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Nektar++ goals
• Make it simpler/quicker to create high-order solvers for a 

range of fields and applications (including CG/DG/HDG) 

• Support 1/2/3D and unstructured hybrid meshes for 
complex geometries: tets, prisms, etc. 

• Scale to large numbers of processors 

• Be efficient across a range of polynomial orders and 
core counts 

• Bridge current and future hardware diversity
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Figure 4: Examples of external aerodynamics problems solved using the CompressibleFlowSolver. (a) Flow over a cylinder at Re = 3, 900. (b) Euler simulation
over a NACA0012 aerofoil at Ma1 = 0.8. (c) Temperature of flow passing over a T106C low-pressure turbine blade at Re = 80, 000.

where U = [⇢, ⇢u, ⇢v, ⇢w, E]> is the vector of conserved vari-
ables in terms of density ⇢, velocity (u1, u2, u3) = (u, v,w), E is
the specific total energy, and
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where p is the pressure. To close the system we need to specify
an equation of state, in this case the ideal gas law p = ⇢RT
where T is the temperature and R is the gas constant. For the
Euler equations, the tensor of viscous forces Fv(U) = 0, and for
Navier-Stokes

Fv(U) =
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A = u⌧xx + v⌧xy + w⌧xz + k@xT,
B = u⌧yx + v⌧yy + w⌧yz + k@yT,
C = u⌧zx + v⌧zy + w⌧zz + k@zT

where in tensor notation the stress tensor ⌧xi x j = 2µ(@xi ui +

@xi u j �
1
3@xk uk�i j), µ is the dynamic viscosity calculated using

Sutherland’s law and k is the thermal conductivity.
To discretise these equations in space, we adopt an approach

which allows for the resolution of discontinuities and shocks
that may appear in the solution at transonic and supersonic flow
speeds. We therefore use approximations to our solution com-
prised of functions which are not continuous across element
boundaries. Traditionally, we follow a Galerkin approach by
utilising the variational form of the equations in order to ob-
tain the discontinuous Galerkin method. One of the key fea-
tures of Nektar++ is the ability to select a wide range of nu-
merical options, and to this end we support both discontinuous

Galerkin and flux reconstruction spatial discretisations, which
have various numerical equivalences [22] but may possess dif-
ferent performance characteristics. In the flux reconstruction
formulation, we instead use the equation in di↵erential form in
combination with correction functions which impose continuity
of fluxes between elements.

In either case, information is transferred between elements
by solving a one-dimensional Riemann problem at the interface
between two elements. For the non-viscous terms there is sup-
port for a wide variety of Riemann solvers, including an exact
solution or a number of appproximate solvers such as HLLC,
Roe and Lax-Friedrichs solvers [23]. For the viscous terms, we
utilise a local discontinuous Galerkin method (or the equivalent
flux reconstruction version). Various versions of the discontin-
uous Galerkin method which are available throughout the lit-
erature, mostly relating to the choices of modal functions and
quadrature points, can also be readily selected by setting appro-
priate options in the session file.

Given the complexity and highly nonlinear form of these
equations, we adopt a fully explicit formulation to discre-
tise the equations in time, allowing us to use any of the ex-
plicit timestepping algorithms implemented through the gen-
eral linear methods framework [16], including 2nd and 4th order
Runge-Kutta methods. Finally, in order to stabilise the flow
in the presence of discontinuities we utilise a shock capturing
technique which makes use of artificial viscosity to damp os-
cillations in the solution, in conjunction with a discontinuity
sensor adapted from the approach taken in [24] to decide where
the addition of artificial viscosity is needed.

Figure 4 shows representative results from compressible flow
simulations of a number of industrially-relevant test cases. We
first highlight two simulations which utilise the Navier-Stokes
equations. Fig. 4(a) demonstrates the three-dimensional ver-
sion of the compressible solver by investigating the flow over a
cylinder at Re = 3,900. In this figure we visualise isocontours
of the pressure field and colour the field according to the den-
sity ⇢. To demonstrate the shock capturing techniques available
in the code, Fig. 4(b) shows the results of an Euler simulation
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Figure 4: Examples of external aerodynamics problems solved using the CompressibleFlowSolver. (a) Flow over a cylinder at Re = 3, 900. (b) Euler simulation
over a NACA0012 aerofoil at Ma1 = 0.8. (c) Temperature of flow passing over a T106C low-pressure turbine blade at Re = 80, 000.
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have various numerical equivalences [22] but may possess dif-
ferent performance characteristics. In the flux reconstruction
formulation, we instead use the equation in di↵erential form in
combination with correction functions which impose continuity
of fluxes between elements.

In either case, information is transferred between elements
by solving a one-dimensional Riemann problem at the interface
between two elements. For the non-viscous terms there is sup-
port for a wide variety of Riemann solvers, including an exact
solution or a number of appproximate solvers such as HLLC,
Roe and Lax-Friedrichs solvers [23]. For the viscous terms, we
utilise a local discontinuous Galerkin method (or the equivalent
flux reconstruction version). Various versions of the discontin-
uous Galerkin method which are available throughout the lit-
erature, mostly relating to the choices of modal functions and
quadrature points, can also be readily selected by setting appro-
priate options in the session file.

Given the complexity and highly nonlinear form of these
equations, we adopt a fully explicit formulation to discre-
tise the equations in time, allowing us to use any of the ex-
plicit timestepping algorithms implemented through the gen-
eral linear methods framework [16], including 2nd and 4th order
Runge-Kutta methods. Finally, in order to stabilise the flow
in the presence of discontinuities we utilise a shock capturing
technique which makes use of artificial viscosity to damp os-
cillations in the solution, in conjunction with a discontinuity
sensor adapted from the approach taken in [24] to decide where
the addition of artificial viscosity is needed.

