	Results	Conclusions

Numerical studies of the transition to turbulence in long pipes Studying large length scale structures

David Moxey¹, Dwight Barkley

Mathematics Institute University of Warwick

EPSRC Symposium Workshop on Computational Fluid Dynamics 3rd September 2009

¹D.C.Moxey@warwick.ac.uk

Introduction		
••		

Introduction

- Understanding instability in fluid flow and, specifically, the transition to turbulence are well-known outstanding problems in fluid dynamics.
- Pipe flow provides an ideal setting to study transition due to the simple geometry of the problem.
- Generally study of the transition problem has concentrated on investgations of **laminar to turbulent** flow. We wish to classify states found in the transition from **turbulent to laminar** flow.
- In particular, we are interested in discovering states involving **laminar-turbulent co-existance**.
- This talk outlines results that we have obtained from DNS of the pipe flow problem at transitional Reynolds numbers.

Introduction		
0•		

Large-scale structures

- For $1900 \le \text{Re} \le 2200$, introducing a disturbance to a laminar fluid results in the formation of *puffs*.
- They are small areas of intense turbulence which co-exist with laminar flow; may be important in understanding transitional behaviour.

Introduction		
00		

Large-scale structures

- For $1900 \le \text{Re} \le 2200$, introducing a disturbance to a laminar fluid results in the formation of *puffs*.
- They are small areas of intense turbulence which co-exist with laminar flow; may be important in understanding transitional behaviour.
- - This puff was recorded at Re = 2000 and has length $L \approx 25D$, so larger pipe lengths are needed to capture their behaviour.

Introduction		
00		

Large-scale structures

- For $1900 \le \text{Re} \le 2200$, introducing a disturbance to a laminar fluid results in the formation of *puffs*.
- They are small areas of intense turbulence which co-exist with laminar flow; may be important in understanding transitional behaviour.
- y = 0.5
 - This puff was recorded at Re = 2000 and has length $L \approx 25D$, so larger pipe lengths are needed to capture their behaviour.

• Questions:

- Do puffs occur naturally in the transition from turbulent to laminar flow?
- What other states and transitions can we find?

Numerics	
0000	

Numerical Methods

- Our simulations use an existing open-source DNS code, Semtex [Blackburn & Sherwin, *J. Comput. Phys.*, 2004].
- Semtex is specifically a 2D spectral element code, but is extended to three dimensions by using a Fourier pseudo-spectral method ⇒ periodicity in third dimension.
- DNS is performed using a high-order splitting scheme incorporating high-order pressure boundary condition at walls.
- Can be used under both Cartesian and cylindrical co-ordinate systems.
- Parallelised using MPI (requires a parallel FFT).

	Numerics		
00	0000	00000000	0

Problem framework

- For the results presented here, we use a Cartesian co-ordinate system:
 - $\rightarrow\,$ Spectral elements in circular cross-sections.
 - $\rightarrow\,$ Periodic in axial direction.
- Allows for better placement of elements around the pipe wall.

Numerics	
0000	

Simulations

• Parameters for the simulations were:

L	$16\pi D \approx 50D$	$48\pi D pprox 150 D$
N _x	768	2048
N _{proc}	64	128
Re	$1900 \le \mathrm{Re} \le 2150$	$2000 \le \text{Re} \le 2500$
Δt	2×10^{-3}	2×10^{-3}

- The flow is driven using a constant volumetric flux $q = 1 \Rightarrow U_B$ is fixed.
- The simulation is started with uniform turbulence using a short run at $\mathrm{Re}=5000$ with increased resolution. We then reduce Re as follows:

Numerics ○○○●	

History Plots

• Field data is too large to record regularly. We measure *history data*: every 0.1 time units, sample **v** and *p* from points along the pipe axis.

Numerics ○○o●	

History Plots

• Field data is too large to record regularly. We measure *history data*: every 0.1 time units, sample **v** and *p* from points along the pipe axis.

• For the velocity field u = (u, v, w), we construct the quantity

$$q(z, t) = \sqrt{v^2 + w^2}\Big|_{(x, y=0, z=0, t)} = \sqrt{2E_{\text{transverse}}}$$

and then change to a moving frame of reference by the transformation

$$q(x,t)
ightarrow q(x-U_Bt,t).$$

Summary of space-time data

The space-time plot gives a good overview of some of the interesting phenomenon seen with the reduction in Re. In particular, the events we will focus on are:

- Transition from uniform turbulence to intermittence at ${
 m Re}=2200$ which is clearly observed.
- A not-so-clear transition involving puff splitting at $\mathrm{Re}=2050.$

Summary of space-time data

The space-time plot gives a good overview of some of the interesting phenomenon seen with the reduction in Re. In particular, the events we will focus on are:

- Transition from uniform turbulence to intermittence at ${\rm Re}=2200$ which is clearly observed.
- A not-so-clear transition involving puff splitting at Re = 2050. Extended simulations were performed at transitional Re with L = 25D to gather more accurate statistics.
 - Four independent initial conditions were used in separate simulations.
 - At each Reynolds number, each of the simulations were run for 4,000 time units;
 - Total 16,000 time units for each Re.

		Results	
00	0000	0000000	0

Intermittency factor

To study the onset of intermittence, we must first obtain a measure of the proportion of turbulent fluid. A typical way of doing this is to study the intermittency factor.

Intermittency factor

To study the onset of intermittence, we must first obtain a measure of the proportion of turbulent fluid. A typical way of doing this is to study the intermittency factor.

Definition

Given a small positive threshold q_* , we define the *intermittency function* as

$$I(x,t) = egin{cases} 1, & q(x,t) > q_*, \ 0, & ext{otherwise}. \end{cases}$$

The the *intermittency factor* $0 \le \gamma \le 1$ is given by

$$\gamma = \langle I
angle$$

where the average is taken over space and time.

