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Introduction

Understanding instability in fluid flow and, specifically, the

transition to turbulence are well-known outstanding problems in

fluid dynamics (see Reynolds, 1883).

The simple geometry of pipe flow provides a compelling

environment to study transition.

Theoretical approach is extremely complex; this problem is an

ideal candidate for numerical simulation.

Generally study of the transition problem has concentrated on

investgations of laminar to turbulent flow.

We wish to classify states found in the transition from turbulent

to laminar flow.

In particular, we are interested in discovering states involving

laminar-turbulent co-existance.

Thanks to CSC for computer usage – in particular the IBM

cluster.
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Large-scale structures

For 1900 ≤ Re ≤ 2300, introducing a disturbance to a laminar

fluid results in the formation of puffs.

They are small areas of intense turbulence which co-exist with

laminar flow; may be important in understanding transitional

behaviour.

This puff was recorded at Re = 2250 and has length L ≈ 25D,

so larger pipe lengths are needed to capture their behaviour.

Questions:

Do puffs occur naturally in the transition from turbulent to

laminar flow?

What other states and transitions can we find?
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Standard methods

To study the transition problem we will perform a direct

numerical simulation (DNS) of the underlying Navier-Stokes

equations.

For increased accuracy, spectral-type schemes are preferred to

finite-difference approaches.

Typical spectral scheme:

Cylindrical polar co-ordinate system;

Fourier collocation points in azimuthal and axial directions;

Chebyshev in radial direction.

Efficient through use of FFT.

Leads to a large build-up of nodal points at the origin.
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Numerical Methods

Our simulations use an existing open-source DNS code, Semtex
[Blackburn & Sherwin, J. Comput. Phys., 2004].

Designed as a 2D spectral element code.

Domain broken down into quadrilateral elements.

Each element has a set of local basis functions; generally

polynomials of order P.

Third (homogeneous) dimension uses a Fourier pseudo-spectral

method ⇒ periodicity in third dimension.

This scheme allows for ‘nicer’ placement of nodal points.

DNS is performed using a high-order splitting scheme of O(∆t2)
or O(∆t3) using high-order pressure boundary condition at walls.

Also supports both Cartesian and polar co-ordinate systems.
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Resolution requirements

Here we use Cartesian co-ordinates, so that 2D circular

cross-sections use spectral element meshes.

Element edges can be curved using iso-parametric projections to

better match the domain.
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Computing requirements

For L = 25D pipe, need 384-512 axial nodes for Re ≤ 3000.

In the scheme here, we parallelise over the axial direction.

Pseudo-spectral scheme in axial direction ⇒ parallel FFT.

P4P3P2P1

transpose transpose

Transpose requires all-to-all communication.
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Simulations

Parameters for the simulations were:

L 40πD ≈ 125D

Nx 2048

Nproc 256

Nel 64

P 12

Re 2250 ≤ Re ≤ 2800

∆t 2× 10−3

The simulation is started with uniform turbulence using a short

run at Re = 5000 with increased resolution. We then reduce Re

as follows:

5000→ 4000→ 3000 500 time units

2800→ 2600 600 time units

2500→ 2450→ 2400→ 2350→ · · · 2000 time units
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History Plots

Field data is too large to record regularly. We measure history

data: every 0.1 time units, sample v and p from points along

the pipe axis.
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∆x

For the velocity field u = (u, v ,w), we construct the quantity

q(z , t) =
√

v2 + w2
∣∣∣
(x ,y=0,z=0,t)

=
√

2Etransverse

and then change to a moving frame of reference by the

transformation

q(x , t)→ q(x − UBt, t).
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Domain Expansion

Space-time plots show that puffs split apart often in the

Re = 2050 case, but very little at Re = 2000. Is this natural

behaviour of Navier-Stokes?

To answer the question, we consider a puff placed in a pipe of

length L = 25D.

Then we expand the domain every 500 time units by L = 5D

until we reach L = 100D.

Nx is increased with L so that the domain remains correctly

resolved.

This was done for two separate simulations at both Re = 2000

and Re = 2050 using the same initial condition.

Again we plot the history data with the quantity q.
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Conclusions

High performance computing can be used to parallelise

high-order spectral methods.

Space-time plots reveal a general picture invovling spontaneous

appearance of puff states in transition from turbulence; also see

natural appearance of trains of puffs.

Uniformly turbulent pipe flow undergoes a bifurcation at

Re2 ≈ 2600 to intermittent dynamics.

As Re is reduced below Re1 ≈ 2300, domain expansion

simulations show a transition from localised to intermittent

turbulence.

Future work:

Build up probability density function for puff splitting.

Further investigate mechanisms for transition at Re1 and Re2.
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