Figure 4 shows representative results from compressible flow
simulations of a number of industrially-relevant test cases. We
first highlight two simulations which utilise the Navier-Stokes
equations. Fig. 4(a) demonstrates the three-dimensional ver-
sion of the compressible solver by investigating the flow over a
cylinder at Re = 3,900. In this figure we visualise isocontours
of the pressure field and colour the field according to the den-
sity ⇢. To demonstrate the shock capturing techniques available
in the code, Fig. 4(b) shows the results of an Euler simulation
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Figure 5: Contours of the magnitude of velocity in a periodic hill simulation at
Re = 2800.

for flow over a NACA0012 aerofoil at a farfield Mach number
Ma1 = 0.8 and a 1.5� angle of attack. The transonic mach
number of this flow leads to the development of a strong and
weak shock along the upper and lower surfaces of the wing re-
spectively. This figure shows isocontours of the mach number
where the presence of the shocks are clearly identified. Finally,
In Fig. 4(c), we visualise the temperature field from flow pass-
ing over a T106C low-pressure turbine blade at Re = 80,000
to highlight applications to high Reynolds number flow simula-
tions.

4.2. Transitional turbulent flow dynamics

Transient problems in which turbulence dominates the flow
domain, or in which the transition to turbulence dominates the
simulation, remain some of the most challenging problems to
resolve in computational fluid simulations. Here, accurate nu-
merical schemes and high resolution of the domain is critical.
Moreover, any choice of scheme must be e�cient in order to ob-
tain results in computationally feasible time-scales. Tradition-
ally, highly resolved turbulence simulations, such as the Taylor-
Green vortex problem, lie firmly in the class of spectral meth-
ods. However, spectral methods typically lead to strong geom-
etry restrictions which limits the domain of interest to simple
shapes such as cuboids or cylinders.

Whilst spectral element methods may seem the ideal choice
for such simulations, particularly when the domain of interest
is geometrically complex, they can be more computationally
expensive in comparison to spectral methods. However, when
the domain of interest has a geometrically homogeneous com-
ponent – that is, the domain can be seen to be the tensor prod-
uct of a two-dimensional ‘complex’ part and a one-dimensional
segment – we can combine both the spectral element and tradi-
tional spectral methods to create a highly e�cient and spectrally
accurate technique [4].

We consider the application of this methodology to the prob-
lem of flow over a periodic hill, depicted in Fig. 5, where the
flow is periodic in both streamwise and spanwise directions.
This case is a well-established benchmark problem in the DNS
and LES communities [25], and is challenging to resolve due to
the smooth detachment of the fluid from the surface and recir-
culation region. Here we consider a Reynolds number of 2800,
normalised by the bulk velocity at the hill crest and the height
of the hill, with an appropriate body forcing term to drive the
flow over the periodic hill configuration.

The periodicity of this problem makes it an ideal candidate
for the hybrid technique described above. We therefore con-

struct a two-dimensional mesh of 3626 quadrilateral elements
at polynomial order P = 6, and exploit the domain symmetry
with a Fourier pseudospectral method consisting of 160 collo-
cation points in the spanwise direction to perform the simula-
tion. This yields a resolution of 20.9M degrees of freedom per
field variable and allows us to obtain excellent agreement with
the benchmark statistics.

4.3. Flow stability
In addition to direct numerical simulation of the full

non-linear incompressible Navier-Stokes equations, the
IncNavierStokesSolver supports global flow stability
analysis through the linearised Navier-Stokes equations with
respect to a steady or periodic base flow. This process identifies
whether a steady flow is susceptible to a fundamental change
of state when perturbed by an infinitesimal disturbance. The
linearisation takes the form

@u0

@t
+ (u0 · r)U + (U · r)u0 = �rp0 + ⌫r2u0

r · u0 = 0,

where U is the base flow and u0 is now the infinitesimal pertur-
bation. The time-independent base flow is computed through
evolving Equs. 9 to steady-state with appropriate boundary con-
ditions. For time-period base flows, the flow is sampled at reg-
ular intervals and interpolated.

The linear evolution of a perturbation under Equs. 10 can be
expressed as

u0(t) = A(t)u00

for some initial state u00, and we seek, for some arbitrary time
T, the dominant eigenvalues and eigenmodes of the operator
A(T ), which are solutions to the equation

A(T )ũ j = � jũ j.

The sign of the leading eigenvalues � j are used to establish the
global stability of the flow. An iterative Arnoldi method [26]
is applied to a discretisation M of A(T ). Repeated actions
of M are applied to the initial state u0 using the same time-
integration code as for the non-linear equations [27]. The re-
sulting sequence of vectors spans a Krylov subspace of M and,
through a partial Hessenberg reduction, the leading eigenval-
ues and eigenvectors can be e�ciently determined. The same
approach can be applied to the adjoint form of the linearised
Navier-Stokes evolution operatorA⇤ to examine the receptivity
of the flow and, in combination with the direct mode, identify
the sensitivity of the flow to base flow modification and local
feedback. The direct and adjoint methods can also be combined
to identify convective instabilities over di↵erent time horizons
⌧ in a flow by computing the leading eigenmodes of (A⇤A)(⌧).
This is referred to as transient growth analysis.

To illustrate the linear analysis capabilities of Nektar++, we
use the example of two-dimensional flow past a circular cylin-
der at Re = 42, just below the critical Reynolds number for
the onset of the Bénard-von Kármán vortex street. This is a
well-established test case for which significant analysis is avail-
able in the literature. We show in Fig. 6 the leading eigen-
modes for the direct (A) and adjoint (A⇤) linear operators for
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Figure 6: Linear stability analyses of two-dimensional flow past a circular
cylinder at Re = 42. Illustrative plots of (a) streamwise (left) and transverse
(right) components of velocity for the dominant direct mode, (b) streamwise
(left) and transverse (right) velocity for the dominant adjoint mode and (c)
structural sensitivity to base flow modification (left) and local feedback (right).

both the streamwise and cross-stream components of velocity.
The modes are characterised by the asymmetry in the stream-
wise component and symmetry in the cross-stream component.
We also note the spatial distribution of the modes with the
leading direct modes extending far downstream of the cylin-
der, while the adjoint modes are predominantly localised up-
stream but close to the cylinder. This separation is a result of
the non-normality of the A operator. We also show the struc-
tural sensitivity of the flow to base flow modification and local
feedback. The latter highlights regions where localised forcing
would have greatest impact on the flow.