	Results	
	0000000	

Domain Expansion

- Space-time plots show that puffs split apart often in the Re = 2050 case, but very little at Re = 2000. Is this natural behaviour of Navier-Stokes?
- To answer the question, we consider a puff placed in a pipe of length L = 25D.
- Then we expand the domain every 500 time units by L = 5D until we reach L = 100D.
- *N_x* is increased with *L* so that the domain remains correctly resolved.
- This was done for two separate simulations at both ${
 m Re}=2000$ and ${
 m Re}=2050$ using the same initial condition.
- Again we plot the history data with the quantity q.

	Results	
	00000000	

From Re = 2000 to 2050

• Take the single puff in the pipe at Re = 2000 when L = 100D. Does increasing Re to 2050 cause the same splitting phenomenon seen earlier?

		Results	
00	0000	00000000	0

From Re = 2000 to 2050

• Take the single puff in the pipe at Re = 2000 when L = 100D. Does increasing Re to 2050 cause the same splitting phenomenon seen earlier?

	Results	
	00000000	

Intensive-extensive transition

• At Re = 2050, dynamics do not depend upon the domain size - i.e. they are **extensive**. A single puff will grow and split to encompass the whole pipe (as seen in first and last figures).

	Results	
	00000000	

Intensive-extensive transition

- At Re = 2050, dynamics do not depend upon the domain size i.e. they are **extensive**. A single puff will grow and split to encompass the whole pipe (as seen in first and last figures).
- When Re is reduced to 2000, dynamics become **intensive**; the amount of puffs seen will depend on the initial conditions.

	Results	
	00000000	

Intensive-extensive transition

- At Re = 2050, dynamics do not depend upon the domain size i.e. they are **extensive**. A single puff will grow and split to encompass the whole pipe (as seen in first and last figures).
- When Re is reduced to 2000, dynamics become **intensive**; the amount of puffs seen will depend on the initial conditions.
- Conclusion: for $2000 \le \text{Re} \le 2050$ there is a critical point Re_1 after which intensive dynamics turn to extensive.

		Conclusions •
Conclusions		

• Space-time plots reveal a general picture invovling spontaneous appearance of puff states in transition from turbulence; also see natural appearance of trains of puffs.

		Conclusions
		•
C I .		

- Space-time plots reveal a general picture invovling spontaneous appearance of puff states in transition from turbulence; also see natural appearance of trains of puffs.
- From uniform turbulence, uniformly turbulent pipe flow undergoes a bifurcation are $\mathrm{Re}_2 \approx 2200$ as shown by the intermittency factor.

		Conclusions
		•
C 1 1		

- Space-time plots reveal a general picture invovling spontaneous appearance of puff states in transition from turbulence; also see natural appearance of trains of puffs.
- From uniform turbulence, uniformly turbulent pipe flow undergoes a bifurcation are $\mathrm{Re}_2 \approx 2200$ as shown by the intermittency factor.
- As ${\rm Re}$ is reduced below ${\rm Re}_1\approx$ 2025, domain expansion simulations show a transition from extensive to intensive dynamics.

Numerics	Results	Conclusions

- Space-time plots reveal a general picture invovling spontaneous appearance of puff states in transition from turbulence; also see natural appearance of trains of puffs.
- From uniform turbulence, uniformly turbulent pipe flow undergoes a bifurcation are $\mathrm{Re}_2 \approx 2200$ as shown by the intermittency factor.
- As ${\rm Re}$ is reduced below ${\rm Re}_1\approx$ 2025, domain expansion simulations show a transition from extensive to intensive dynamics.
- Future work:

Numerics	Results	Conclusions

- Space-time plots reveal a general picture invovling spontaneous appearance of puff states in transition from turbulence; also see natural appearance of trains of puffs.
- From uniform turbulence, uniformly turbulent pipe flow undergoes a bifurcation are $\mathrm{Re}_2 \approx 2200$ as shown by the intermittency factor.
- As ${\rm Re}$ is reduced below ${\rm Re}_1\approx$ 2025, domain expansion simulations show a transition from extensive to intensive dynamics.
- Future work:
 - Investigate patterns of puffs seen at $\mathrm{Re}=2000.$

		Conclusions •
· ·		

- Space-time plots reveal a general picture invovling spontaneous appearance of puff states in transition from turbulence; also see natural appearance of trains of puffs.
- From uniform turbulence, uniformly turbulent pipe flow undergoes a bifurcation are $\mathrm{Re}_2 \approx 2200$ as shown by the intermittency factor.
- As ${\rm Re}$ is reduced below ${\rm Re}_1\approx$ 2025, domain expansion simulations show a transition from extensive to intensive dynamics.
- Future work:
 - Investigate patterns of puffs seen at $\mathrm{Re}=2000$.
 - More detailed statistics in longer pipes.

		Conclusions •
· ·		

- Space-time plots reveal a general picture invovling spontaneous appearance of puff states in transition from turbulence; also see natural appearance of trains of puffs.
- From uniform turbulence, uniformly turbulent pipe flow undergoes a bifurcation are $\mathrm{Re}_2 \approx 2200$ as shown by the intermittency factor.
- As ${\rm Re}$ is reduced below ${\rm Re}_1\approx$ 2025, domain expansion simulations show a transition from extensive to intensive dynamics.

• Future work:

- Investigate patterns of puffs seen at $\mathrm{Re}=2000$.
- More detailed statistics in longer pipes.
- $\bullet\,$ Mechanisms for transition at Re_1 and $\mathrm{Re}_2.$