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Overview

• Motivation 

• Challenges 

• Some results
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Motivation
Primary research goal is to investigate challenging 
external aerodynamics cases: 

• High Reynolds numbers 

• Complex three-dimensional geometries 

• Large resolution requirements 

• Transient dynamics 

Using DNS + spectral vanishing viscosity
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NACA 0012 wing tip
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Re = O(106)

Difficult to capture transient effects with RANS



Nektar++ high-order framework
Framework for spectral(/hp) element method:!

• Dimension independent, supports CG/DG/HDG 

• Mixed elements (quads/tris, hexes, prisms, tets, pyramids) 

• Solvers for (in)compressible Navier-Stokes, advection-
diffusion-reaction, shallow water equations, ... 

• Parallelised with MPI, scales up to ~10k cores 

http://www.nektar.info/  
nektar-users@imperial.ac.uk
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High-order mesh generation
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Curving mesh often leads to invalid elements



High-order mesh generation
Boundary layer grids are pretty hard to generate: 

• High shear near walls 

• First element needs to be of size roughly O(Re-2) 

• Unfeasible to run with this number of elements in the entire 
domain and across surface of wall 

• Therefore highly-stretched elements required 

• Also has to be coarse for high-order to make sense 
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What if we already have a coarse grid?



Isoparametric mapping

Shape function is a mapping from 
reference element (parametric coordinates) to 

mesh element (physical coordinates)
An isoparametric approach to high-order curvilinear boundary-layer meshing 

D. Moxey, M. Hazan, S. J. Sherwin, J. Peiró, under review in Comp. Meth. Appl. Mech. Eng. 



Boundary layer mesh generation

Subdivide the reference element in order to obtain a 
boundary layer mesh

An isoparametric approach to high-order curvilinear boundary-layer meshing 
D. Moxey, M. Hazan, S. J. Sherwin, J. Peiró, under review in Comp. Meth. Appl. Mech. Eng. 

 Spacing distribution



Some nice properties
• Efficient (no deformation required), relatively easy to 

implement 

• Arbitrarily thin elements can be generated near walls 
(use geometric progression for spacing) 

• Guaranteed to produce valid meshes if original mesh 
is valid thanks to the chain rule 

• For same reason, can calculate Jacobian of 
subelements a priori: quality (at least according to the 
Jacobian) depends on original coarse grid
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Some nice properties
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r = 1 r = 1½ r = 2

• Use of geometric progression allows sequence of 
meshes to be generated



Some drawbacks

• Relies on O-type geometry unless more complex 
strategies are undertaken 

• Relies on validity of coarse grid 

• Mesh quality is dependent on coarse grid
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Jacobian of 
refined prism is a 
scaled version of 
Jacobian of 
original map
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Why does this work?



More complex transforms
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Fig. 3 Construction of the map z in the case of a quadrilateral being split into two triangles.

To demonstrate this point, we first examine the problem of figure 3, which depicts
an example where a quadrilateral is split along a diagonal edge in order to obtain
two triangles. We may again utilise an affine mapping f (x ) = �x in order to map
W

tri
st onto a subdomain f

Wst of W

quad
st . From our previous argument we see that each

component of z = c � f has degree 2P in general if the original quadrilateral is of
order P.

Since z 2 [P(W tri
st )]

2 we must select a sufficiently large polynomial order for the
triangular space so that all terms of the expansion are represented in the resulting
expansion. To guarantee this for a general quadrilateral-to-triangle split, given a
quadrilateral of order P we must generate triangles of order 2P. Then the space
P(W quad

st )⇢P(W tri
st ) and thus z captures all curvature of the original mapping. For

a visual illustration of this, we may represent the polynomial spaces of the triangular
and quadrilateral elements in the form of a Pascal’s triangle as shown in figure 4.