4.4. Shallow water modelling

The ShallowWaterSolver simulates depth-averaged wave
equations, often referred to as “long-wave” approximations.
These equations are often used for engineering applications
where the vertical dimension of the flow is small compared
to the horizontal. Examples of applications include tidal flow,
river flooding and nearshore phenomena such as wave-induced
circulation and wave disturbances in ports.

The governing equations are derived from potential flow:
the Laplace equation inside the flow domain and appropriate
boundary conditions at the free surface and bottom. The two
key steps are (i) the expansion of the velocity potential with re-
spect to the vertical coordinate and (ii) the integration of the
Laplace equation over the fluid depth. This results in sets of
equations expressed in horizontal dimensions only. Depending
on the order of truncation in nonlinearity and dispersion, nu-
merous long-wave equations with di↵erent kinematic behavior
have been derived over the years [28, 29, 30].

Many depth-averaged equations can be written in a generic
form as

@U
@t
+ r · F(U) + D(U) = S(U) , (11)

where U = [H ,Hu ,Hv]T is the vector of conserved variables.
The horizontal velocity is denoted by u = [u(x, t) , v(x, t)]T ,
H(x, t) = ⌘(x, t) + d(x) is the total water depth, ⌘ is the free
surface elevation and d the still water depth. The flux vector

F(U) is given as

F(U) =

2
666666664

Hu Hv
Hu2 + gH2/2 Huv

Huv Hv2 + gH2/2

3
777777775 , (12)

in which g is the acceleration due to gravity. The source term
S(U) contains forcing due to, for example, Coriolis e↵ects, bed-
slopes and bottom friction. Importantly, D(U) contains all the
dispersive terms. The actual form of the dispersive terms di↵ers
between di↵erent wave equations and the term can be highly
complex with many high-order mixed and spatial derivatives.

At present, the ShallowWaterSolver supports the non-
dispersive shallow-wter equations (SWE) and the weakly dis-
persive Boussinesq equations of Peregrine [28]. The SWE are
recovered if D(U) ⌘ 0 while for the Peregrine equation the ex-
pression is:

D(U) = @t

2
666666664

0
(d3/6)@x (r · (Hu/d)) � (d2/2)@x (r · (Hu))
(d3/6)@y (r · (Hu/d)) � (d2/2)@y (r · (Hu))

3
777777775

(13)

The Boussinesq equations are solved using the wave conti-
nuity approach [31]. The momentum equations are first recast
into a scalar Helmholtz type equation and solved for the aux-
iliary variable z = r · @t (Hu). The conservative variables are
recovered in a subsequent step.

A frequently used test-case for Boussinesq models is the
scattering of a solitary wave impinging a vertical cylinder. Here
a solitary wave with nonlinearity ✏ = 0.1 is propagating over a
still water depth of 1 m (✏ = A/d, where A is the wave ampli-
tude). The initial solitary wave condition is given by Laitone’s
first order solution. The cylinder has a diameter of 4 m, giving
a Keulegan-Carpenter number well below unity and di↵raction
number on the order of 2. Hence, the viscous e↵ects are small
while the di↵raction and scattering are significant.

We compute the solution in the domain x 2 [�25 , 50] me-
ters and y 2 [�19.2 , 19.2] meters, discretized into 552 triangles
using P = 5. Snapshots of the free surface elevation at four
di↵erent times are shown in Fig. 7. In Fig. 7a the solitary wave
reaches its maximum run-up on the cylinder, while in Fig. 7b
the peak of solitary wave has reached the center of the cylin-
der and a depression in the free surface around the cylinder is
clearly visible. The propagation of the scattered, and later re-
flected from the side walls, waves are seen in Figs. 7c and 7d.

4.5. Cardiac electrophysiology
The cardiac electrical system in the heart is the signalling

mechanism used to ensure coordinated contraction and e�cient
pumping of blood. Conduction occurs due to a complex se-
quence of active ion exchanges between intracellular and extra-
cellular spaces, initiated due to a potential di↵erence between
the inside and outside of the cell exceeding a threshold, pro-
ducing an action potential. This causes a potential di↵erence
across boundaries with adjacent cells, resulting in a flow of ions
between cells and triggering an action potential in the adjacent
cell. Disease, age and infarction lead to interruption of this
signalling process and may produce abnormal conduction pat-
terns known as arrhythmias. Clinically this can be treated using
catheter ablation, however acurately selecting the most e↵ective
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Figure 7: Solitary wave impinging a cylinder. (a) t = 4.5 s; (b) t = 5.5 s; (c)
t = 8.5 s; (d) t = 12.5 s;

substrate modification to restore normal rhythm is often partic-
ularly challenging and may benefit from insight derived from
computer modelling.

The CardiacEPSolver models the conduction process us-
ing the monodomain equations

�

 
Cm
@u
@t
+ Iion

!
= r · �ru,

where the Iion term captures the complex movement of ions
in and out of cells and is itself modelled as a set of ordinary
di↵erential equations. Additionally, � captures the potentially
heterogeneous and anisotropic nature of the tissue which af-
fects the speed of electrical propagation. While full 3D simula-
tions of myocardium are traditionally performed, the left atrium
is su�ciently thin that it can be reasonably represented as a
two-dimensional manifold embedded in three dimensions and
solved at significantly reduced computational cost [32]. The
geometry of the left atrium is created through segmentation of
magnetic resonance images of the heart.

An example of a left atrium simulation is illustrated in Fig-
ure 8. Electrophysiological characteristics vary spatially, with
regions of scar and fibrosis more resistive to activation, re-

Figure 8: Illustrative simulation of a depolarising electrochemical wavefront
on a two-dimensional manifold representation of a human left atrium. Blue
areas denote regions of unexcited (polarised) tisue, while green denotes areas
of excited (depolarised) cells. The red areas highlight the wavefront.

sulting in more complex activation patterns. The geometry is
derived from segmented magnetic resonance imaging (MRI)
data, while tissue heterogeneity is prescribed based on late
gadolinium-enhanced MRI. A human atrial ionic model [33]
is used as the reactive term in the model and represents the ex-
changes of ions between the interior and exterior of the cell,
along with other cellular biophysics.

