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Motivation

Primary research goal is to investigate challenging 
external aerodynamics cases: 

• High Reynolds numbers 

• Complex three-dimensional geometries 

• Large resolution requirements 

• Transient dynamics
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NACA 0012 wing tip
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Re = 4.5 x 106

Difficult to capture transient effects with RANS



Motivation
• (Fully resolved) DNS gives extremely accurate 

results but is too expensive for these applications. 

• How can we apply existing efficient academic DNS 
codes for industrial applications?
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DNS of periodic hill 
2D spectral element + 
1D Fourier spectral 
~25 million dof 
quite expensive!



Nektar++ high-order framework
Framework for spectral(/hp) element method:!

• Dimension independent, supports CG/DG/HDG 

• Mixed elements (quads/tris, hexes, prisms, tets, pyramids) 
using hierarchical modal and classical nodal formulations 

• Solvers for (in)compressible Navier-Stokes, advection-diffusion-
reaction, shallow water equations, ... 

• Parallelised with MPI, scales up to ~10k cores 

http://www.nektar.info/  
nektar-users@imperial.ac.uk
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Challenge: mesh generation

Three stage process 

• Initial coarse grid from commercial software 

• Apply high-order smoothing technique (e.g. 
Sherwin & Peiró, 2001) + untangle if necessary 

• Refine near walls to produce boundary layer grids
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High-order mesh generation
Boundary layer grids are hard to generate: 

• High shear near walls 

• First element needs to be of size roughly O(Re-2) 

• Unfeasible to run with this number of elements in the 
entire domain and across surface of wall 

• Therefore highly-stretched elements required 

• Also has to be coarse for high-order to make sense
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Isoparametric mapping

Shape function is a mapping from 
reference element (parametric coordinates) to 

mesh element (physical coordinates)
An isoparametric approach to high-order curvilinear boundary-layer meshing 

D. Moxey, M. Hazan, S. J. Sherwin, J. Peiró, under review in Comp. Meth. Appl. Mech. Eng. 



Boundary layer mesh generation

Subdivide the reference element in order to obtain a 
boundary layer mesh

An isoparametric approach to high-order curvilinear boundary-layer meshing 
D. Moxey, M. Hazan, S. J. Sherwin, J. Peiró, under review in Comp. Meth. Appl. Mech. Eng. 

 Spacing distribution



More complex transforms

11

8 D. Moxey, M. Hazan, S. J. Sherwin and J. Peiró
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Fig. 3 Construction of the map z in the case of a quadrilateral being split into two triangles.

To demonstrate this point, we first examine the problem of figure 3, which depicts
an example where a quadrilateral is split along a diagonal edge in order to obtain
two triangles. We may again utilise an affine mapping f (x ) = �x in order to map
W

tri
st onto a subdomain f

Wst of W

quad
st . From our previous argument we see that each

component of z = c � f has degree 2P in general if the original quadrilateral is of
order P.

Since z 2 [P(W tri
st )]

2 we must select a sufficiently large polynomial order for the
triangular space so that all terms of the expansion are represented in the resulting
expansion. To guarantee this for a general quadrilateral-to-triangle split, given a
quadrilateral of order P we must generate triangles of order 2P. Then the space
P(W quad

st )⇢P(W tri
st ) and thus z captures all curvature of the original mapping. For

a visual illustration of this, we may represent the polynomial spaces of the triangular
and quadrilateral elements in the form of a Pascal’s triangle as shown in figure 4.

