Investigating pipe flow using a spectral element method

Studying large length scale structures in pipe flow

David Moxey¹, Dwight Barkley

Mathematics Institute University of Warwick

CSC@Lunch Seminar Series, 14th June 2010

¹D.C.Moxey@warwick.ac.uk

Introduction		
••		

Introduction

- Understanding instability in fluid flow and, specifically, the transition to turbulence are well-known outstanding problems in fluid dynamics (see Reynolds, 1883).
- The simple geometry of pipe flow provides a compelling environment to study transition.
- Theoretical approach is extremely complex; this problem is an ideal candidate for numerical simulation.
- Generally study of the transition problem has concentrated on investgations of **laminar to turbulent** flow.
- We wish to classify states found in the transition from **turbulent to laminar** flow.
- In particular, we are interested in discovering states involving **laminar-turbulent co-existance**.
- Thanks to CSC for computer usage in particular the IBM cluster.

Introduction		
00		

Large-scale structures

- For $1900 \le \text{Re} \le 2300$, introducing a disturbance to a laminar fluid results in the formation of *puffs*.
- They are small areas of intense turbulence which co-exist with laminar flow; may be important in understanding transitional behaviour.

Introduction		
00		

Large-scale structures

- For $1900 \le \text{Re} \le 2300$, introducing a disturbance to a laminar fluid results in the formation of *puffs*.
- They are small areas of intense turbulence which co-exist with laminar flow; may be important in understanding transitional behaviour.
- $y = 0.5 \\ -0.5$
- This puff was recorded at Re = 2250 and has length $L \approx 25D$, so larger pipe lengths are needed to capture their behaviour.

Introduction		
00		

Large-scale structures

- For $1900 \le \text{Re} \le 2300$, introducing a disturbance to a laminar fluid results in the formation of *puffs*.
- They are small areas of intense turbulence which co-exist with laminar flow; may be important in understanding transitional behaviour.
- $y = 0.5 \\ -0.5$
- This puff was recorded at Re = 2250 and has length $L \approx 25D$, so larger pipe lengths are needed to capture their behaviour.
- Questions:
 - Do puffs occur naturally in the transition from turbulent to laminar flow?
 - What other states and transitions can we find?

		Conclusions
00 00000 000000 0	00	0

Standard methods

- To study the transition problem we will perform a direct numerical simulation (DNS) of the underlying Navier-Stokes equations.
- For increased accuracy, spectral-type schemes are preferred to finite-difference approaches.
- Typical spectral scheme:
 - Cylindrical polar co-ordinate system;
 - Fourier collocation points in azimuthal and axial directions;
 - Chebyshev in radial direction.

	Numerics		
00	●000	000000	0

Standard methods

- To study the transition problem we will perform a direct numerical simulation (DNS) of the underlying Navier-Stokes equations.
- For increased accuracy, spectral-type schemes are preferred to finite-difference approaches.
- Typical spectral scheme:
 - Cylindrical polar co-ordinate system;
 - Fourier collocation points in azimuthal and axial directions;
 - Chebyshev in radial direction.
- Efficient through use of FFT.
- Leads to a large build-up of nodal points at the origin.

	Numerics		
00	0000	000000	0

Numerical Methods

- Our simulations use an existing open-source DNS code, Semtex [Blackburn & Sherwin, *J. Comput. Phys.*, 2004].
 - Designed as a 2D spectral element code.
 - Domain broken down into quadrilateral elements.
 - Each element has a set of local basis functions; generally polynomials of order *P*.
 - Third (homogeneous) dimension uses a Fourier pseudo-spectral method ⇒ periodicity in third dimension.
 - This scheme allows for 'nicer' placement of nodal points.
- DNS is performed using a high-order splitting scheme of $O(\Delta t^2)$ or $O(\Delta t^3)$ using high-order pressure boundary condition at walls.
- Also supports both Cartesian and polar co-ordinate systems.

	Numerics		
00	0000	000000	0

• Here we use Cartesian co-ordinates, so that 2D circular cross-sections use spectral element meshes.

	Numerics		
00	0000	000000	0

- Here we use Cartesian co-ordinates, so that 2D circular cross-sections use spectral element meshes.
- Element edges can be curved using iso-parametric projections to better match the domain.

	Numerics		
00	0000	000000	0

- Here we use Cartesian co-ordinates, so that 2D circular cross-sections use spectral element meshes.
- Element edges can be curved using iso-parametric projections to better match the domain.

$$N_r = 40, N_{\theta} = 46$$

- Here we use Cartesian co-ordinates, so that 2D circular cross-sections use spectral element meshes.
- Element edges can be curved using iso-parametric projections to better match the domain.

- Here we use Cartesian co-ordinates, so that 2D circular cross-sections use spectral element meshes.
- Element edges can be curved using iso-parametric projections to better match the domain.