4.6. Biological flow
1D modelling of the vasculature (arterial network) represents

an insightful and e�cient tool for tackling problems encoun-
tered in arterial biomechanics as well as other engineering prob-
lems. In particular, 3D modelling of the vasculature is relatively
expensive. 1D modelling provides an alternative in which the
modelling assumptions provide a good balance between physi-
ological accuracy and computational e�ciency. To describe the
flow and pressure in this network we consider the conservation
of mass and momentum applied to an impermeable, deformable
tube filled with an incompressible fluid, the nonlinear system
of partial di↵erential equations presented in non-conservative
form is given by

@U
@t
+H@U
@x
= S (14)

U =
"
U
A

#
, H =

"
U A
⇢ @p
@A U

#
, S =

"
0

1
⇢

⇣
f
A � s

⌘
#

in which A is the Area (related to pressure), x is the axial coor-
dinate along the vessel, U(x, t) the axial velocity, P(x, t) is the
pressure in the tube, ⇢ is the density and finally f the frictional
force per unit length. The unknowns in equation 14 are u, A and
p; hence we must provide an explicit algebraic relationship to
close this system. Typically, closure is provided by an algebraic
relationship between A and p.

For a thin elastic tube this is given by

p = p0 + �
⇣p

A �
p

A0
⌘
, � =

p
⇡hE

(1 � ⌫2)A0
(15)

where p0 is the external pressure, A0 is the initial cross-
sectional area, E is the Young’s modulus, h is the vessel wall
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Figure 9: Geometry used for the simulation. Insets show how flow and pressure
vary with time and di↵erent locations in the geometry.

thickness and ⌫ is the Poisson’s ratio. Other more elaborate
pressure - area relationships are currently being implemented
into the framework. Application of Riemann’s method of char-
acteristics to Equations 14 and 15 indicates that velocity and
area are propagated through the system by forward and back-
ward travelling waves. These waves are reflected within the
network by appropriate treatment of interfaces and boundaries
(see for example [34, 35]). The final system of equations are
discretised in the Nektar++ framework using a discontinuous
Galerkin projection.

To illustrate the capabilities of the PulseWaveSolver, a 1D
geometry was created by extracting the centreline directly from
a 3D segmentation of a carotid bifurcation (the extracted cen-
treline with the segmented geometry overlaid is shown in Fig-
ure 9). At the inlet a half-sinusoidal flow profile was applied
during the systolic phase, whist during the diastolic phase a no-
flow condition was applied. Although this profile is not rep-
resentative of the carotid wave, it is useful for demonstrating
essential dynamics of the system e.g. reflection of backward
travelling waves only during the diastolic phase. At the outflow
RCR boundary conditions were utilised [35]. These boundary
conditions take into account the peripheral resistance and com-
pliance of the vasculature. The pressure and flow results are
shown in Figure 9. The insets demonstrate that the pressure
needs about 4 cycles to reach a periodic state.

To conclude this section, we illustrate the flexibility of the
software in combining two solvers to understand mass trans-
port in the aorta. We consider the simulation of blood-flow
through a pair of intercostal branches in the decending aorta.
The three-dimensional geometry is derived from CT scans and
is meshed using a combination of tetraheda and prismatic el-
ements. Prisms are used to better capture the boundary layer
close to the wall, while tetrahedra fill the remaining interior of
the domain. The embedded manifold discretisation code can
be used to compute boundary conditions for three-dimensional
simulations where the complexity of the geometry precludes the
use of analytic conditions.

The flow is modelled using the incompressible Navier-Stokes
equations (see Section 4.1). In this case, the inlet flow profile
f in Equ. 9 is the solution of the Poisson problem, computed
using the ADRSolver, on the two-dimensional inlet boundary

surface for a prescribed body force, as shown in Fig. 10(a).
The resulting profile is imposed on the three-dimensional flow
problem as illustrated. The steady-state velocity field from the
flow simulation at Reynolds number Re = 300 is shown in
Fig. 10(b). A single boundary layer of prismatic elements is
used for this simulation and both the prismatic and tetrahedral
elements use a polynomial expansion order of P = 4. This is
su�cient to capture the boundary layer at the walls.

We now solve the advection-di↵usion equation,

r · (�Drc + cu) = 0,

to model transport of oxygen along the arterial wall. Here, c
is the concentration and u is the steady-state flow solution ob-
tained previously. D = 1/Pe is the di↵usivity of the species
considered (Pe = 7.5 ⇥ 105 for oxygen). For most of the do-
main, the non-dimensional concentration remains constant at
c = 1. However, a particularly high gradient in concentration
forms at the wall. It is this gradient which is of particular inter-
est and needs to be captured accurately. The existing mesh used
for the flow simulation is unable to resolve the gradients close
to the wall. We therefore refine the boundary layer in the wall-
normal direction using element heights following a geometric
progression. To reduce computational cost, we also exploit the
spectral/hp discretisation and reduce the polynomial order of
the prisms in the directions parallel to the wall, since the con-
centration shows negligible variation in these directions. Fur-
thermore, the domain-interior tetrahedra may also be discarded
and a dirichlet c = 1 condition imposed on the resulting interior
prism boundary.

Fig. 10(c) shows the resulting concentration gradient field on
the surface of the arterial wall. Regions of low concentration
gradient are observed upstream of the branches, while high con-
centration gradients are observed downstream. Fig.10(d) shows
close-ups of the branches to illustrate this.

5. Discussion & Future Directions

The Nektar++ framework provides a feature-rich platform
with which to develop numerical methods and solvers in the
context of high-order finite element methods. It has been de-
signed in such a way that the libraries reflect the mathematical
abstractions of the method, to simplify uptake for new users,
as well as being written in a modular way to improve the ro-
bustness of the code, minimise duplication of functionality and
promote sustainability.

Development
The development of a complex and extensive software

project such as Nektar++ necessitates the adoption of certain
development practices to enable developers to easily write new
code for their features without breaking the code for other peo-
ple. The code is managed using the git distributed version
control system [36] due to its performance, enhanced support
for branching, as well as supporting o↵-line development. All
development is performed in branches and only after rigor-
ous multi-architecture testing and internal peer-review is new
code merged into the main codebase, thereby always maintain-
ing a stable distribution. Any new bugs or feature requests
are tracked using the Trac issue-management system, which
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Figure 7: Solitary wave impinging a cylinder. (a) t = 4.5 s; (b) t = 5.5 s; (c)
t = 8.5 s; (d) t = 12.5 s;
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ularly challenging and may benefit from insight derived from
computer modelling.

