
Introduction Numerical Methods Results Conclusions

A numerical study of the transition from turbulence in pipe flow

An introduction to the pipe flow problem, and some of the numerics behind it

David Moxey, Dwight Barkley

Mathematics Institute

University of Warwick

Postgraduate Seminar Series
21st January 2009



Introduction Numerical Methods Results Conclusions

Introduction

Turbulence is a well-known phenomenon in fluid mechanics, but its origins and
behaviour are not generally understood. One approach is to look at how
instabilities can cause a transition to turbulence.

One of the most studied examples is pipe flow, first observed by Reynolds in 1883.

Pipe flow is curious because its basic laminar solution is linearly stable. However,
Reynolds noted that very small instabilities can still cause turbulence depending
on the Reynolds number

Re =
U
B

D

⌫
.

U

B

: average or bulk velocity

D: pipe diameter

⌫: kinematic viscosity

Most work on the transition problem concentrates on transition from laminar to
turbulent flow. We wish to build a phase portrait of the fluid going from
turbulent to laminar flow, and investigate states of laminar-turbulent
co-existance.



Introduction Numerical Methods Results Conclusions

Mathematical Framework

Flows are governed by the Navier-Stokes equations:

@u

@t
+ (u ·r)u = �1

⇢
rp + ⌫r2u+ f.

u : ⌦⇥ [0,1)! Rn is the velocity field, p : ⌦⇥ [0,1)! R is the scalar pressure,
⇢ is the fluid density and f is a forcing term (which may or may not depend on
time).

We also insist that the flow is incompressible, in which case it satisfies the
additional restriction

r · u = 0.

Also implies ⇢ is constant and so assume ⇢ = 1.

(u ·r)u term provides extremely complex non-linear behaviour, and generally
means we can’t solve Navier-Stokes analytically.

Instead we use numerical methods to obtain approximations of the solution by
computer.

In our case we perform a DNS - direct numerical simulation - of the equations.



Introduction Numerical Methods Results Conclusions

Numerics

How do we solve PDEs via computer? First step is to discretise the domain into a
finite set of points; at each point we store an approximation to the solution.

Also need to be able to calculate derivatives (and sometimes integrals)
numerically, using only the data we have at each point.

Easiest case is a uniform grid. Consider x
j

= j�x , j = 0, . . . , J where �x is the
grid spacing.

Discretise time in a similar fashion by writing t
n

= n�t; �t is the timestep.

Set Un
j

= u(x
j

, t
n

).

t �t

�t



Introduction Numerical Methods Results Conclusions

Numerics

How do we solve PDEs via computer? First step is to discretise the domain into a
finite set of points; at each point we store an approximation to the solution.

Also need to be able to calculate derivatives (and sometimes integrals)
numerically, using only the data we have at each point.

Easiest case is a uniform grid. Consider x
j

= j�x , j = 0, . . . , J where �x is the
grid spacing.

Discretise time in a similar fashion by writing t
n

= n�t; �t is the timestep.

Set Un
j

= u(x
j

, t
n

).

t �t

�t

x
�x

U0
0

U0
1

U0
2

U0
3

U0
4

U0
5

U0
6



Introduction Numerical Methods Results Conclusions

Numerics

How do we solve PDEs via computer? First step is to discretise the domain into a
finite set of points; at each point we store an approximation to the solution.

Also need to be able to calculate derivatives (and sometimes integrals)
numerically, using only the data we have at each point.

Easiest case is a uniform grid. Consider x
j

= j�x , j = 0, . . . , J where �x is the
grid spacing.

Discretise time in a similar fashion by writing t
n

= n�t; �t is the timestep.

Set Un
j

= u(x
j

, t
n

).

t �t

�t

x
�x

U0
0

U1
0

U0
1

U1
1

U0
2

U1
2

U0
3

U1
3

U0
4

U1
4

U0
5

U1
5

U0
6

U1
6



Introduction Numerical Methods Results Conclusions

Numerics

How do we solve PDEs via computer? First step is to discretise the domain into a
finite set of points; at each point we store an approximation to the solution.

