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Overview

• Motivation 

• Nektar++: what is it? 

• Some challenges 

• A few results
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Motivation
Primary research goal is to investigate challenging 
external aerodynamics cases: 

• High Reynolds numbers 

• Complex three-dimensional geometries 

• Large resolution requirements 

• Transient dynamics 

Using DNS + stabilisation
3



NACA 0012 wing tip
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Re = O(106)

Difficult to capture transient effects with RANS



Nektar++ high-order framework
Open source framework for spectral(/hp) element methods:!

• Dimension independent, supports CG/DG/HDG, manifolds 

• Mixed elements (quads/tris, hexes, prisms, tets, pyramids) 

• Solvers for (in)compressible Navier-Stokes, advection-diffusion-
reaction,  

• Parallelised with MPI, scales up to ~10k cores 

• C++, heavily OO, git, cmake, boost + some other dependencies 

http://www.nektar.info/ 
nektar-users@imperial.ac.uk
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What is a spectral/hp element?
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p-type exponential  
accuracy

h-type geometric  
flexibility

Spectral/hp element method

hp finite element - hierarchicalSpectral element method - nodal 
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Spectral/hp elements
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Design

Consider the Helmholtz equation: 

!

Written in weak form we obtain: 

!

Expand in terms of local (per element) or global modes: 
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Symmetry
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Can incorporate domain symmetry if possible: leads to 
wider range of parallelisation opportunities

2D Spectral element mesh

Symmetry

1D Fourier expansion+



Implementation strategies

P. Vos, R. Kirby, S. Sherwin, 
C. Cantwell, S. Sherwin, R. Kirby, P. Kelly, 



Some application areas
• Biological flows 

Y. Mohamied, A. Comerford 

• Cardiac electrophysiology  
C. Cantwell, C. Roney, R. Ali 

• Compressible flow 
D. Moxey, G. Mengaldo, D. de Grazia, D. Ekelschot, R. 
Moura 

• External aerodynamics 
D. Moxey, J.-E. Lombard
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Bioflows
Different time dependent shear metrics and understanding 

how these correlate with the initiation of atherosclerosis



Cardiac electrophysiology



Compressible Flow

T106C turbine blade, Re = 80k

• explicit DG/FR  
• Euler/Navier-Stokes 
• parallel 

• shock capturing 
• variable-p support 
• Adjoint (very new) 

Solver for simulating compressible problems:



Shock capturing 16

(a) Mach number around the NACA 0012 airfoil at

M = 0.8 with ↵ = 1.25�
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(b) Comparison of the pressure coe�cient at the surface

Figure 3.2: Transonic flow (M = 0.8) past a NACA 0012 airfoil at ↵ = 1.25�

tion is plotted together with some isosurfaces to indicate the shock. Figure 3.3(b) depicts, the
sensor distribution within the computational domain is plotted. The sensor is used to detect
the shock and to locally add the di↵usion to avoid numerical oscillations.

(a) Mach distribution plotted together with iso-surfaces

to indicate the position of the shock

(b) Sensor distribution

Figure 3.3: Supersonic flow (M1 = 2) past a 10� wedge

The results are compared with the theoretical results that follow from the oblique shock rela-
tions [1]. According to the oblique shock relations, for a free stream Mach number of M1 = 2.0
and a wedge angle of ✓ = 10�, the shock angle is � = 39� and the Mach number downstream
of the shock is M

d

= 1.64. Similar values where found in the computations within a margin of
2� 3%. However some issues with the outflow boundary conditions where noticed particularly
at the position where the shock leaves the domain. Due to the addition of di↵usion to the
elements that capture the shock, the flow is not inviscid anymore locally within those elements.
The boundary conditions are imposed weakly through the solution of a Riemann solver which

Euler simulation of NACA0012 profile 
Sensor + LDG diffusion



Variable-p

Density Mode distribution

Euler flow over a sphere



External aerodynamics 
NACA0012 case challenges

• Stabilisation at high Reynolds number 

• Mesh generation 

Focus on mesh generation:!

• No self-intersecting elements 

• Curvilinear elements aligning with geometry 

• Deal with boundary layers

22



High-order mesh generation
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Curving mesh often leads to invalid elements



High-order mesh generation
Boundary layer grids are pretty hard to generate: 

• High shear near walls 

• First element needs to be of size roughly O(Re-2) 

• Unfeasible to run with this number of elements in the entire 
domain and across surface of wall 

• Therefore highly-stretched elements required 

• Also has to be coarse for high-order to make sense 
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What if we already have a coarse grid?



Isoparametric mapping

Shape function is a mapping from 
reference element (parametric coordinates) to 

mesh element (physical coordinates)
An isoparametric approach to high-order curvilinear boundary-layer meshing 

D. Moxey, M. Hazan, S. J. Sherwin, J. Peiró, under review in Comp. Meth. Appl. Mech. Eng. 



Boundary layer mesh generation

Subdivide the reference element in order to obtain a 
boundary layer mesh

An isoparametric approach to high-order curvilinear boundary-layer meshing 
D. Moxey, M. Hazan, S. J. Sherwin, J. Peiró, under review in Comp. Meth. Appl. Mech. Eng. 

