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Motivation
Primary research goal is to investigate challenging 
external aerodynamics cases: 

• High Reynolds numbers 

• Complex three-dimensional geometries 

• Large resolution requirements 

• Transient dynamics 

Using high-order spectral/hp element method.
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NACA 0012 wing tip
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Re = 4.5 x 106

Difficult to capture transient effects with RANS



Mesh generation strategy
1. Generate coarse linear grid (prismatic boundary, 

tetrahedral volume), typically O-type. 

2. Apply surface curvature to prism faces 

3. If it worked, split prisms to appropriate BL thickness 
using isoparametric mapping technique 

4. Otherwise, repeat with thicker BL 

Can suffer from robustness issues; curvature only on one 
face means element quality can be 'bad'.
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High-order mesh generation
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Curving mesh often leads to invalid elements



Grid deformation approach

• Start with a linear grid of a domain, which we 
consider to be a solid body 

• Apply a deformation to the boundary which 
deforms edges and faces so that they align with 
the geometry 

• Solve some equations to "push" curvature into the 
interior elements and (hopefully) prevent self-
intersection
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Linear elastic analogy
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We use linear elasticity equations for displacement u
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• Assumes small deformations 

• We can split up large deformations into a sequence of 
smaller steps to increase robustness 

• Non-linear deformation is better but more expensive 

• Quality of elements not guaranteed to be 'good'



Elastic analogy in action
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Coarse quad grid to circle Boundary layer grid



Thermal stress
• Cheap modification: add another analogy. 

• Suppose that there are not just elastic stresses but 
thermal stresses. 

• Idea: as the elements become more deformed, 
they 'heat up' and the effect of elasticity becomes 
less pronounced. 

• Larger deformations are therefore permitted since 
elements shrink to fit surrounding deformation.
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Formulation
• Assume stress tensor S can now be written as 

S = Se + St 

where St represents thermal stress term. 

• The simplest model is that of a linear isotropic material so that 

St = β(T - T0)I

where T is the temperature, T0 is the temperature of the stress-
free state, and β controls the amount of thermal stress. 

• Only assumption is that St does not depend on displacement u.
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Alternative thermal stresses
• Another stress form comes from high order mapping.  

• Given a high-order mapping χ from standard region to 
element, we have a Jacobian matrix J and associated 
metric tensor G = JTJ. 

• Notionally G gives a description of the principal 
directions of deformation.
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where u is a unit vector parallel to �x and G = J

t
J is the metric tensor or,

in solid mechanics, the right Cauchy-Green deformation tensor. It provides
measures of distortion of the physical element, with respect to the reference
element, that can be used to determine the validity of the element and used to
assess its quality. The metric tensor also contains directional information that
will allows us to account for anisotropy in elemental distortion.

3.2 The eigenvalue problem for the metric tensor

We are seeking the extrema of the ratio ⇢ = k�yk2
/k�xk2 subject to kuk = 1.

Using Lagrange multipliers, we minimize

⇢̂ = uGu + �

�
1 � kuk2

�

with respect to u and this leads to
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The metric tensor is symmetric and positive definite if the Jacobian matrix
is non-singular. If J > 0 then the metric tensor has two real and positive
eigenvalues that correspond to the maximum and minimum values of ⇢̂. The
metric tensor can be written as

G = RDR

�1

where R is the matrix matrix of eigenvectors and D is a diagonal matrix that
contains the eigenvalues. Following the notation of Fig. 4, a two-dimensional
interpretation of the deformation generated by the mapping is that a circle of
radius L is transformed into an ellipse of semi-axes L1 and L2 aligned with the
eigenvectors of the tensor G.
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Figure 4: Determining the maximum deformations generated by the mapping:
a two-dimensional illustration.

In general, the strains in the principal directions associated with the mapping
deformation are

ei =
Li � L

L

=
p

�i � 1; i = 1, . . . , n
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Alternative thermal stress

• Given an eigenvalue decomposition G = PDP-1 we 
scale D according to stresses 

• Then to counteract the elasticity forces we take 

• where β again controls the amount of stress to add.
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Test case
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• Unstructured triangular mesh of 
circle inside square. 

• Rotate circle until occurrence of 
negative Jacobian determinant 
at oversampled points 

• Repeatedly apply equations in 
1° increments, observe 
maximum rotation angle θmax as 
a function of β.

θ



Test case results

15

P = 6



Test case results
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Effect on quality
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Conclusions

• The incorporation of thermal stresses offers control 
on the validity of the mesh and improves the quality 
under large displacements of the boundary. 

• Promising results for larger and more complex 
geometries. 

• Work in three dimensions ongoing (solver 
implementation completed, temperature terms 
underway).
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Nektar++ high-order framework
Linear elastic solver implemented using Nektar++: 

• High-order spectral/hp element framework 

• Dimension independent, supports CG/DG/HDG 

• Mixed elements (quads/tris, hexes, prisms, tets, pyramids) using 
hierarchical modal and classical nodal formulations 

• Solvers for (in)compressible Navier-Stokes, advection-diffusion-
reaction, shallow water equations, linear elasticity, ... 

• Parallel, scales up to ~10k cores 

http://www.nektar.info/          nektar-users@imperial.ac.uk
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Thanks for listening!