The CardiacEPSolver models the conduction process us-
ing the monodomain equations
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where the Iion term captures the complex movement of ions
in and out of cells and is itself modelled as a set of ordinary
di↵erential equations. Additionally, � captures the potentially
heterogeneous and anisotropic nature of the tissue which af-
fects the speed of electrical propagation. While full 3D simula-
tions of myocardium are traditionally performed, the left atrium
is su�ciently thin that it can be reasonably represented as a
two-dimensional manifold embedded in three dimensions and
solved at significantly reduced computational cost [32]. The
geometry of the left atrium is created through segmentation of
magnetic resonance images of the heart.

An example of a left atrium simulation is illustrated in Fig-
ure 8. Electrophysiological characteristics vary spatially, with
regions of scar and fibrosis more resistive to activation, re-

Figure 8: Illustrative simulation of a depolarising electrochemical wavefront
on a two-dimensional manifold representation of a human left atrium. Blue
areas denote regions of unexcited (polarised) tisue, while green denotes areas
of excited (depolarised) cells. The red areas highlight the wavefront.

sulting in more complex activation patterns. The geometry is
derived from segmented magnetic resonance imaging (MRI)
data, while tissue heterogeneity is prescribed based on late
gadolinium-enhanced MRI. A human atrial ionic model [33]
is used as the reactive term in the model and represents the ex-
changes of ions between the interior and exterior of the cell,
along with other cellular biophysics.

4.6. Biological flow
1D modelling of the vasculature (arterial network) represents

an insightful and e�cient tool for tackling problems encoun-
tered in arterial biomechanics as well as other engineering prob-
lems. In particular, 3D modelling of the vasculature is relatively
expensive. 1D modelling provides an alternative in which the
modelling assumptions provide a good balance between physi-
ological accuracy and computational e�ciency. To describe the
flow and pressure in this network we consider the conservation
of mass and momentum applied to an impermeable, deformable
tube filled with an incompressible fluid, the nonlinear system
of partial di↵erential equations presented in non-conservative
form is given by

@U
@t
+H@U
@x
= S (14)

U =
"
U
A

#
, H =

"
U A
⇢ @p
@A U

#
, S =

"
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1
⇢

⇣
f
A � s

⌘
#

in which A is the Area (related to pressure), x is the axial coor-
dinate along the vessel, U(x, t) the axial velocity, P(x, t) is the
pressure in the tube, ⇢ is the density and finally f the frictional
force per unit length. The unknowns in equation 14 are u, A and
p; hence we must provide an explicit algebraic relationship to
close this system. Typically, closure is provided by an algebraic
relationship between A and p.

For a thin elastic tube this is given by

p = p0 + �
⇣p

A �
p

A0
⌘
, � =

p
⇡hE

(1 � ⌫2)A0
(15)

where p0 is the external pressure, A0 is the initial cross-
sectional area, E is the Young’s modulus, h is the vessel wall
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Unstructured simulations

5

Common knowledge that hexes yield best performance

Complex geometries presently require unstructured 
meshes - how to improve performance?



Spectral/hp element method
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Z 1

�1

u(⇠)d⇠ =
Q�1X

i=0

wiu(⇠i)

⌦e �(⇠)

Ω 1 Ω 2 Ω 3
1x 3x0x 2x

0(x)Φ

1(x)Φ

2(x)Φ

3(x)Φ

u1

u3

u2

u0

−1 1

1φ (ξ)

0φ (ξ)

u0
1

u1
1

−1 1

1φ (ξ)

0φ (ξ)

u0
2

−1 1

1φ (ξ)

0φ (ξ)

u0
3

u1
3u1

2

X1
X3

X2

Ω

global bases

local bases

Boundary-interior
decomposition

Assembly matrix

A

tensor product 
expansion

⌦quad
st

⌘1

⌘2 Du↵y

⌦tri
st

⇠1

⇠2

~�(~⇠)

x1

x2

Figure 1: Du↵y transformation from the standard quadrilateral element ⌦
quad
st with collapsed coordinates

(⌘1, ⌘2) to triangular element ⌦
tri
st with coordinates (⇠1, ⇠2). We also show how ⌦

tri
st is taken to a general

curvilinear element through the isoparametric mapping ~�. Interior lines demonstrate how quadrature points,

taken to be equally spaced in this example, are transformed under each mapping.

u(~⇠) =
P1X

p=0

P2X

q=0

P3X

r=0

ûpqr p(⇠1) q(⇠2) r(⇠3). (2)

In tetrahedral and prismatic elements, we use a collapsed coordinate system (⌘1, ⌘2, ⌘3) 2
[�1, 1]3, obtained through one or more applications of the square-to-triangle Du↵y transfor-
mation [9], to obtain a similar tensorial decomposition. Figure 1 demonstrates the Du↵y
transformation in a two-dimensional setting through the mapping

⌘1 = 2
1 + ⇠1

1� ⇠2
� 1, ⌘2 = ⇠2.

Consequently, the summation over each mode i as a function of p, q and r, then becomes
more complex, as indicated by the indexing sets above. For example, a prismatic element
has the general expansion

u(~⇠) =
P1X

p=0

P2X

q=0

P3�pX

r=0

ûpqr 
a
p(⇠⌘:1) 

a
q (⇠⌘:2) 

b
pr(⇠⌘:3), (3)

where we note that
:::::::::::
⌘i 2 [�1, 1]

:::
is

::::
the

::::::::::
collapsed

::::::::::::
coordinate

::::::
and,

:::::::::::::
additionally,

::
 

b depends
on both p and r. We note that although the number of modes has been reduced, we still
maintain a complete polynomial space on ⌦st. The basis functions  =  

a
:::
 

a
:
and  b are the

tensor-product modified hierarchical basis functions defined in [13], which combines
::::::::
combine

a set of orthogonal Jacobi polynomials with linear finite element basis functions to achieve a
separation of boundary and interior modes.