Figure 5 illustrates the problem of using triangular elements which are not suf-
ficiently enriched. On the left, a second-order (P2) quadrilateral is split into two
second-order triangles. Splitting the quadrilateral into two P2 triangles leads to the
generation of degenerate elements. In this case, the symmetry of the deformed ele-
ment coupled with the quadratic order of the triangles means that the diagonal edge
which bisects the quadrilateral is forced to remain straight and thus causes a self-
intersection. We note that in this example, the interior quadrilateral mode x

2
1 x

2
2 is not

Quads to triangles

On the generation of curvilinear meshes through subdivision of isoparametric elements 
D. Moxey, M. Hazan, S. J. Sherwin, J. Peiró, to appear in proceedings of Tetrahedron IV

Prisms to tetrahedra



Why does this work? (1)
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• Write mapping in tensor product of modal functions

• Then pick polynomial space of target subelement 
so that it captures all polynomials of original 
mapping. 
!

• Usually need to enrich subelements to support 
original mapping but depends on transform.
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Why does this work? (2)
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P2

P3/4

In general: order P quad → order 2P triangle 
Curvature only in one direction → order P+1 triangle

18 D. Moxey, M. Hazan, S. J. Sherwin and J. Peiró
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Fig. 12 Pascal’s triangle representing the polynomial spaces of P2 quadrilateral (shaded grey)
and P4 triangular (black outline) elements. The triangle shows that in order to split a general P2

quadrilateral we require P4 triangles so that all terms can be represented in the resulting mapping.

Fig. 13 Qualitative example of the necessary condition for subdivision. A P2 quadrilateral is split
into P2 (left) and P3 (right) triangles. Since a P2 triangular expansion does not capture some of the
terms of the original mapping, an additional order is required to produce valid elements.

enrichment so that the resulting tetrahedra have order 2P and 3P tetrahedra. How-
ever by applying the logic above, if curvature is introduced only into the triangular
faces of the prisms, then it is only necessary to produce order P+1 tetrahedra. Since
visualisation of the Pascal’s triangle structure is more difficult in three dimensions,
this can alternatively be seen from a brief analysis of the prismatic and tetrahedral
spaces. If a linear expansion is used in the homogeneous direction of the prismatic
element (i.e. Q = 1) and P = R then the resulting polynomial space is

Ppri(Wst) = {x

p
1 x

q
2 x

r
3 | 0  p+ r  P, q = 0,1}.

A tetrahedron with equal polynomial order P in each direction has the restriction
on a triple (pqr) that 0  p+ q+ r  P. If q = 1 then we obtain the restriction
0  p + r  P � 1, and so the tetrahedral space at order P does not contain the
prismatic space, leading to possible invalid elements. In order to guarantee validity
of elements we therefore require tetrahedra of order P+1.

Spaces of quad (shaded) 
and triangle (outline)



ONERA M6 wing
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High polynomial order (P = 14)



ONERA M6 wing
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Prisms Tets



y+=5 

7 layers of refinement

Proof of concept



NACA 0012 wing case
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Experimental data at Re ~ 4.5m



NACA 0012 wing case
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Original high order mesh 
P = 5

Apply splitting technique



Streamwise 
vorticity

NACA 0012 wing tip (Re = 1.2M)

Streamlines



NACA 0012 comparisons

• DNS stabilised by using 
spectral vanishing viscosity 
(SVV) at polynomial order 5 

• Wingtip vortex is captured 

• Cut-plane of pressure 
distribution shows good 
agreement with experiment 

• Still need to investigate effects 
of dealiasing on solution field
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Current work: deformation
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What about coarse grid generation?



Current work: deformation
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Utilise linear elasticity equations for displacement u

Modification: add thermal stresses to improve 
robustness so that S = Se + St; simple example:

6 I � JO û 6 Ѝ5S ( , ç(

X J JO û (
�
�

X X5

6U Є 5 5� ,

where T relates to some measure of distortion and T0 is 
the temperature of the stress-free state.



Test case
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• Unstructured triangular mesh 
of circle inside square. 

• Rotate circle until occurrence 
of negative Jacobians. 

• Repeatedly apply equations 
in 1° increments, observe 
maximum angle θmax as a 
function of β.

θ



Test case results
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Conclusions

• High-order methods can be applied to these problems 
and successfully capture essential flow dynamics 

• The isoparametric method is equally applicable in 
other areas, e.g. advection-diffusion problems 

• Still very much a need for high-order mesh generation 
strategies for coarse grid 

• Future: grid deformation for coarse grid with emphasis 
on element quality, anisotropic temperature types
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Thanks for listening!


