An isoparametric approach to high-order curvilinear boundary layer meshing

D. Moxey, M. Hazan, J. Peiró, S. Sherwin Department of Aeronautics, Imperial College London

> ICOSAHOM 2014, Salt Lake City, Utah 23rd June 2014

Overview

- Motivation
- Challenges
- Some results

Motivation

Primary research goal is to investigate challenging external aerodynamics cases:

- High Reynolds numbers
- Complex three-dimensional geometries
- Large resolution requirements
- Transient dynamics

Using DNS + spectral vanishing viscosity

NACA 0012 wing tip

Difficult to capture transient effects with RANS

Nektar++ high-order framework

Framework for spectral(/hp) element method:

- Dimension independent, supports CG/DG/HDG
- Mixed elements (quads/tris, hexes, prisms, tets, pyramids)
- Solvers for (in)compressible Navier-Stokes, advectiondiffusion-reaction, shallow water equations, ...
- Parallelised with MPI, scales up to ~10k cores

http://www.nektar.info/ nektar-users@imperial.ac.uk

Spencer Sherwin

Nektar++ team

Alessandro Bolis

Chris Cantwell

Andrew Comerford

David Moxey

Hui Xu

Rheeda Ali

Paola Alpresa-Gutierrez

Dirk Ekelschot

Jean-Eloi Lombard Gianmarco Mengaldo Yumnah Mohamied

Daniele de Grazia

Rodrigo Moura

Bastien Jordi

Gabriele Rocco

High-order mesh generation

Curving mesh often leads to invalid elements

High-order mesh generation

Boundary layer grids are pretty hard to generate:

- High shear near walls
- First element needs to be of size roughly O(Re⁻²)
- Unfeasible to run with this number of elements in the entire domain and across surface of wall
- Therefore highly-stretched elements required
- Also has to be coarse for high-order to make sense

What if we already have a coarse grid?

Isoparametric mapping

Shape function is a mapping from reference element (parametric coordinates) to mesh element (physical coordinates)

An isoparametric approach to high-order curvilinear boundary-layer meshing D. Moxey, M. Hazan, S. J. Sherwin, J. Peiró, under review in Comp. Meth. Appl. Mech. Eng.

Boundary layer mesh generation

Subdivide the reference element in order to obtain a boundary layer mesh

An isoparametric approach to high-order curvilinear boundary-layer meshing D. Moxey, M. Hazan, S. J. Sherwin, J. Peiró, under review in Comp. Meth. Appl. Mech. Eng.

Some nice properties

- Efficient (no deformation required), relatively easy to implement
- Arbitrarily thin elements can be generated near walls (use geometric progression for spacing)
- Guaranteed to produce valid meshes if original mesh is valid thanks to the chain rule
- For same reason, can calculate Jacobian of subelements *a priori*: quality (at least according to the Jacobian) depends on original coarse grid

Some nice properties

Use of geometric progression allows sequence of meshes to be generated

r = 1

 $r = 1\frac{1}{2}$

Some drawbacks

- Relies on O-type geometry unless more complex strategies are undertaken
- Relies on validity of coarse grid
- Mesh quality is dependent on coarse grid

Why does this work?

Jacobian of refined prism is a scaled version of Jacobian of original map

More complex transforms

Quads to triangles

Prisms to tetrahedra

On the generation of curvilinear meshes through subdivision of isoparametric elements D. Moxey, M. Hazan, S. J. Sherwin, J. Peiró, to appear in proceedings of Tetrahedron IV

Why does this work? (1)

• Write mapping in tensor product of modal functions

$$\chi^{e}_{i}(\xi_{1},\xi_{2}) = \sum_{p,q} (\hat{\chi}^{e}_{i})_{pq} \psi_{p}(\xi_{1}) \psi_{q}(\xi_{2})$$

- Then pick polynomial space of target subelement so that it captures all polynomials of original mapping.
- Usually need to enrich subelements to support original mapping but depends on transform.

Why does this work? (2)

In general: order P quad \rightarrow order 2P triangle Curvature only in one direction \rightarrow order P+1 triangle

ONERA M6 wing

High polynomial order (P = 14)

ONERA M6 wing

20

Prisms

Proof of concept

7 layers of refinement

NACA 0012 wing case

Experimental data at Re ~ 4.5m

NACA 0012 wing case

Original high order mesh P = 5

Apply splitting technique

NACA 0012 wing tip (Re = 1.2M)

Streamlines

Streamwise vorticity

NACA 0012 comparisons

- DNS stabilised by using spectral vanishing viscosity (SVV) at polynomial order 5
- Wingtip vortex is captured
- Cut-plane of pressure distribution shows good agreement with experiment
- Still need to investigate effects of dealiasing on solution field

Current work: deformation

What about coarse grid generation?

Current work: deformation

Utilise linear elasticity equations for displacement ${\boldsymbol{u}}$

$$\nabla \cdot \mathbf{S} + \mathbf{f} = \mathbf{0} \quad \text{in } \Omega \qquad \mathbf{S} = \lambda \text{Tr}(\mathbf{E}) \mathbf{I} + \mu \mathbf{E}$$
$$\mathbf{u} = \mathbf{g} \quad \text{in } \partial \Omega \qquad \mathbf{E} = \frac{1}{2} \left(\nabla \mathbf{u} + \nabla \mathbf{u}^T \right)$$

Modification: add thermal stresses to improve robustness so that $\mathbf{S} = \mathbf{S}_e + \mathbf{S}_t$; simple example:

$$\mathbf{S}_t = \beta (T - T_0) \mathbf{I}$$

where T relates to some measure of distortion and T_0 is the temperature of the stress-free state.

Test case

- Unstructured triangular mesh of circle inside square.
- Rotate circle until occurrence of negative Jacobians.
- Repeatedly apply equations

 in 1° increments, observe
 maximum angle θ_{max} as a
 function of β.

Test case results

P = 6

Conclusions

- High-order methods can be applied to these problems and successfully capture essential flow dynamics
- The isoparametric method is equally applicable in other areas, e.g. advection-diffusion problems
- Still very much a need for high-order mesh generation strategies for coarse grid
- Future: grid deformation for coarse grid with emphasis on element quality, anisotropic temperature types

Thanks for listening!

