N x L3)

SumFac

- 1. Apply Jacobian (L1)
- 2. Mult. first dimension (L3)

3. Mult. second dimension (N x L3)

for i = 1:N $= \blacksquare$

Collections

Collections

Use BLAS calls throughout

Can also do this for non-TP elements:

data ordering harder, matrices smaller (bad for BLAS)

Intercostal pair 21k prisms

Test case

Intercostal pair 21k prisms **41k tets**

Test case

Example: ONERA M6 wing

			Scheme timings [s]					
Machine	Operator		LocalSumFac	IterPerExp	StdMat		SumFac	
cx2	BwdTrans IProductWRTBase IProductWRTDerivBase PhysDeriv		$\begin{array}{c} 0.00213393\\ 0.00245141\\ 0.0266448\\ 0.00485056\end{array}$	$\begin{array}{c} 0.00209944\\ 0.00200234\\ 0.017248\\ 0.00492247 \end{array}$	0.000202192 0.000233064 0.00201284 0.00389733		0.000534608 0.000521411 0.00298702 0.00319892	
ARCHER	BwdTrans IProductWRTBase IProductWRTDerivBase PhysDeriv		$\begin{array}{c} 0.000643393\\ 0.000754697\\ 0.00827777\\ 0.00075556\end{array}$	$\begin{array}{c} 0.000638955\\ 0.000712303\\ 0.00530682\\ 0.000595179\end{array}$	2.36882e-05 2.78743e-05 0.00019947 0.000287773		4.74285e-05 0.000150587 0.000643919 0.000318533	
Wall-time per timestep [s]								
Machine		LocalSumFac	Auto-tui	-tuned collections			Improvement	
ARCHER cx2		$1.308 \\ 0.356$	$0.744 \\ 0.135$			$43\% \\ 62\%$	43% 62%	
Runtima								

Runtime improvement: 40-60%

Compressible Euler flow Fully explicit, P = 2, 960 cores, ~150k tets Inner product w.r.t derivative very important

libxsmm

- Most of the matrix-matrix multiplies done in collections are small, at least in one rank
- libxsmm yields encouraging performance gains over standard MKL/BLAS, particularly for non-TP elements
- **Challenge:** our existing calls frequently use transposes need to reorder/pretranspose
 - This is very challenging for non-tensor product elements (tris/tets/etc)

GFLOP/s performance

2 x Intel E5-2670v3 theoretical peak ~1TFLOP/s ~20-40% improvements in both flops & runtime over MKL

GFLOP/s performance

Higher performance gains Recovers hex performance

Requires us to reorder local coefficients

Summary

- Collections have sped up our code and made us think much harder about memory & hardware, particularly for KNL architecture
- Transition to kernels easier to consider threading, vectorisation & tuning, but keeping transparency
- libxsmm looks encouraging for maximising hardware potential, particularly for non-TP elements
- Still need to tackle memory management, particularly for KNL & non-CPU architectures

Thanks for listening!

https://davidmoxey.uk/ @davidmoxey

d.moxey@imperial.ac.uk

www.nektar.info