Also need to be able to calculate derivatives (and sometimes integrals)
numerically, using only the data we have at each point.

Easiest case is a uniform grid. Consider x
j

= j�x , j = 0, . . . , J where �x is the
grid spacing.

Discretise time in a similar fashion by writing t
n

= n�t; �t is the timestep.

Set Un
j

= u(x
j

, t
n

).

t �t

�t

x
�x

U0
0

U1
0

U2
0

U0
1

U1
1

U2
1

U0
2

U1
2

U2
2

U0
3

U1
3

U2
3

U0
4

U1
4

U2
4

U0
5

U1
5

U2
5

U0
6

U1
6

U2
6



Introduction Numerical Methods Results Conclusions

Finite Di↵erence

One of the easiest ways of numerically calculating derivatives. Essentially
approximates the limit definition of the derivative for a rougher guess, or
otherwise we can use Taylor expansions to gain accuracy.

@u

@x

����
x=x

j

=
Un
j+1 � Unj
�x

+O(�x)

=
Un
j+1 � Unj�1
2�x

+O(�x2)

Easy to implement because the discretisation of an operator L can be represented
by a matrix L. For example, for L = @

x

and using the second expansion above, we
have

LU =
1

2�x

2

664

. . .

�1 0 1
. . .

3

775

0

B@

Un
0

...
Un
J

1

CA

Problem: Not very accurate unless you use a large number of points. More points
requires far more computation when doing matrix multiplication. Not very useful
for pipe flow.



Introduction Numerical Methods Results Conclusions

Spectral Methods

Basic idea: Approximate the function by writing it as a sum of modes �
k

(x)
weighted by amplitudes û

k

(t):

u(x , t) ⇡ u�(x , t) =
N�1X

k=0

û
k

(t)�
k

(x).

In ‘simple’ geometries, this is one of the most commonly used methods because
they have extremely good error properties.

Quick example: 1D heat equation in ⌦ = [0,⇡] and homogeneous Dirichlet
boundary conditions:

@u

@t
=
@2u

@x2

Let �
k

(x) = sin(kx) and substitute approximation into PDE:

N�1X

k=0

dû
k

dt
(t) sin(kx) =

N�1X

k=0

�k2û
k

(t) sin(kx) ) dû
k

dt
(t) = �k2û

k

(t)



Introduction Numerical Methods Results Conclusions

Heat Equation Continued

Although in this case, we can solve the equation explicitly, generally we discretise
time:

@û
k

@t
⇡ û

n+1
k

� ûn
k

�t
= �k2ûn

k

) ûn+1
k

= (1� k2�t)ûn
k

.

The general procedure then is something like:

U

0

transform�����! û0 timestep����! û1 timestep����! · · · timestep����! ûT transform

�1
������! UT

Notice that di↵erentiation in spectral space is easy: to obtain the second order
derivative, we simply multiplied each mode by k2. This is a common theme
amongst spectral methods.

We can also extend this method into multiple dimensions. A common choice for
the modes in this case is

�
k

(x) = e ik·x.



Introduction Numerical Methods Results Conclusions

Some Problems

In this simple formulation, a lot of problems were glossed over:

The evolution equations for û

k

are decoupled.

Boundary conditions are easy.

Geometry is simple.

No non-linearity!

To deal with non-linear equations, we keep both amplitudes û
k

and a spatial grid
x
n

.

For instance, with the operator u@
x

, we calculate @
x

spectrally, transform this
result to normal space and then multiply by u on the grid.

Such methods are called pseudo-spectral. In particular, Fourier pseudo-spectral
methods using �

k

(x) = e ikx are a popular choice if the problem has periodic
boundary conditions.