We must additionally discuss how a given PDE will be discretised. For the problems
we consider here, the continuous or discontinuous Galerkin methods will be used, where the

5
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"Defining" features

8

quadrature points modal coefficients

u
ξ1i� ξ2j� � P2
n�1 Èunφn
ǖξ � � P

p�1
Q

q�1 Èupqφp
ξ1i�φq
ξ2j�
Generally not collocated

Uses tensor products of 1D basis functions, even for non-
tensor product shapes, but indexing harder

u
ξ1i� ξ2j� ξ3k� � P
p�1

Q˥p
q�1

R˥p˥q
r�1 Èupqrφa

p
ξ1i�φb
pq
ξ2j�φc

pqr
ξ3k�



Sum-factorisation

9

Essential for performance at high polynomial orders

We can also do this for tris, tets, prisms... but have 
to cope with harder indexing and smaller matrices

P
p�1

Q
q�1 Èupqφp
ξ1i�φq
ξ2j� � P

p�1φp
ξ1i� Ϯϯϯϯϯϯϯϰ Q
q�1 Èupqφq
ξ2j�ϱϲϲϲϲϲϲϳ

store this
2D: O(P4) → O(P3)   3D: O(P6) → O(P4)



Implementation choices

10

Implementation strategies

=

Global Strategy

=

Local Strategy

=
Sum-factorisation

Increasing
polynomial order

More
localised
memory
access



h-to-p efficiently
Why do we care about having all these approaches? 

• Approach performance varies wildly depending on 
many factors that are not a priori determinable 

• Allow us to explore the space of flops/byte ratio 

• Also important for e.g. variable-p simulations

108

Figure 8.11: Time-averaged contours of spanwise velocity at z = 0.125 for L05h10 wing
with ↵ = 6� and Re = 50, 000.

(a) baseline

(b) L05h10, trough

(c) L05h10, peak

Figure 8.12: Slices with contours of instantaneous spanwise vorticity (on the left) and of
turbulence kinetic energy (on the right) for simulations with ↵ = 6�.



Challenges for KNL
• Nektar++ written in C++ (surprise!), uses 

abstraction, inheritance and OO heavily 
✔ Great for writing code & rapid prototyping 
❌ Hard to make it highly performant 
❌ Also hard to track/control memory usage 

• Handing memory 
➡ DRAM vs. MCDRAM or host vs. device 
➡ Making this transparent to solver developers  

• Threading and SIMD vectorisation

12



Collections
• Reformulate implementation choices into kernel 

operations over multiple elements 

• Group geometric terms        

• Focus around key components of Laplacian: 
➡ Backward transformation:  
➡ Inner product: (Φi, Φj) 
➡ Derivatives: ∂u/∂xi 
➡ Inner product w.r.t. derivative: (Φi, 𝛻Φj)
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Collections: Design

=

=

=

Local Matrix StdMat
1. Apply Jacobian (L1)

2. L3 Multiply by ref. matrix

Local Matrix

IterPerExp
1. Apply Jacobian 
(L1) 
2. Apply local sum 
fact. (N x L3)

Collections: Design

=

IterPerExp
1. Apply Jacobian (L1)
2. L2 multiply by 
    ref. matrix

for i = 1:N

StdMat (standard matrix)
1. Apply Jacobian (L1)

2. Multiply by ref. matrix (L3)

Collections: Design

=

=

=

Local Matrix StdMat
1. Apply Jacobian (L1)

2. L3 Multiply by ref. matrix

Collections: Design

=

=

=

Local Matrix StdMat
1. Apply Jacobian (L1)

2. L3 Multiply by ref. matrix

SumFac
1. Apply Jacobian (L1) 
2. Mult. first dimension (L3)

3. Mult. second dimension (N x L3)

Collections: Design

...

SumFac (Quad)
1. Apply Jacobian (L1)
2. L2 multiply for first dim ref. matrix

... =

for i = 1:N
3. L2 multiply for second dim ref. matrix

=

Collections: Design

...

SumFac (Quad)
1. Apply Jacobian (L1)
2. L2 multiply for first dim ref. matrix

... =

for i = 1:N
3. L2 multiply for second dim ref. matrix

=

Schemes
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Figure 2: Diagramatic representation of each amalgamation scheme. Four quadrilateral elements with P1 =

P2 = 1 and Q1 = Q2 = 3 are considered for the backward transform operator.

We see that if the bracketed summations are stored in memory, the application of sum-
factorisation leads to a reduction to O(P 4) floating point operations. A similar technique
can be used for the tetrahedron and prism, although it is typically less e�cient than the
hexahedron due to the inter-dependency of the p, q and r indices. With a little more work,
we can again use linear algebra packages by rewriting the summation as a series of matrix-
matrix operations, ⇣

(Û>
[P1]B

>
1 )

>
[Q2]B

>
2

⌘>

[Q3]
B

>
3 , (4)

where Û[P1]is :
,
:::
for

::::::::::
example,

::::::::
denotes

:
the reinterpretation of the vector û as a P1⇥P2P3 matrix

stored in column-major format. The parentheses also highlight where temporary storage is
required to store intermediate steps. Whilst intuition may point towards sum-factorisation
being the quickest way to evaluate these operators due to the reduction in operator count,
our previous work demonstrates that the fastest technique depends heavily on polynomial
order, element type and the

:::::
type

::
of

:
operator under consideration. This points towards there

being the need for a number of di↵erent amalgamation schemes in order to attain optimal
performance.

2.3. Amalgamation schemes

Our earlier studies applied the strategies of the previous section by iterating over each
element, evaluating the operator and measuring the total execution time for the entire mesh.
However, in the context of memory e�ciency and using the CPU cache e↵ectively, this
approach may not prove to be the most optimal if matrices are not stored contiguously in
memory. Additionally, since local matrices must be generated for each element, there is a
large cost incurred in moving them from main memory to the processor.

The purpose of this work is therefore to reformulate these strategies in the context of
multiple elements. We aim to remove local matrices wherever possible, thereby reducing
data movement and increasing data locality. We will leverage both the tensor-product de-
composition of the spectral/hp element method and the use of a standard region, on which
we can define an operator for many elements simultaneously. Then, through grouping local
elemental storage of the coe�cient and physical spaces, we aim to apply standard level-3
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memory. Additionally, since local matrices must be generated for each element, there is a
large cost incurred in moving them from main memory to the processor.

