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Formulations

Continuous Galerkin (CG)

* (Great for elliptic problems due to low degree of
freedom (dof) count

e Established method: large body of knowledge

Discontinuous Galerkin (DG)

 Has attractive properties (local conservation)
* (Great for hyperbolic problems

* Not as attractive for elliptic: higher DOF count
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CG on an element
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HDG on an element
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Global matrices

Once we have local elemental matrices, need to form
a global matrix for the entire system

Create an assembly map A that establishes
connections between elements based on mesh

Can be seen as a global-to-local operator
Serial: construct a global matrix and solve directly

Parallel: form action of the global matrix using
elemental matrices and assembly map
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Global matrices
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(Goals

Follow on from previous study in 2D: 3D mixed elements

How does HDG fare against CG for:
 Smaller problems (direct solve, serial)
* [arge problems (iterative solve, parallel)

Pertormance for elliptic vs. parabolic solve
Effect of structured vs. unstructured mesh
n parallel, how does each method scale”?

How might these performance characteristics reflect in
terms of complex systems?

Be fair to both methods: same codebase, Nektar++
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Models
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Helmholtz equation Ditfusion equation

 Fundamental elliptic and parabolic equations with
known non-polynomial exact solutions

* The building blocks of more complex operators

e e.g. Incompressible Navier-Stokes: 1 x Poisson
solve (pressure) + 3 x Helmholtz solve (velocity)
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A priori expectations

* |n both cases, we expect there might be a
crossover point

e Serial: factors include system bandwidth (as in 2D
case), efficiency of direct solver

* Parallel: could depend on a number of factors:
preconditioner/condition number, interconnect,
mesh topology, communication patterns, ...
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HDG postprocessing

 For some PDEs we can use an order p solution to
construct a solution which is p + 1 accurate

e Not clear whether this can hold for non-linear or
time evolved systems

 However important to take into consideration when
doing our timings
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Serial performance

93 hex mesh 6 X 93 tet mesh

Helmholtz equation, Dirichlet boundary conditions
Q = [-1,1]8, u(x) = sin(bnx)sin(bmy)sin(5mz)
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Convergence validation
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Serial performance

N DSC DMSC N
6 HDG HDG DG
CG HDG el CG HDG e
3 4.92 0.0/ 1.24 7.46 490 0.66 2
4 30.96 48.44 0.60 48.32 31.51 0.65 3
O 564.31 243.17 0.43 297.90 169.73 0.57 4
0 2061.04 94712 0.30 1103.36 791.51 0.72 O
/ 8765.75 2709.26 0.31 3397.99 2042.24 0.78 6
3 25450.47 c917.71  0.27 3/789.20 7051.14  0.80 /
9 08228.23 161/7.59 0.28 19580.75 1/786.10 0.91 3

Hex cube mesh

DSC: direct static condensation

DMSC: direct multi-level static condensation
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Serial performance

N DSC DMSC N
CG HDG HDG  HDG
CG HDG el CG HDG el
3 0.73 3.28 452 3.46 292 0.84 2
4 4.86 12.29 2.53 14.02 9.05 0.65 3
5 42.04 46.71 1.11 59.39 29.30 0.49 4
6 220.04 144.82 0.66 154.89 92.03 0.59 5
7 819.23 399.07 0.49 777.43 297.04 0.38 9)
8 2282.90 885.17 0.39 2057.15 796.64 0.39 7
9 5747.78 1852.25 0.32 4081.03 171252 0.42 8

Tet cube mesh
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Parallel performance

Most operations (e.g. matrix construction) are trivially
parallelisable: hard part is matrix solve

Use preconditioned conjugate gradient (PCGQG)

Most complex operation: gather-scatter required for
matrix action: we use gslib (part of Nek5000)

Measure both weak and strong scaling

Tests on HECToR: 32 and 4,096 cores, ARCHER: 24
and 3,072 cores (1 to 128 nodes)
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Communication patterns

HDG: elemental pairwise CG: much more complex

19



Preconditioners and fair metrics

CG and HDG systems will have different sizes and
conditioning properties

Theretore timings will depend (mostly) on:

» # iterations / choice of preconditioner

* cost of block matrix-vector multiply

e Interconnect and communication properties

We can always build better preconditioners

Fairness: use Jacobi precon, measure time/iteration
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Preconditioners: justification

Nupg HDG block CG block CG low energy CG linear space  Neg

2 130 51 37 29 3
3 157 98 53 35 4
& 203 150 62 38 5
5 223 204 69 40 6
6 245 252 74 41 /
7 258 295 /8 42 8
8 279 345 82 44 9

Measure # iterations for unsteady diffusion equation

HDG/CG block: invert block representing each
trace face (HDG) or vertex/edge/tace blocks (CG)

CG low energy: basis transform

CG linear space: LE + coarse space precon
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Matrix block sizes
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p p

HDG local blocks are tar larger unless
postprocessing taken into account
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Weak scaling (hex)

Time/iteration

Time/iteration
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Time/iteration
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Weak scaling (tet)
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Cube geometry
6 X 23tets per core
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Strong scaling

intercostal pair aortic arch
~8,500 tets ~150,000 tets
higher P lower P

Mean vertex valency: 12
Max vertex valency: 44!
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Strong scaling
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Strong scaling
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Strong scaling
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sSummary

Direct solver + postprocessing

» HDG outperforms CG to various degrees depending
on mesh + solver for elliptic problems

* | ess pronounced for tetrahedral mesh

Iterative solver
* w/postprocessing: HDG can (barely) match CG
o Still need effective preconditioning strategy

Parallel

 HDG can outpertorm CG on per-iteration basis when
communication cost is high

 However scaling is still pretty good for both methods
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Nektar++ high-order framework

Framework for spectral(/hp) element method:
« Dimension independent, supports CG/DG/HDG

* Mixed elements (quads/tris, hexes, prisms, tets, )
using hierarchical modal and classical nodal formulations

e Solvers for (in)compressible Navier-Stokes, advection-diffusion-
reaction, shallow water equations, ...

* Parallelised with MPI, tested scaling up to ~10k cores

http://www.nektar.info/
nektar-users@imperial.ac.uk
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Thanks for listening!
@davidmoxey

d.moxey@imperial.ac.uk