	Numerics		
00	0000	000000	0

Computing requirements

- For L = 25D pipe, need 384-512 axial nodes for $\text{Re} \leq 3000$.
- In the scheme here, we parallelise over the axial direction.
- Pseudo-spectral scheme in axial direction \Rightarrow parallel FFT.

	Numerics		
00	0000	000000	0

Computing requirements

- For L = 25D pipe, need 384-512 axial nodes for $\text{Re} \leq 3000$.
- In the scheme here, we parallelise over the axial direction.
- Pseudo-spectral scheme in axial direction \Rightarrow parallel FFT.

	Numerics		
00	0000	000000	0

Computing requirements

- For L = 25D pipe, need 384-512 axial nodes for $\text{Re} \leq 3000$.
- In the scheme here, we parallelise over the axial direction.
- Pseudo-spectral scheme in axial direction \Rightarrow parallel FFT.

• Transpose requires all-to-all communication.

	Results	
	●00000	

Simulations

• Parameters for the simulations were:

L	$40\pi D \approx 125D$
N _x	2048
N _{proc}	256
N _{el}	64
Р	12
Re	$2250 \le \mathrm{Re} \le 2800$
Δt	2×10^{-3}

• The simulation is started with uniform turbulence using a short run at $\mathrm{Re} = 5000$ with increased resolution. We then reduce Re as follows:

	Results 0●0000	

History Plots

• Field data is too large to record regularly. We measure *history data*: every 0.1 time units, sample *v* and *p* from points along the pipe axis.

	Results 0●0000	

History Plots

• Field data is too large to record regularly. We measure *history data*: every 0.1 time units, sample **v** and *p* from points along the pipe axis.

• For the velocity field u = (u, v, w), we construct the quantity

$$q(z, t) = \sqrt{v^2 + w^2}\Big|_{(x, y=0, z=0, t)} = \sqrt{2E_{\text{transverse}}}$$

and then change to a moving frame of reference by the transformation

$$q(x, t) \rightarrow q(x - U_B t, t).$$

ng a

		Results	
00	0000	000000	0

Domain Expansion

- Space-time plots show that puffs split apart often in the Re = 2050 case, but very little at Re = 2000. Is this natural behaviour of Navier-Stokes?
- To answer the question, we consider a puff placed in a pipe of length L = 25D.
- Then we expand the domain every 500 time units by L = 5D until we reach L = 100D.
- *N_x* is increased with *L* so that the domain remains correctly resolved.
- This was done for two separate simulations at both ${
 m Re}=2000$ and ${
 m Re}=2050$ using the same initial condition.
- Again we plot the history data with the quantity q.

SQ P

SQ P

Introduction	Numerics	Results	Conclusions
oo	0000	000000	

• High performance computing can be used to parallelise high-order spectral methods.

	Conclusions
	•

- High performance computing can be used to parallelise high-order spectral methods.
- Space-time plots reveal a general picture invovling spontaneous appearance of puff states in transition from turbulence; also see natural appearance of trains of puffs.

	Conclusions
	•

- High performance computing can be used to parallelise high-order spectral methods.
- Space-time plots reveal a general picture invovling spontaneous appearance of puff states in transition from turbulence; also see natural appearance of trains of puffs.
- Uniformly turbulent pipe flow undergoes a bifurcation at ${\rm Re}_2 \approx 2600$ to intermittent dynamics.

		Conclusions
0000	000000	•

- High performance computing can be used to parallelise high-order spectral methods.
- Space-time plots reveal a general picture invovling spontaneous appearance of puff states in transition from turbulence; also see natural appearance of trains of puffs.
- Uniformly turbulent pipe flow undergoes a bifurcation at ${\rm Re}_2 \approx 2600$ to intermittent dynamics.
- As $\rm Re$ is reduced below $\rm Re_1\approx 2300,$ domain expansion simulations show a transition from localised to intermittent turbulence.

		Conclusions
0000	000000	•

- High performance computing can be used to parallelise high-order spectral methods.
- Space-time plots reveal a general picture invovling spontaneous appearance of puff states in transition from turbulence; also see natural appearance of trains of puffs.
- Uniformly turbulent pipe flow undergoes a bifurcation at ${\rm Re}_2 \approx 2600$ to intermittent dynamics.
- As $\rm Re$ is reduced below $\rm Re_1\approx 2300,$ domain expansion simulations show a transition from localised to intermittent turbulence.
- Future work:
 - Build up probability density function for puff splitting.

		Conclusions
0000	000000	•

- High performance computing can be used to parallelise high-order spectral methods.
- Space-time plots reveal a general picture invovling spontaneous appearance of puff states in transition from turbulence; also see natural appearance of trains of puffs.
- Uniformly turbulent pipe flow undergoes a bifurcation at ${\rm Re}_2 \approx 2600$ to intermittent dynamics.
- As $\rm Re$ is reduced below $\rm Re_1\approx 2300,$ domain expansion simulations show a transition from localised to intermittent turbulence.
- Future work:
 - Build up probability density function for puff splitting.
 - Further investigate mechanisms for transition at Re_1 and Re_2 .