Figure 5 illustrates the problem of using triangular elements which are not suf-
ficiently enriched. On the left, a second-order (P2) quadrilateral is split into two
second-order triangles. Splitting the quadrilateral into two P2 triangles leads to the
generation of degenerate elements. In this case, the symmetry of the deformed ele-
ment coupled with the quadratic order of the triangles means that the diagonal edge
which bisects the quadrilateral is forced to remain straight and thus causes a self-
intersection. We note that in this example, the interior quadrilateral mode x

2
1 x

2
2 is not

Quads to triangles

On the generation of curvilinear meshes through subdivision of isoparametric elements 
D. Moxey, M. Hazan, S. J. Sherwin, J. Peiró, to appear in proceedings of Tetrahedron IV

Prisms to tetrahedra



NACA 0012 wing case
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Experimental data available at Re = 4.5m (Chow et al, 1997)



NACA 0012 boundary layer grid
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High order mesh 
P = 5

Apply splitting technique



Navier-Stokes Solver

Velocity correction scheme (aka stiffly stable): 
Orszag, Israeli, Deville (90), Karnaidakis Israeli, Orszag (1991), Guermond & Shen (2003)
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Challenge: Stabilisation

Instability arises through (at least) two routes: 

• Consistent integration of nonlinear terms 

• Insufficient dissipation from the numerical method 

Here we use 

• Over-integration of nonlinear terms 

• Spectral vanishing viscosity

15



Spectral Vanishing Viscosity
Figure 2 (left) shows the solution with no SVV; figure 2 (centre) shows the solution with SVV
(Pcut = 7, ϵSV V = 0.1); and figure 2 (right) shows the solution with SVV (Pcut = 3, ϵSV V =
0.1).

Fig. 2. Standard diffusion to time T = 0.1 (left); standard diffusion with SVV Pcut = 7, ϵSV V = 0.1
(centre); and standard diffusion with SVV Pcut = 3, ϵSV V = 0.1 (right)

From this example we see that the SVV dissipation added to the high mode numbers with
respect to the spectral element discretisation does indeed yield dissipation at the global high
wavenumber scales of the solution (as exhibited in Figure 2 (centre and right)). Decreasing
the SVV wavenumber cutoff (Pcut) from eight to four produces further dissipation of the
high wavenumber features within the solution.

3 Incorporation of SVV into the Navier-Stokes Equations

In this section we discuss how SVV can be incorporated into a velocity-correction splitting
scheme to discretise the incompressible Navier-Stokes equations [17]. The incompressible
Navier-Stokes equations can be written as:

∂u

∂t
+ N(u) =−

1

ρ
∇p + νL(u) (20)

N(u) = (u ·∇)u (21)

L(u) =∇2u (22)

The temporal discretisation adopted in this work is a projection scheme, based on backwards
differencing in time. As originally described [17], this was characterised as an operator-
splitting scheme, but more recently [18] it has been shown that the method is one of a class
of velocity-correction projection schemes.

The projection scheme requires the solution of a pressure Poisson equation to (approximately)
maintain solenoidality of the velocity. Backwards time differencing is used to approximate a
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No SVV Pcut = 3,

✏SV V = 0.1
Pcut = 7,

✏SV V = 0.1
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R. Kirby, S. Sherwin, Comp. Meth. Appl. Mech. Eng., 2006



Aliasing
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Galerkin projection of u2 using: 
• Q = 17 – exact Quadrature 
• Q = 12 – sufficient for 

integrating 20th degree 
polynomials Expandsion Mode
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Reduced quadrature

Exact quadrature

Aliasing  
Error

Example from Kirby & Karniadakis, J. Comp. Phys (2003)
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Overview of nodal projection of u2
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Use tensor product structure 

Essentially performing sum factorisation 

GPQ!P GPQ!P

GPQ!P

GPQ!P

In 3D: vs.O(P 6) O(P 4)

P ⇥Q2 + P 2 ⇥Q ) O(P 3)



Re = 10,000

Re = 50,000

Re = 100,000
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Flow characteristics



Streamwise 
vorticity

NACA 0012 wing tip (Re = 1.2M)

Streamlines



Pressure coefficient distribution
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Vortex core
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Experiment Simulation



Conclusions

• High-order methods can be applied to these 
problems and successfully capture essential flow 
dynamics 

• Still a need for high-order mesh generation 
strategies for coarse grid 

• Promising results for larger and more complex 
geometries
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Thanks for listening!


