Applications of the spectral/hp element method to complex flow geometries

D. Moxey, J.-E. Lombard, J. Peiró, S. Sherwin Department of Aeronautics, Imperial College London

> SIAM CSE 2015, Salt Lake City, Utah 14th March 2015

Overview

- Motivation
- Challenges of transient flow simulations
- Results
- Future work

Motivation

Primary research goal is to investigate challenging external aerodynamics cases:

- High Reynolds numbers
- Complex three-dimensional geometries
- Large resolution requirements
- Transient dynamics

Motivation

- (Fully resolved) DNS gives extremely accurate results but is too expensive for high-Re simulations.
- How can we apply existing efficient academic DNS codes for industrial applications?

DNS of periodic hill 2D spectral element + 1D Fourier spectral ~25 million dof

NACA 0012 wing tip

Difficult to capture transient effects with RANS

How low can we go in terms of resolution and still capture essential flow features?

High-order mesh generation

Boundary layer grids are hard to generate:

- High shear near walls
- First element needs to be of size roughly O(Re⁻²)
- Unfeasible to run with this number of elements in the entire domain and across surface of wall
- Therefore highly-stretched elements required
- Also has to be coarse for high-order to make sense

Isoparametric mapping

Shape function is a mapping from reference element (parametric coordinates) to mesh element (physical coordinates)

An isoparametric approach to high-order curvilinear boundary-layer meshing D. Moxey, M. Hazan, S. J. Sherwin, J. Peiró, Comp. Meth. Appl. Mech. Eng. **283**, 636-650 (2015).

Boundary layer mesh generation

Subdivide the reference element in order to obtain a boundary layer mesh

An isoparametric approach to high-order curvilinear boundary-layer meshing D. Moxey, M. Hazan, S. J. Sherwin, J. Peiró, Comp. Meth. Appl. Mech. Eng. **283**, 636-650 (2015).

NACA 0012 boundary layer grid

High order mesh P = 5

After splitting

More complex transforms

Quads to triangles

Prisms to tetrahedra

On the generation of curvilinear meshes through subdivision of isoparametric elements D. Moxey, M. Hazan, S. J. Sherwin, J. Peiró, to appear in proceedings of Tetrahedron IV

Stabilisation

Very high Reynolds numbers + under-resolution will inevitability cause instability. Common causes:

- Consistent integration of nonlinear terms
- Insufficient dissipation from the numerical method

Here we use

- Consistent integration of nonlinear terms
- Spectral vanishing viscosity

Navier-Stokes Solver

Navier-Stokes:
$$\partial_t \mathbf{u} + \mathbf{N}(\mathbf{u}) = -\nabla p + v \nabla^2 \mathbf{u}$$

 $\nabla \cdot \mathbf{u} = 0$

Velocity correction scheme (aka stiffly stable): Orszag, Israeli, Deville (90), Karnaidakis Israeli, Orszag (1991), Guermond & Shen (2003)

Pressure

Poisson:

Advection:
$$\mathbf{u}^{\star} = -\sum_{q=1}^{J} a_q \mathbf{u}^{n-q} - \Delta t \sum_{q=0}^{J-1} \beta_q \mathbf{N}(\mathbf{u}^{n-q})$$

 $\nabla^2 p^{n+1} = \frac{1}{\Lambda t} \nabla \cdot \mathbf{u}^*$

$$\mathbf{u}^{n}$$

$$\mathbf{u} \cdot \nabla \mathbf{u}$$

$$\mathbf{u}^{*}$$

$$\mathbf{u}^{2}\mathbf{u} - \nabla p = \mathbf{f}$$

$$\nabla \cdot \mathbf{u} = 0$$

$$\mathbf{u}^{n+1}$$

$$n = n+1$$

Helmholtz: $\nabla^2 \mathbf{u}^{n+1} - \frac{\alpha_0}{v\Delta t}\mathbf{u}^{n+1} = -\frac{\mathbf{u}^{\star}}{\nabla\Delta t} + \frac{1}{v}\nabla p^{n+1}$

Aliasing

Example:
$$u(\xi) = \sum_{k=0}^{10} u_k \psi_i(\xi)$$

Galerkin projection of u² using:

- Q = 17 exact Quadrature
- Q = 12 sufficient for integrating 20th degree polynomials

Example from Kirby & Karniadakis, J. Comp. Phys (2003)

Overview of nodal projection of u^2

Essentially performing sum factorisation In 3D: $O(P^6)$ vs. $O(P^4)$

Dealiasing techniques for high-order spectral element methods on regular and irregular grids G. Mengaldo, D. de Grazia, D. Moxey, P. Vincent, S. J. Sherwin, under review in *J. Comp. Phys.*

Spectral Vanishing Viscosity

R. Kirby, S. Sherwin, Comp. Meth. Appl. Mech. Eng., 2006

NACA 0012 wing tip (Re = 1.2M)

Streamlines

Streamwise vorticity

Existing simulations

Method	Global DOFs
RANS (modified Baldwin-Barth) Dacles-Mariani et al. (1997)	2.5 · 10 ⁶
RANS (Lag RST), Churchfield et al. (2013)	13.8 · 10 ⁶
LES, Uzun et al. (2006)	26.2 · 10 ⁶
ILES, Jiang et al. (2008)	26 · 10 ⁶
Present study	15.3 · 10 ⁶

Pressure coefficient distribution

*Transient simulation of a wingtip vortex at Re*_c = $1.2 \cdot 10^6$ Lombard, Moxey, Hoessler, Dhandapani, Taylor and Sherwin, under review in AIAA Journal

Pressure coefficient distribution

Time averaged distribution over 1 convective time unit $t_c = tc/U_{\infty}$

Vortex core

Experiment Simulation x/c = -0.114

Vortex core location

~1.75m elements r = 3, 3-5 layers in BL P = 3-5~2-8k cores (ARCHER) $Re \sim 100k$

More complex geometry F1 front wing

An isoparametric approach to high-order curvilinear boundary-layer meshing Moxey, Hazan, Sherwin, Peiro, under review in Comp. Meth. Appl. Mech. Eng.

Initial results

Conclusions

- High-order methods can be applied to these problems and successfully capture essential flow dynamics
- Still a need for high-order mesh generation strategies for coarse grid
- Promising results for larger and more complex geometries
- Next steps: improving contact patch boundary treatment, improve stabilisation techniques
- Many thanks to ARCHER for (lots of!) computing time under UKTC and resource allocation panels

Nektar++ high-order framework

Framework for spectral(/hp) element method:

- Dimension independent, supports CG/DG/HDG
- Mixed elements (quads/tris, hexes, prisms, tets, pyramids) using hierarchical modal and classical nodal formulations
- Solvers for (in)compressible Navier-Stokes, advection-diffusionreaction, shallow water equations, ...
- Parallelised with MPI, tested scaling up to ~10k cores

http://www.nektar.info/ nektar-users@imperial.ac.uk

If you like high order methods...

- **MS103, MS128**: high- and low-order finite element software for the future
- Morning and afternoon sessions
- Room **151G**
- My talk: HDG vs. CG

Thanks for listening!

@davidmoxey

d.moxey@imperial.ac.uk