High-order mesh generation for CFD solvers

M. Turner, **D. Moxey**, S. Sherwin, J. Peiró Department of Aeronautics, Imperial College London

> DiPaRT 2015 Annual Meeting, Bristol, UK 17th November 2015

Overview

- Motivation
- The spectral/hp element method
- Challenges: mesh generation
- Some results
- Conclusions

Motivation

Primary research goal is to investigate challenging external aerodynamics cases:

- High Reynolds numbers
- Complex three-dimensional geometries
- Large resolution requirements
- Transient dynamics

Using high-order spectral/hp element method

Why high-order methods?

Rotation of Gaussian bump in linear advection equation

Why high-order methods?

- Very good numerical properties: should therefore be better at tracking long-time transient structures
- Discrete operators are dense and have rich structure: computationally efficient & scale well

but...

- Lots of specialised knowledge required
- One big challenge: mesh generation

High-order mesh generation (in theory)

B-Rep

High-order mesh generation

Curving coarse meshes leads to invalid elements Most existing MG packages cannot deal with this

MG pipeline to date

For complex geometries:

- Use commercial mesh generator for coarse straight-sided mesh (prism boundary, tet interior)
- Manipulate the mesh to make it high order
- Try to fix broken elements
- Pray

NACA 0012 wing tip

Strong wingtip vortex difficult to capture with RANS

Existing workflow

NACA 0012 example

- Simulations at Re = 1.2m
- Highly unsteady, vortex dominated
- SVV-LES formulation of incompressible NS

Lombard, Moxey, Hoessler, Dhandapani, Taylor and Sherwin to appear in AIAA J. (2015)

NACA 0012 example

NACA 0012 example

Lombard, Moxey, Hoessler, Dhandapani, Taylor and Sherwin to appear in AIAA J. (2015) 14

More complex geometries

Towards a better MG solution

Single step process from CAD to flow solution As few user parameters as possible

Construct an octree

Smooth the octree

Relate geometry to mesh sizing $\delta(R)$

Propagate mesh specification

Our process

- OpenCascade for CAD handling
- Modified version of Triangle for surface meshing
- Modified version of TetGen for the interior volume
- Our own system for high-order manipulation
- Linear elastic PDE solver for mesh deformation

Encapsulated inside Nektar++ spectral/hp element framework

Result

More complex geometries

Nektar++ high-order framework

Framework for spectral(/hp) element method:

- Dimension independent, supports CG/DG/HDG
- Mixed elements (quads/tris, hexes, prisms, tets, pyramids) using hierarchical modal and classical nodal formulations
- Solvers for (in)compressible Navier-Stokes, advection-diffusionreaction, shallow water equations, ...
- Parallelised with MPI, tested scaling up to ~10k cores

http://www.nektar.info/ nektar-users@imperial.ac.uk Thanks for listening!

@davidmoxey

d.moxey@imperial.ac.uk

www.nektar.info