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Introduction

Understanding instability in fluid flow and, specifically, the

transition to turbulence are well-known outstanding problems in

fluid dynamics (see Reynolds, 1883).

Pipe flow is geometrically simple, but exhibits complex

transitional behaviour.

This is dependent upon the dimensionless Reynolds number:

Re =
UD

ν

However, the critical Reynolds number Rec , above which

turbulence becomes sustained, remains elusive.

Best guess: Rec ∼ O(2,000)
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Large-scale structures

For 1,700 ≤ Re ≤ 2,300, introducing a disturbance to a laminar

fluid results in the formation of puffs.

They are small pockets of turbulence which co-exist with laminar

flow and are important in understanding transitional behaviour.

This puff was recorded at Re = 2,250 and has length L ≈ 25D,

so larger pipe lengths are needed to capture their behaviour ⇒
more computer effort needed.

Questions:

How do puffs behave?

What role do they play in the transition process?
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Puff decay

Recent attempts to find Rec have studied the decay of puffs for

Re ≤ 2,000.

Decay is a stochastic process. We consider the survival function

S(t) = P(puff does not decay for 0 ≤ t ′ ≤ t)

To identify the distribution of S :

a simulation starts with an isolated puff;

observe the decay time for this puff (if any).

Decay occurs according to an exponential distribution:

decay is memoryless;

puffs have mean lifetime τ .

Unfortunately, τ remains finite for any finite Re [Avila et al.,

2010].



Introduction Splitting lifetimes Conclusions

Puff decay

Recent attempts to find Rec have studied the decay of puffs for

Re ≤ 2,000.

Decay is a stochastic process. We consider the survival function

S(t) = P(puff does not decay for 0 ≤ t ′ ≤ t)

To identify the distribution of S :

a simulation starts with an isolated puff;

observe the decay time for this puff (if any).

Decay occurs according to an exponential distribution:

decay is memoryless;

puffs have mean lifetime τ .

Unfortunately, τ remains finite for any finite Re [Avila et al.,

2010].



Introduction Splitting lifetimes Conclusions

Puff decay

Recent attempts to find Rec have studied the decay of puffs for

Re ≤ 2,000.

Decay is a stochastic process. We consider the survival function

S(t) = P(puff does not decay for 0 ≤ t ′ ≤ t)

To identify the distribution of S :

a simulation starts with an isolated puff;

observe the decay time for this puff (if any).

Decay occurs according to an exponential distribution:

decay is memoryless;

puffs have mean lifetime τ .

Unfortunately, τ remains finite for any finite Re [Avila et al.,

2010].



Puff splitting
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Puff splitting

These snapshots of streamwise vorticity ∇× u show the splitting

process in action (courtesy of Marc Avila).
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Spatio-temporal intermittency

Many simple stochastic systems exhibit similar intermittent

properties; for example, directed bond percolation.

p < pc

p = pc p > pc
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Splitting statistics

Observing puff splitting statistically, we calculate survival as

S(t) = 1− P(t) = P(puff does not split for 0 ≤ t ′ ≤ t)
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Lifetime statistics

From each of these distributions, we see that

S(t) = exp(−(t − t0)/τ)

Like decay, splitting is a memoryless process.

t0 is the initial formation time – difficult to determine explicitly,

but from observations we see that t0 ≤ 170.

τ is the mean splitting time, and is a function of Re – estimated

using a maximum likelihood estimator (MLE).

By varying Re, we calculate the density function and thus obtain τ

as a function of Re.



Distribution of lifetimes
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Conclusions

Rec = 2,040± 10.

The critical point has been difficult to determine because of the

complex spatial coupling and the very long timescales involved.

It denotes a phase transition from states which are more

probable to decay to those which are more likely to split.

Further work:

Determining the underlying mechanism for splitting.

Applying these techniques to other shear flows.

Studies to determine an exact value for t0.
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