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Introduction

Understanding instability in fluid flow and, specifically, the

transition to turbulence are well-known outstanding problems in

fluid dynamics (see Reynolds, 1883).

The simple geometry of pipe flow provides a compelling

environment to study transition.

Theoretically very complex; therefore ideal to study numerically.

Transition depends on the dimensionless Reynolds number:

Re =
UD

ν

However, nobody thus far has been able to identify Rec ; the

value beyond which turbulence becomes sustained.

Best guess: Rec ∼ O(2,000)
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Large-scale structures

For 1,900 ≤ Re ≤ 2,300, introducing a disturbance to a laminar

fluid results in the formation of puffs.

They are small pockets of turbulence which co-exist with laminar

flow and are important in understanding transitional behaviour.

This puff was recorded at Re = 2250 and has length L ≈ 25D,

so larger pipe lengths are needed to capture their behaviour ⇒
more computer effort needed.

Questions:

How do puffs behave?

What role do they play in the transition process?
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Standard methods

To simulate the fluid, we perform a direct numerical simulation

(DNS) of the underlying Navier-Stokes equations

∂tu + (u · ∇)u = −∇p + ν∇2u + f .

For increased accuracy, spectral-type schemes are preferred to

finite-difference approaches.

In these schemes, we approximate the solution fields by

uδ(x , t) =

N−1∑
k=0

ûk(t)φk(x)

where φk are referred to as modes.

A typical spectral scheme for pipe flow uses:

Cylindrical polar co-ordinate system;

Fourier collocation points in azimuthal and axial directions;

Chebyshev in radial direction.
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Numerical Methods

Our simulations use an existing open-source code Semtex, which

decomposes the domain Ω into quadrilateral elements Ωe so

Ω =

Nel⋃
e=1

Ωe

Each element has a set of local basis functions; generally

polynomials of order P.

These are used to reconstruct the global modes φk .

Originally designed as a 2D code; third dimension uses a Fourier

pseudo-spectral method ⇒ periodicity in third dimension.

This scheme allows for ‘nicer’ placement of nodal points: the

typical scheme leads to a build-up of points around the axis.

DNS is performed using a high-order splitting scheme of O(∆t2)
or O(∆t3) using high-order pressure boundary condition at walls.
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û21

Ωst
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û20

−1 1

χ2
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Resolution requirements

Here we use Cartesian co-ordinates, so that 2D circular

cross-sections use spectral element meshes.

Element edges can be curved using iso-parametric projections to

better match the domain.
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Computing requirements

For L = 25D pipe, need 384-512 axial nodes for Re ≤ 3000.

In the scheme here, we parallelise over the axial direction.

Pseudo-spectral scheme in axial direction ⇒ parallel FFT.

P4P3P2P1

transpose transpose

Transpose requires all-to-all communication ⇒ sad face.
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Simulations

The simulation starts with uniform turbulence using a short run

at Re = 5,000. We then reduce Re as follows:

5,000→ 4,000→ 3,000 500 time units

2,800→ 2,600 600 time units

2,500→ 2,450→ 2,400→ 2,350→ · · · 2,000 time units

Parameters for the simulations were:

L 40πD ≈ 125D

Nx 2,048

Nproc 256

Nel 64

P 10

Re 2,250 ≤ Re ≤ 2,800

U 1

∆t 2× 10−3
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History Plots

Field data is too large to record regularly. We measure history

data: every 0.1 time units, sample v and p from points along

the pipe axis.

x

y

z
x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

∆x

For the velocity field u = (u, v ,w), we construct the quantity

q(x , t) =
√

v2 + w2
∣∣∣
(x ,y=0,z=0,t)

=
√

2Etransverse

and then change to a moving frame of reference by the

transformation

q(x , t)→ q(x − Ut, t).
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Spatio-temporal intermittency

Many simple stochastic systems exhibit intermittency over time. A

particularly famous example is that of directed bond percolation:

p < pc p = pc p > pc
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Puff decay

Most recent attempts to find Rec have done so by considering

the phenomenon of puff decay for values of Re below 2,000.

Decay is a stochastic process. We consider the survival function

S(t) = P(puff does not decay for 0 ≤ t ′ ≤ t)

To do this, we run a range of simulations to obtain samples

from this distribution.

Each starts with an isolated puff in a domain of length L = 50D.

We then record the time at which the puff decays, if any.

It turns out that decay is a memoryless process, and puffs decay

with some mean lifetime τ .

Unfortunately, τ remains finite for any finite Re – this suggests

that turbulence is perhaps always transient.
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Puff splitting

Puff decay is purely temporal; no complex spatial dynamics are

incorporated.

The space-time figures show many examples of complex

spatio-temporal intermittency.

In the 125D pipe the the analogous process to decay is splitting.

Obvious question: why and how do puffs split?

This is hard! Instead, try to answer:

are there any laws regarding splitting which we can derive easily?

what is the underlying mechanism?

It turns out that puff splitting is also a stochastic process.

Therefore we must calculate distributions:

S(t) = 1− P(t) = P(puff does not split for 0 ≤ t ′ ≤ t)
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Puff splitting

These snapshots of streamwise vorticity ∇× u show the splitting

process in action.
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Probability density functions
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Lifetime statistics

From each of these distributions, we see that

S(t) = exp(−(t − t0)/τ)

Like decay, splitting is a memoryless process.

t0 is the initial formation time.

It is hard to determine explicity, but from observations we see

that t0 ≤ 170.

τ is the mean splitting time, and is a function of Re.

By varying Re, we calculate the density function and thus obtain the

value of τ .
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Distribution of lifetimes
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Conclusions

Rec = 2,040± 10.

Why did it take so long?

The critical point has been hard to find because of the complex

spatial coupling and the very long timescales involved.

It represents a phase transition from states which are more

probable to decay to those which are more likely to split.

Further work:

Further studies to determine an exact value for t0.

Determining the underlying mechanism for splitting.
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