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In this talk, we introduce two techniques designed to aid the
implementation of high-order methods for industrial application:

o High-order mesh generation: generating curvilinear meshes for
complex geometries, and a boundary layer refinement technique.

@ h-to-p efficiency: a hybrid approach to operator evaluation to
increase computational efficiency.
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High-order mesh generation (p-mesh)
Steps:
© CAD boundary representation (B-Rep).
© Mesh of linear elements.
© Mesh of high-order elements.

TN

Linear mesh High-order mesh
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Producing meshes for high-Re simulations

Viscous flows — boundary layer around walls.

@ From the surface triangulation, we generate a prismatic boundary
layer (better mesh quality).

@ Rest of the volume is constructed using unstructured tetrahedra.

For high Reynolds number simulations:
@ Require an extremely thin boundary layer.

@ Must not contain invalid elements.

We introduce a method to refine a mesh with existing prismatic
boundary layer to produce a valid prismatic or tetrahedralised mesh.
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Boundary layer refinement
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Begin with reference element (2.
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Boundary layer refinement
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Apply mapping x€ : Qg — Q€ to obtain Q°.
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Boundary layer refinement

Split Qg into subelements according to a spacing function f(&2).
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Boundary layer refinement

Apply x€ to split Q¢ into curved subelements.
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Boundary layer refinement
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To get tetrahedral mesh, split each subelement of Qg
into tetrahedra and apply x€.
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Boundary layer refinement
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To get tetrahedral mesh, split each subelement of Qg
into tetrahedra and apply x€.
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Example: ONERA M6 Wing

Boundary layer thickness: y* ~ 10 for Re = 10°.
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Example: ONERA M6 Wing

Boundary layer thickness: y* = 10 for Re = 10°.
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Boundary layer refinement

Features:
o Easy to implement: mapping x€ is used for spectral element
method.
@ Produces valid meshes so long as det(x¢) > 0.
@ Any spacing function f(&2) can be used to determine sizes of
subelements.
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Boundary layer refinement

Features:
o Easy to implement: mapping x€ is used for spectral element
method.
@ Produces valid meshes so long as det(x¢) > 0.
@ Any spacing function f(&2) can be used to determine sizes of
subelements.
Limitation:
@ Assumes an existing valid coarse prismatic mesh.
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Operator evaluation strategies

Consider the matrix resulting from the discretisation of an operator
on a mesh of elements.

@ Assume C° continuity of a function approximated on the mesh.

@ This can imposed through establishing equality of coefficients
representing connected vertices/edges/faces.
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Operator evaluation strategies

Consider the matrix resulting from the discretisation of an operator
on a mesh of elements.

@ Assume C° continuity of a function approximated on the mesh.
@ This can imposed through establishing equality of coefficients
representing connected vertices/edges/faces.

There are two well-known operator strategies which can be employed:

Local assembly Global assembly
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Operator evaluation strategies

Which is better? Depends on:
@ Polynomial order;
@ Architecture (CPU/GPU);

@ Dimensionality of mesh.

Generally:
@ low order (P = 1,2) — global assembly

@ high-order — local assembly (or sum-factorisation...)

Question: Is there a more optimal strategy which combines a
mixture of the two approaches?
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Hybrid assembly

Ql QZ Q3 Q4

Start with a mesh, for example eight quadrilaterals.
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Hybrid assembly

Choose a partition of the mesh.
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Hybrid assembly

ossss (56878
Q1o Q34 g.g :

Perform a ‘global’ assembly for each partition to create a patch,
and constrct a ‘hybrid* block matrix.
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Why do a hybrid approach?

With hybrid assembly, we can target and optimise for platform
specific quantities; e.g. processor cache size.

Xeon X5660 CPU i7 2640M CPU

+—— OpenBLAS | +— OpenBLAS

— handBLAS +— handBLAS
0.0 1 | , , \ 0.0 1 1 . \ .
50 100 150 200 250 300 0 50 100 150 200 250 300
Matrix rank Matrix rank

For a given polynomial order we target patch and matrix sizes which
optimise CPU throughput using either OpenBLAS or a hand-coded
routine.
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Some benchmarks
Timings for matrix-vector multiplcation representing an operator on a

1024 triangle mesh were performed.

The following figure shows the optimal techniques for a variety of
patch sizes and polynomial orders.
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h-to-p efficiency

Generally these timings suggest that:
o Low-order — global assembly (1 patch);
@ High-order — local assembly (Ng patches);

@ For middle-sized polynomial orders there is some more optimal
choice of patch size.
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h-to-p efficiency

Generally these timings suggest that:
o Low-order — global assembly (1 patch);
@ High-order — local assembly (Ng patches);

@ For middle-sized polynomial orders there is some more optimal
choice of patch size.

Choosing these parameters manually is difficult. libFEMpp:
@ will be a platform- and code-independent library;

@ combine system configuration and profiling data to produce
optimal patch sizes for a given input mesh;

@ is currently under development.
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Conclusions

Mesh generation:

@ Generation of arbitrary high-order meshes is a viable goal for
complex geometries.

@ Use of refinement technique aides in the generation of boundary
layer meshes for aeronautically realistic Reynolds numbers.

h-to-p efficiency:
o Careful choice of operator evaluation strategies is essential for
high-order elements.

@ Hybrid assembly demonstrates an approach whereby this process
can be automated and tuned for individual architectures.
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