Each timestep requires a pair of transforms, which will usually slow things down.
In the case of Fourier modes, we can use the Fast Fourier Transform (FFT) which
only requires O(n log

2

n) operations.



Introduction Numerical Methods Results Conclusions

Some Problems

In this simple formulation, a lot of problems were glossed over:

The evolution equations for û

k

are decoupled.

Boundary conditions are easy.

Geometry is simple.

No non-linearity!

To deal with non-linear equations, we keep both amplitudes û
k

and a spatial grid
x
n

.

For instance, with the operator u@
x

, we calculate @
x

spectrally, transform this
result to normal space and then multiply by u on the grid.

Such methods are called pseudo-spectral. In particular, Fourier pseudo-spectral
methods using �

k

(x) = e ikx are a popular choice if the problem has periodic
boundary conditions.

Each timestep requires a pair of transforms, which will usually slow things down.
In the case of Fourier modes, we can use the Fast Fourier Transform (FFT) which
only requires O(n log

2

n) operations.



Introduction Numerical Methods Results Conclusions

Some Problems

In this simple formulation, a lot of problems were glossed over:

The evolution equations for û

k

are decoupled.

Boundary conditions are easy.

Geometry is simple.

No non-linearity!

To deal with non-linear equations, we keep both amplitudes û
k

and a spatial grid
x
n

.

For instance, with the operator u@
x

, we calculate @
x

spectrally, transform this
result to normal space and then multiply by u on the grid.

Such methods are called pseudo-spectral. In particular, Fourier pseudo-spectral
methods using �

k

(x) = e ikx are a popular choice if the problem has periodic
boundary conditions.

Each timestep requires a pair of transforms, which will usually slow things down.
In the case of Fourier modes, we can use the Fast Fourier Transform (FFT) which
only requires O(n log

2

n) operations.



Introduction Numerical Methods Results Conclusions

Spectral/hp Element Methods

Less ‘simple’ geometries require non-uniform grids, making spectral methods
di�cult to implement.

Finite and spectral element methods solve this by partitioning the domain ⌦ into
N
el

elements ⌦e .

The general goal is to solve the equation in each element (locally), and then
somehow combine the solutions to obtain a global solution.

Modes:

Finite element: piecewise linear.

Spectral element: something like a family of Jacobi polynomials of order  P.

In spectral/hp methods, we therefore have two ways of increasing accuracy:

p-refinement: increase the polynomial order in each element.

h-refinement: decrease the size of elements.

1D Example: ⌦ = [0, 1] =
3[

e=1

⌦e

x
0

= 0

⌦1

x
1

⌦2

x
2

⌦3

x
3

= 1



Introduction Numerical Methods Results Conclusions

Spectral/hp Element Methods

Less ‘simple’ geometries require non-uniform grids, making spectral methods
di�cult to implement.

Finite and spectral element methods solve this by partitioning the domain ⌦ into
N
el

elements ⌦e .

The general goal is to solve the equation in each element (locally), and then
somehow combine the solutions to obtain a global solution.

Modes:

Finite element: piecewise linear.

Spectral element: something like a family of Jacobi polynomials of order  P.
In spectral/hp methods, we therefore have two ways of increasing accuracy:

p-refinement: increase the polynomial order in each element.

h-refinement: decrease the size of elements.

1D Example: ⌦ = [0, 1] =
3[

e=1

⌦e

x
0

= 0

⌦1

x
1

⌦2

x
2

⌦3

x
3

= 1



Introduction Numerical Methods Results Conclusions

Spectral/hp Element Methods

Less ‘simple’ geometries require non-uniform grids, making spectral methods
di�cult to implement.

Finite and spectral element methods solve this by partitioning the domain ⌦ into
N
el

elements ⌦e .

The general goal is to solve the equation in each element (locally), and then
somehow combine the solutions to obtain a global solution.

Modes:

Finite element: piecewise linear.