 Spacing distribution



Some nice properties
• Efficient (no deformation required), relatively easy to 

implement 

• Arbitrarily thin elements can be generated near walls 
(use geometric progression for spacing) 

• Guaranteed to produce valid meshes if original mesh is 
valid thanks to the chain rule 

• For same reason, can calculate Jacobian of 
subelements a priori: quality depends on original 
coarse grid
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Some drawbacks

• Relies on O-type geometry unless more complex 
strategies are undertaken (transition elements) 

• Relies on validity and existence of coarse grid 

• Mesh quality is dependent on coarse grid
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Jacobian of 
refined prism is a 
scaled version of 
Jacobian of 
original map

⇠2 ! R⇠02

⇠02⇠01

⇠03

X̃ e(⇠0)

⇠02 ! 1

R
⇠2

Why does this work?



More complex transforms
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8 D. Moxey, M. Hazan, S. J. Sherwin and J. Peiró
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Fig. 3 Construction of the map z in the case of a quadrilateral being split into two triangles.

To demonstrate this point, we first examine the problem of figure 3, which depicts
an example where a quadrilateral is split along a diagonal edge in order to obtain
two triangles. We may again utilise an affine mapping f (x ) = �x in order to map
W

tri
st onto a subdomain f

Wst of W

quad
st . From our previous argument we see that each

component of z = c � f has degree 2P in general if the original quadrilateral is of
order P.

Since z 2 [P(W tri
st )]

2 we must select a sufficiently large polynomial order for the
triangular space so that all terms of the expansion are represented in the resulting
expansion. To guarantee this for a general quadrilateral-to-triangle split, given a
quadrilateral of order P we must generate triangles of order 2P. Then the space
P(W quad

st )⇢P(W tri
st ) and thus z captures all curvature of the original mapping. For

a visual illustration of this, we may represent the polynomial spaces of the triangular
and quadrilateral elements in the form of a Pascal’s triangle as shown in figure 4.

Figure 5 illustrates the problem of using triangular elements which are not suf-
ficiently enriched. On the left, a second-order (P2) quadrilateral is split into two
second-order triangles. Splitting the quadrilateral into two P2 triangles leads to the
generation of degenerate elements. In this case, the symmetry of the deformed ele-
ment coupled with the quadratic order of the triangles means that the diagonal edge
which bisects the quadrilateral is forced to remain straight and thus causes a self-
intersection. We note that in this example, the interior quadrilateral mode x

2
1 x

2
2 is not

Quads to triangles

On the generation of curvilinear meshes through subdivision of isoparametric elements 
D. Moxey, M. Hazan, S. J. Sherwin, J. Peiró, to appear in proceedings of Tetrahedron IV

Prisms to tetrahedra



Why does this work? (1)
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• Write mapping in tensor product of modal functions

• Then pick polynomial space of target subelement 
so that it captures all polynomials of original 
mapping. 
!

• Usually need to enrich subelements to support 
original mapping but depends on transform.



Why does this work? (2)
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P2

P3/4

In general: order P quad → order 2P triangle 
Curvature only in one direction → order P+1 triangle

18 D. Moxey, M. Hazan, S. J. Sherwin and J. Peiró
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Fig. 12 Pascal’s triangle representing the polynomial spaces of P2 quadrilateral (shaded grey)
and P4 triangular (black outline) elements. The triangle shows that in order to split a general P2

quadrilateral we require P4 triangles so that all terms can be represented in the resulting mapping.

Fig. 13 Qualitative example of the necessary condition for subdivision. A P2 quadrilateral is split
into P2 (left) and P3 (right) triangles. Since a P2 triangular expansion does not capture some of the
terms of the original mapping, an additional order is required to produce valid elements.

enrichment so that the resulting tetrahedra have order 2P and 3P tetrahedra. How-
ever by applying the logic above, if curvature is introduced only into the triangular
faces of the prisms, then it is only necessary to produce order P+1 tetrahedra. Since
visualisation of the Pascal’s triangle structure is more difficult in three dimensions,
this can alternatively be seen from a brief analysis of the prismatic and tetrahedral
spaces. If a linear expansion is used in the homogeneous direction of the prismatic
element (i.e. Q = 1) and P = R then the resulting polynomial space is

Ppri(Wst) = {x

p
1 x

q
2 x

r
3 | 0  p+ r  P, q = 0,1}.

A tetrahedron with equal polynomial order P in each direction has the restriction
on a triple (pqr) that 0  p+ q+ r  P. If q = 1 then we obtain the restriction
0  p + r  P � 1, and so the tetrahedral space at order P does not contain the
prismatic space, leading to possible invalid elements. In order to guarantee validity
of elements we therefore require tetrahedra of order P+1.

