An isoparametric approach to high-order curvilinear boundary layer meshing

D. Moxey, M. Hazan, J. Peiró, S. Sherwin
Department of Aeronautics, Imperial College London

ICOSAHOM 2014, Salt Lake City, Utah
23rd June 2014
Overview

• Motivation
• Challenges
• Some results
Motivation

Primary research goal is to investigate challenging external aerodynamics cases:

• High Reynolds numbers
• Complex three-dimensional geometries
• Large resolution requirements
• Transient dynamics

Using DNS + spectral vanishing viscosity
NACA 0012 wing tip

Re = O(10^6)

Difficult to capture transient effects with RANS
Nektar++ high-order framework

Framework for spectral/(hp) element method:

- Dimension independent, supports CG/DG/HDG
- Mixed elements (quads/tris, hexes, prisms, tets, pyramids)
- Solvers for (in)compressible Navier-Stokes, advection-diffusion-reaction, shallow water equations, ...
- Parallelised with MPI, scales up to ~10k cores

http://www.nektar.info/
nektar-users@imperial.ac.uk
Nektar++ team

Alessandro Bolis Chris Cantwell Andrew Comerford David Moxey Hui Xu
Rheeda Ali Paola Alpresa-Gutierrez Dirk Ekelschot Daniele de Grazia Bastien Jordi
Jean-Eloi Lombard Gianmarco Mengaldo Yumnah Mohamied Rodrigo Moura Gabriele Rocco
High-order mesh generation

Curving mesh often leads to invalid elements
Boundary layer grids are pretty hard to generate:

- High shear near walls
- First element needs to be of size roughly $O(Re^{-2})$
- Unfeasible to run with this number of elements in the entire domain and across surface of wall
- Therefore highly-stretched elements required
- Also has to be coarse for high-order to make sense

What if we already have a coarse grid?
Isoparametric mapping

Shape function is a mapping from reference element (parametric coordinates) to mesh element (physical coordinates)

An isoparametric approach to high-order curvilinear boundary-layer meshing
Boundary layer mesh generation

Subdivide the reference element in order to obtain a boundary layer mesh

An isoparametric approach to high-order curvilinear boundary-layer meshing
Some nice properties

- Efficient (no deformation required), relatively easy to implement

- Arbitrarily thin elements can be generated near walls (use geometric progression for spacing)

- Guaranteed to produce valid meshes if original mesh is valid thanks to the chain rule

- For same reason, can calculate Jacobian of subelements *a priori*: quality (at least according to the Jacobian) depends on original coarse grid
Some nice properties

• Use of geometric progression allows sequence of meshes to be generated

\[r = 1 \quad r = 1^{\frac{1}{2}} \quad r = 2 \]
Some drawbacks

- Relies on O-type geometry unless more complex strategies are undertaken
- Relies on validity of coarse grid
- Mesh quality is dependent on coarse grid
Jacobian of refined prism is a scaled version of Jacobian of original map

Why does this work?
More complex transforms

Quads to triangles

Prisms to tetrahedra

On the generation of curvilinear meshes through subdivision of isoparametric elements
Why does this work? (1)

• Write mapping in tensor product of modal functions

\[\chi^\epsilon_i(\xi_1, \xi_2) = \sum_{p,q} (\hat{\chi}^\epsilon_i)_{pq} \psi_p(\xi_1) \psi_q(\xi_2) \]

• Then pick polynomial space of target subelement so that it captures all polynomials of original mapping.

• Usually need to enrich subelements to support original mapping but depends on transform.
Why does this work? (2)

Spaces of quad (shaded) and triangle (outline)

In general: order P quad \rightarrow order $2P$ triangle
Curvature only in one direction \rightarrow order $P+1$ triangle
ONERA M6 wing

High polynomial order (P = 14)
ONERA M6 wing

Prisms

Tets
Proof of concept

7 layers of refinement
NACA 0012 wing case

Experimental data at Re ~ 4.5m
NACA 0012 wing case

Original high order mesh

\[P = 5 \]

Apply splitting technique
NACA 0012 wing tip (Re = 1.2M)

Streamlines

Streamwise vorticity
NACA 0012 comparisons

- DNS stabilised by using spectral vanishing viscosity (SVV) at polynomial order 5
- Wingtip vortex is captured
- Cut-plane of pressure distribution shows good agreement with experiment
- Still need to investigate effects of dealiasing on solution field
Current work: deformation

What about coarse grid generation?
Current work: deformation

Utilise linear elasticity equations for displacement \mathbf{u}

$$\nabla \cdot \mathbf{S} + \mathbf{f} = 0 \quad \text{in } \Omega \quad \mathbf{S} = \lambda \text{Tr}(\mathbf{E}) \mathbf{I} + \mu \mathbf{E}$$

$$\mathbf{u} = \mathbf{g} \quad \text{in } \partial \Omega \quad \mathbf{E} = \frac{1}{2} \left(\nabla \mathbf{u} + \nabla \mathbf{u}^T \right)$$

Modification: add thermal stresses to improve robustness so that $\mathbf{S} = \mathbf{S}_e + \mathbf{S}_t$; simple example:

$$\mathbf{S}_t = \beta (T - T_0) \mathbf{I}$$

where T relates to some measure of distortion and T_0 is the temperature of the stress-free state.
Test case

- Unstructured triangular mesh of circle inside square.
- Rotate circle until occurrence of negative Jacobians.
- Repeatedly apply equations in 1° increments, observe maximum angle θ_{max} as a function of β.
Test case results

$P = 6$
Conclusions

• High-order methods can be applied to these problems and successfully capture essential flow dynamics

• The isoparametric method is equally applicable in other areas, e.g. advection-diffusion problems

• Still very much a need for high-order mesh generation strategies for coarse grid

• Future: grid deformation for coarse grid with emphasis on element quality, anisotropic temperature types
Thanks for listening!