Spectral element: something like a family of Jacobi polynomials of order  P.
In spectral/hp methods, we therefore have two ways of increasing accuracy:

p-refinement: increase the polynomial order in each element.

h-refinement: decrease the size of elements.

1D Example: ⌦ = [0, 1] =
3[

e=1

⌦e

x
0

= 0

⌦1

x
1

⌦2

x
2

⌦3

x
3

= 1



Introduction Numerical Methods Results Conclusions

A more complex example

�0.6 �0.4 �0.2 0.0 0.2 0.4 0.6
�0.6

�0.4

�0.2

0.0

0.2

0.4

0.6



Introduction Numerical Methods Results Conclusions

Local and Global Modes: 1D Example

û
3

�
3

(x)

û
2

�
2

(x)

û
1

�
1

(x)

û
0

�
0

(x)

⌦1 ⌦2 ⌦3x
0

x
1

x
2

x
3

û1
1

⌦
st

û1
0

�1 1

�1

û2
1

⌦
st

û2
0

�1 1

�2
û3
1

⌦
st

û3
0

�1 1

�3



Introduction Numerical Methods Results Conclusions

Local and Global Modes: 1D Example

û
3

�
3

(x)

û
2

�
2

(x)

û
1

�
1

(x)

û
0

�
0

(x)

⌦1 ⌦2 ⌦3x
0

x
1

x
2

x
3

û1
1

⌦
st

û1
0

�1 1

�1

û2
1

⌦
st

û2
0

�1 1

�2
û3
1

⌦
st

û3
0

�1 1

�3



Introduction Numerical Methods Results Conclusions

Local and Global Modes: 1D Example

û
3

�
3

(x)

û
2

�
2

(x)

û
1

�
1

(x)

û
0

�
0

(x)

⌦1 ⌦2 ⌦3x
0

x
1

x
2

x
3

û1
1

⌦
st

û1
0

�1 1

�1

û2
1

⌦
st

û2
0

�1 1

�2

û3
1

⌦
st

û3
0

�1 1

�3



Introduction Numerical Methods Results Conclusions

Local and Global Modes: 1D Example

û
3

�
3

(x)

û
2

�
2

(x)

û
1

�
1

(x)

û
0

�
0

(x)

⌦1 ⌦2 ⌦3x
0

x
1

x
2

x
3

û1
1

⌦
st

û1
0

�1 1

�1

û2
1

⌦
st

û2
0

�1 1

�2
û3
1

⌦
st

û3
0

�1 1

�3



Introduction Numerical Methods Results Conclusions

Local and Global Modes: 1D Example

û
3

�
3

(x)

û
2

�
2

(x)

û
1

�
1

(x)

û
0

�
0

(x)

⌦1 ⌦2 ⌦3x
0

x
1

x
2

x
3

û1
1

⌦
st

û1
0

�1 1

�1

û2
1

⌦
st

û2
0

�1 1

�2
û3
1

⌦
st

û3
0

�1 1

�3



Introduction Numerical Methods Results Conclusions

Choosing Modes

Choosing modes is a non-trivial task. Mostly we choose subsets of the Jacobi
polynomials J↵,�

p

(⇠). Typical ‘modal’ basis for ⇠ 2 ⌦
st

:

 
p

(⇠) =

8
><

>:

1

2

(1� ⇠), p = 0

boundary mode

1

4

(1+ ⇠)(1� ⇠)J1,1
p�1(x), 0 < p < P

1

2

(1+ ⇠), p = P

boundary mode

�1

1

�0(x)

�1

1

�1(x)

�1

1

�2(x)

�1

1

�3(x)

�1

1

�4(x)

�1

1

�5(x)



Introduction Numerical Methods Results Conclusions

Choosing Modes

Choosing modes is a non-trivial task. Mostly we choose subsets of the Jacobi
polynomials J↵,�

p

(⇠). Typical ‘modal’ basis for ⇠ 2 ⌦
st

:

 
p

(⇠) =

8
><

>:

1

2

(1� ⇠), p = 0 boundary mode
1

4

(1+ ⇠)(1� ⇠)J1,1
p�1(x), 0 < p < P

1

2

(1+ ⇠), p = P boundary mode

�1

1

�0(x)

�1

1

�1(x)

�1

1

�2(x)

�1

1

�3(x)

�1

1

�4(x)

�1

1

�5(x)



Introduction Numerical Methods Results Conclusions

Putting it all together

To relate the global and local modes, we write

û

l

= Aû
g

.