The purpose of this work is therefore to reformulate these strategies in the context of
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required to store intermediate steps. Whilst intuition may point towards sum-factorisation
being the quickest way to evaluate these operators due to the reduction in operator count,
our previous work demonstrates that the fastest technique depends heavily on polynomial
order, element type and the
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being the need for a number of di↵erent amalgamation schemes in order to attain optimal
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Our earlier studies applied the strategies of the previous section by iterating over each
element, evaluating the operator and measuring the total execution time for the entire mesh.
However, in the context of memory e�ciency and using the CPU cache e↵ectively, this
approach may not prove to be the most optimal if matrices are not stored contiguously in
memory. Additionally, since local matrices must be generated for each element, there is a
large cost incurred in moving them from main memory to the processor.

The purpose of this work is therefore to reformulate these strategies in the context of
multiple elements. We aim to remove local matrices wherever possible, thereby reducing
data movement and increasing data locality. We will leverage both the tensor-product de-
composition of the spectral/hp element method and the use of a standard region, on which
we can define an operator for many elements simultaneously. Then, through grouping local
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Figure 4: Initial performance characteristics for the four key operators with prismatic elements
::::
using

::::::::
NETLIB

:::::
BLAS.

The test hardware used is a single core of a 2.7GHz Intel Xeon E5-2697v2 CPU with 30MB
of L3 cache and 192GB of RAM. A standard Debian Linux installation is used, containing
gcc v4.7.2 with default -O3 optimization flags and, for our initial tests, the standard Netlib
BLAS implementation [1]. The system was kept idle at the time of testing to the best of our
ability to limit the e↵ects of other processes on timings.

Figures 4 and 5 show the relative timings of each amalgamation scheme, normalised by
the IterPerExp scheme. We see that, in general, significant performance improvements can
be observed, particularly at lower polynomial orders where large speedups of up to a factor
of 8 are seen. Depending on the element and operator type, the StdMat scheme generally
performs best at linear and quadratic orders. However as the polynomial order is increased
and the standard matrix becomes larger, this scheme rapidly becomes prohibitively expensive.
As the polynomial order increases further, it is clear that the the sum-factorised variants of
either SumFac, IterPerExp or the baseline LocalSumFac are generally the correct scheme to
select. We note that, broadly speaking, the IterPerExp and LocalSumFac methods appear to
perform at similar levels. This indicates that the additional expense that is incurred by storing
elemental Jacobian determinants for planar-sided elements is not substantial in comparsion
to the cost of the operator. Here, we posit that the local sum-factorized matrix sizes are
large enough that, regardless of whether matrices are allocated contiguously in memory or
not, a local approach to sum-factorization still provides a highly-e�cient implementation.
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Example: ONERA M6 wing

19

Figure 9: Distribution of the Mach number 0 < M  0.45 across the surface of the ONERA M6 wing as the

flow evolves to a steady state.

Table 1 shows the timings obtained from the auto-tuning method on the root process,
which executed at solver setup in the span of around 20 seconds. This process

:::
We

:::::
note

::::
that

::::::
each

::::::::::
processor

:::::
runs

::::
its

::::
own

:::::
sets

:::
of

::::::::
timings

:::::
and

::::
this

::::::::
should

:::::
only

::::::::::
therefore

:::
be

:::::
seen

:::
as

::
a

::::::::::::::
representative

::::::::::
example.

:::::
The

::::::::::::
autotuning

:::::::::
method is run across all nodes simultaneously, with

each process
:::::::::
processor

:
selecting its own fastest observed time. We deliberately choose this

approach, as opposed to, for example, the root process dictating the scheme, since mixed
element meshes will lead to partitions requiring di↵erent scheme selection. The table shows
the timings for each method, with the fastest highlighted in bold. We see that typically the
StdMat operator is preferred, which corresponds to the general trends seen in Section 3 for
this polynomial order. Indeed, over the LocalSumFac baseline scheme, we see that generally
the amalgamation schemes perform extremely well, being almost an order of magnitude faster
in the case of cx2.

To see the e↵ect of each scheme on the overall runtime, we now measure the average
wall-time needed per timestep over 5,000 samples. This timing therefore incorporates all
other aspects of the compressible Euler solver, such as the Riemann solver and communica-
tion costs. Table 2 shows the measured wall-time for each of the machines. The use of our
amalgamtion schemes, in combination with the auto-tuning method, results in a reduction in
overall runtime of around 40% for cx2 and 60% for ARCHER. This is a considerable improve-
ment in execution time and shows the potential advantages that can be achieved when using
amalgamation.

20

Compressible Euler flow 
Fully explicit, P = 2, 960 cores, ~150k tets  
Inner product w.r.t derivative very important

Scheme timings [s]

Machine Operator LocalSumFac IterPerExp StdMat SumFac

cx2 BwdTrans 0.00213393 0.00209944 0.000202192 0.000534608

IProductWRTBase 0.00245141 0.00200234 0.000233064 0.000521411

IProductWRTDerivBase 0.0266448 0.017248 0.00201284 0.00298702

PhysDeriv 0.00485056 0.00492247 0.00389733 0.00319892

ARCHER BwdTrans 0.000643393 0.000638955 2.36882e-05 4.74285e-05

IProductWRTBase 0.000754697 0.000712303 2.78743e-05 0.000150587

IProductWRTDerivBase 0.00827777 0.00530682 0.00019947 0.000643919

PhysDeriv 0.00075556 0.000595179 0.000287773 0.000318533

Table 1: Results of auto-tuning method on
::::
from

:::
the

:
root node for

::
the

:
ONERA M6 wing test case for cx2

and ARCHER. For each operator, the fastest scheme is highlighted in bold text.

and p being the pressure. An equation of state is needed to close the system. In this case,
we use the ideal gas law p = ⇢RT where T is the temperature and R is the gas constant.