Spaces of quad (shaded) 
and triangle (outline)



ONERA M6 wing
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High polynomial order (P = 14)



ONERA M6 wing
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Prisms Tets



y+=5 

7 layers of refinement

Proof of concept



Preprocessing
Many preprocessing techniques: 

• Boundary layer refinement 
• Simplex element generation 
• Surface smoothing 
• Surface extraction 

Different applications have different requirements: 
need flexible approach.



Preprocessing

Input Process Process Output

Nektar++ 
Nektar 
Gmsh 
Tecplot 
StarCCM+ 
PLY 
VTK 
Semtex

High-order 
smoothing

Boundary 
refinement

Nektar++ 
Gmsh 
VTK (linear)

MeshConvert: Utilises Nektar++ libraries with pipeline 
concept: makes preprocessing easier

(in theory)



Current work: deformation
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What about coarse grid generation?



Current work: deformation
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Utilise linear elasticity equations for displacement u

Modification: add thermal stresses to improve 
robustness so that S = Se + St

6 I � JO û 6 Ѝ5S ( , ç(

X J JO û (
�
�

X X5

6U Є 5 5� ,

where T relates to some measure of distortion and T0 is 
the temperature of the stress-free state.



Test case results
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• Unstructured triangular mesh of circle inside square 
• Rotate circle until occurrence of negative Jacobians
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NACA 0012 wing case
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Experimental data at Re ~ 4.5m



NACA 0012 wing case
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Original high order mesh Apply splitting technique



Navier-Stokes Solver
⇥tu + N(u) = �⇥p + �⇥2uNavier–Stokes:

Velocity correction scheme (aka stiffly stable): 
Orszag, Israeli, Deville (90), Karnaidakis Israeli, Orszag (1991), Guermond & Shen (2003)

Advection: u⇥ = �
J�

q=1

�qun�q ��t
J�1�

q=0

⇥qN(un�q)

Pressure 

Poisson: ⇥2pn+1 =

1
�t
⇥ · u�

Helmholtz: ⇥2un+1 � �0

⇥�t
un+1 = � u�

⇥�t
+

1
⇥
⇥pn+1

u ·⇥u

�⇤2u�⇤p = f
⇤ · u = 0

un

un+1

n = n + 1

u�
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Key aspects for simulation

• Stabilisation of numerics: Spectral Vanishing 
Viscosity is a temporal smoothing/filtering 

• Tadmor (89); Maday, Kaber & Tadmor (93). 

• Used by Pasquetti, Stiller for high-Re simulation. 

• Also require dealiasing/consistent integration of 
non-linear terms.
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Spectral Vanishing Viscosity
Figure 2 (left) shows the solution with no SVV; figure 2 (centre) shows the solution with SVV
(Pcut = 7, ϵSV V = 0.1); and figure 2 (right) shows the solution with SVV (Pcut = 3, ϵSV V =
0.1).

Fig. 2. Standard diffusion to time T = 0.1 (left); standard diffusion with SVV Pcut = 7, ϵSV V = 0.1
(centre); and standard diffusion with SVV Pcut = 3, ϵSV V = 0.1 (right)

From this example we see that the SVV dissipation added to the high mode numbers with
respect to the spectral element discretisation does indeed yield dissipation at the global high
wavenumber scales of the solution (as exhibited in Figure 2 (centre and right)). Decreasing
the SVV wavenumber cutoff (Pcut) from eight to four produces further dissipation of the
high wavenumber features within the solution.

3 Incorporation of SVV into the Navier-Stokes Equations

In this section we discuss how SVV can be incorporated into a velocity-correction splitting
scheme to discretise the incompressible Navier-Stokes equations [17]. The incompressible
Navier-Stokes equations can be written as:

∂u

∂t
+ N(u) =−

1

ρ
∇p + νL(u) (20)

N(u) = (u ·∇)u (21)

L(u) =∇2u (22)

The temporal discretisation adopted in this work is a projection scheme, based on backwards
differencing in time. As originally described [17], this was characterised as an operator-
splitting scheme, but more recently [18] it has been shown that the method is one of a class
of velocity-correction projection schemes.

The projection scheme requires the solution of a pressure Poisson equation to (approximately)
maintain solenoidality of the velocity. Backwards time differencing is used to approximate a
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No SVV Pcut = 3,

✏SV V = 0.1
Pcut = 7,

✏SV V = 0.1
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R. Kirby, S. Sherwin, Comp. Meth. Appl. Mech. Eng., 2006



Streamwise 
vorticity

NACA 0012 wing tip (Re = 1.2M)

Streamlines



NACA 0012 comparisons

• DNS stabilised by using 
spectral vanishing viscosity 
(SVV) at polynomial order 5 

• Wingtip vortex is captured 

• Cut-plane of pressure 
distribution shows good 
agreement with experiment 

• Still need to investigate effects 
of dealiasing on solution field
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Conclusions
• High-order methods can be applied to these 

problems and successfully capture essential flow 
dynamics 

• Still a need for high-order mesh generation 
strategies for coarse grid 

• Future: grid deformation for coarse grid with 
emphasis on element quality 

http://www.nektar.info/
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Thanks for listening!