A is called the assembly matrix.
Consider the problem of Galerkin projection: find u� 2 X � such that

(v �, u�) = (v �, f ), 8 v � 2 X �.

We substitute our approximation (in terms of the global modes �
k

(x)) and
re-write the problem in matrix form:

v

>(MG û = f) ) M

G

û = f ) û = [MG ]�1f

where
M

G

pq

= (�
p

,�
q

), û = (û
0

, . . . , û
N�1), fp = (�

p

, f )

M

G is called the mass matrix.

In reality, we construct the elemental mass matrices Me in a similar fashion, and
then use A to construct MG :

M

G = A>MeA.



Introduction Numerical Methods Results Conclusions

Putting it all together

To relate the global and local modes, we write

û

l

= Aû
g

.

A is called the assembly matrix.
Consider the problem of Galerkin projection: find u� 2 X � such that

(v �, u�) = (v �, f ), 8 v � 2 X �.

We substitute our approximation (in terms of the global modes �
k

(x)) and
re-write the problem in matrix form:

v

>(MG û = f) ) M

G

û = f ) û = [MG ]�1f

where
M

G

pq

= (�
p

,�
q

), û = (û
0

, . . . , û
N�1), fp = (�

p

, f )

M

G is called the mass matrix.

In reality, we construct the elemental mass matrices Me in a similar fashion, and
then use A to construct MG :

M

G = A>MeA.



Introduction Numerical Methods Results Conclusions

Putting it all together

To relate the global and local modes, we write

û

l

= Aû
g

.

A is called the assembly matrix.
Consider the problem of Galerkin projection: find u� 2 X � such that

(v �, u�) = (v �, f ), 8 v � 2 X �.

We substitute our approximation (in terms of the global modes �
k

(x)) and
re-write the problem in matrix form:

v

>(MG û = f) ) M

G

û = f ) û = [MG ]�1f

where
M

G

pq

= (�
p

,�
q

), û = (û
0

, . . . , û
N�1), fp = (�

p

, f )

M

G is called the mass matrix.

In reality, we construct the elemental mass matrices Me in a similar fashion, and
then use A to construct MG :

M

G = A>MeA.



Introduction Numerical Methods Results Conclusions

Large-scale structures

For 1900  Re  2200, we observe pu↵s in the fluid. These turbulent structures
co-exist with laminar flow.

15 20 25 30 35
z/D

�0.5

0.5

r/
D

This pu↵ was recorded at Re = 2000 and has length L ⇡ 25D, so larger pipe
lengths are needed to capture their behaviour.

Because correctly resolved DNS is computationally expensive, most turbulence
simulations use short pipes.

The most recent numerical simulations of these structures have been in a pipe of
length L = 16⇡D ⇡ 50D [Pringle & Kerswell, PRL, 2007].
However, experimental pipes are typically several hundred diameters long
[Darbyshire & Mullin, JFM, 1995]. Thanks to Moore’s law, we can now begin to
study these pipe lengths using DNS.



Introduction Numerical Methods Results Conclusions

Large-scale structures

For 1900  Re  2200, we observe pu↵s in the fluid. These turbulent structures
co-exist with laminar flow.

15 20 25 30 35
z/D

�0.5

0.5

r/
D

This pu↵ was recorded at Re = 2000 and has length L ⇡ 25D, so larger pipe
lengths are needed to capture their behaviour.

Because correctly resolved DNS is computationally expensive, most turbulence
simulations use short pipes.