To discretise this hyperbolic system, we adopt a discontinuous Galerkin method, which
is well-suited in this setting due to its local conservation properties. Specific details on the
discretisation are available in [12] and on its implementation in Nektar++ in [3, 8]. However,
we note that the discretisation makes heavy use of the inner product operator with respect
to the derivatives of the basis functions, since the weak form involves the calculation of the
volume flux term Z

⌦e

r~v · F(~u) d~x

for a test function ~v composed of polynomial functions.
We consider the flow over an ONERAM6 swept wing, a common aeronautics test case [21],

at a freestream Mach number M1 = 0.4. The distribution of the Mach number across the
wing surface and symmetry plane, as the flow is evolved to a steady state, is visualised
in Figure 9. A curvilinear tetrahedral mesh of 147,805 elements represents the underlying
geometry, generated through the use of an elastic analogy described in [17]. The flow is
evaluated using a fully-explicit four-stage 4th-order Runge-Kutta scheme with a timestep of
�t = 10�7 at a uniform polynomial order of P = 2. A HLLC Riemann solver is used to solve
the one-dimensional Riemann problem arising at elemental interfaces.

To run this simulation, containing around 1.5m degrees of freedom per conserved variable,
requires the use of larger scale computing resources. We consider two machines of varying
capabilities. The first, cx2, is located within Imperial College HPC facilities. We use 16 nodes
containing two 2.93GHz, 6-core Intel Xeon X5670 CPUs with 12MB L3 cache each and 24GB
of RAM, connected over an Infiniband interconnect, for a total of 192 cores. The second is
ARCHER, the UK national supercomputer located at EPCC at the University of Edinburgh.
This is a Cray XC30 MPP machine, comprising of nodes containing two 2.7 GHz, 12-core
Intel Xeon E5-2697 v2 (Ivy Bridge) processors with 64 GB of RAM and connected via a Cray
Aries interconnect. We use 20 nodes for our experiment, giving a total of 960 computing
cores. We note that the same mesh and polynomial order is used for each system.
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Wall-time per timestep [s]

Machine LocalSumFac Auto-tuned collections Improvement

ARCHER 1.308 0.744 43%
cx2 0.356 0.135 62%

Table 2: Measured run-times and improvements for default LocalSumFac method vs. auto-tuned collections

for the ONERA M6 example.

7. Conclusions

In this work, we have presented a methodology for amalgamating the action of various
key finite element operators across a range of elements. The resulting amalgamation schemes
demonstrate improved performance due to their more e�cient use of data locality and re-
duction in data transfer across the memory bus, enabling increased performance through
exploiting optimised BLAS routines and the CPU cache structure. An auto-tuning method
was presented, enabling the automatic selection of the most e�cient scheme at runtime. We
have shown how these schemes can be leveraged to improve runtimes, both by examinining
the schemes individually and by applying them to a large-scale simulation of the compressible
Euler equations. The results clearly demonstrate the importance and benefits of streaming
data from memory e�ciently.

As alluded to in the introduction, we stress that the results shown here are generally not
specific to the spectral/hp element method, due to the fundamental nature of the operators
being used. Other high-order schemes, such as the popular nodal discontinuous Galerkin
method [12], rely on the evaluation of the same types of operators, which in turn have similar
matrix formulations. However, we note that the SumFac scheme may not be applicable,
depending on the choice of basis functions used in the local expansion of each element. As
we describe in Section 2, sum-factorisation relies on the ability to write local expansion
modes as the tensor product of one-dimensional functions. In the nodal DG scheme, hybrid
elements such as prisms and tetrahedra typically use Lagrange interpolants together with a
set of suitable solution points, such as Fekete or electrostatic point distributions. This choice
of basis functions are inherently non-tensor-product based, and so the SumFac schemes we
consider here cannot therefore be utilised for these element types. However, the IterPerExp
and StdMat schemes are both equally applicable in this setting.

Finally, we
::::::::
Possible

::::::::
routes

::::
for

::::::::
further

::::::
work

:::::::
could

::::::
focus

::::::::
around

::::::::::::::::
improvements

:::
to

::::
the

:::::::::::
autotuning

:::::::::
method,

:::::::
which

:::::
may

::::
not

::::
be

:::::::::::
well-suited

::::
for

::
a
:::::
fully

:::::::::::::
hp-adaptive

::::::::::::
simulation.

:::::::
Other

::::::
kernel

::::::::::::::::::
implementations

:::::
that

::::
are

::::::::::::
specifically

::::::::::
designed

::::
for

:::::::::::
operators,

::::::
such

:::
as

::::
the

:::::::::::
generation

:::::::::::
procedures

:::::::::::::
investigated

:::
in

:::::
[27],

::::::
could

:::::
also

::::::
prove

:::::::
useful

:::
in

:::::::::::
furthering

::::
the

:::::::::::::
performance

:::::::
profile

::
of

::::
this

:::::::
work.

::::
We

:::::
also note that in general, the performance gains presented in Section 6 may

not be achievable in other solvers. In particular, where the problem is either fully implict

::::::::
implicit

:
or semi-implicit, a large proportion of the overall runtime is usually spent inverting

the global matrix system. In parallel this is done iteratively, with the action of the global
matrix represented through a block-diagonal elemental matrix and an approprate gather-
scatter operation. Future studies on this topic should therefore focus on making this process
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Runtime 
improvement: 40-60%



libxsmm
• Most of the matrix-matrix multiplies done in 

collections are small, at least in one rank 

• libxsmm yields encouraging performance gains over 
standard MKL/BLAS, particularly for non-TP elements 

• Challenge: our existing calls frequently use 
transposes - need to reorder/pretranspose 

➡ This is very challenging for non-tensor product 
elements (tris/tets/etc)
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GFLOP/s performance
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GFLOP/s performance
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Summary
• Collections have sped up our code and made us think 

much harder about memory & hardware, particularly for 
KNL architecture 

• Transition to kernels easier to consider threading, 
vectorisation & tuning, but keeping transparency 

• libxsmm looks encouraging for maximising hardware 
potential, particularly for non-TP elements 

• Still need to tackle memory management, particularly for 
KNL & non-CPU architectures
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Thanks for listening!

https://davidmoxey.uk/        @davidmoxey 

d.moxey@imperial.ac.uk 
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