The most recent numerical simulations of these structures have been in a pipe of
length L = 16⇡D ⇡ 50D [Pringle & Kerswell, PRL, 2007].
However, experimental pipes are typically several hundred diameters long
[Darbyshire & Mullin, JFM, 1995]. Thanks to Moore’s law, we can now begin to
study these pipe lengths using DNS.



Introduction Numerical Methods Results Conclusions

Simulations

Parameters for the simulations were:

L 16⇡D ⇡ 50D 48⇡D ⇡ 150D
N
z

768 2048
N
proc

64 128
Re 1900  Re  2150 2000  Re  2500
�t 2⇥ 10�3 2⇥ 10�3

The flow is driven using a constant volumetric flux q = 1 through a circular
cross-section of the pipe ) U

B

is fixed.

The simulation is started with uniform turbulence using a short run at Re = 5000.
We then reduce Re as follows:

5000! 4000! 3000 500 time units
2800! 2650! 2500! 2350 1000 time units
2200! 2150! 2100! 2050! · · · 2000 time units



Introduction Numerical Methods Results Conclusions

History Plots

Field data is too large to record regularly. Instead we measure history data: every
0.1 time units, we record velocity field data from points along the axis of the pipe.

z

z
0

z
1

z
2

z
3

z
4

z
5

z
6

z
7

z
8

z
9

z
10

�z

For the velocity field u = (u, v ,w), we construct the quantity

q(z , t) =
p
u2 + v 2

���
(x=0,y=0,z ,t)

and then change to a moving frame of reference by applying

q(z , t)! q(z � ct, t)

where c is, for example, the speed of a pu↵.

This data produces a space-time contour plot which is useful for analysing general
qualities of the fluid.



Introduction Numerical Methods Results Conclusions

History Plots

Field data is too large to record regularly. Instead we measure history data: every
0.1 time units, we record velocity field data from points along the axis of the pipe.

z

z
0

z
1

z
2

z
3

z
4

z
5

z
6

z
7

z
8

z
9

z
10

�z

For the velocity field u = (u, v ,w), we construct the quantity

q(z , t) =
p
u2 + v 2

���
(x=0,y=0,z ,t)

and then change to a moving frame of reference by applying

q(z , t)! q(z � ct, t)

where c is, for example, the speed of a pu↵.

This data produces a space-time contour plot which is useful for analysing general
qualities of the fluid.



L = 50D History Data

1900  Re  2150.
0  t  12000.
c = U

B

.

Re-laminarization occurs at Re = 1750.

The data took roughly 4.1 CPU years to generate.

0 10 20 30 40 50
z

0

2000

4000

6000

8000

10000

12000

t

0 10 20 30 40 50
2150

2100

2050

2000

1950

1900

R
e



L = 50D History Data

1900  Re  2150.
0  t  12000.
c = U

B

.

Re-laminarization occurs at Re = 1750.

The data took roughly 4.1 CPU years to generate.

0 10 20 30 40 50
z

0

2000

4000

6000

8000

10000

12000

t

0 10 20 30 40 50
2150

2100

2050

2000

1950

1900

R
e

Re = 2150, t = 1500

0 5 10 15
z/D

�0.5

0.5

r/
D

20 25 30
z/D

�0.5

0.5

r/
D

35 40 45 50
z/D

�0.5

0.5

r/
D



L = 50D History Data

1900  Re  2150.
0  t  12000.
c = U

B

.

Re-laminarization occurs at Re = 1750.

The data took roughly 4.1 CPU years to generate.

0 10 20 30 40 50
z

0

2000

4000

6000

8000

10000

12000

t

0 10 20 30 40 50
2150

2100

2050

2000

1950

1900

R
e

Re = 2100, t = 3900

0 5 10 15
z/D

�0.5

0.5

r/
D

20 25 30
z/D

�0.5

0.5

r/
D

35 40 45 50
z/D

�0.5

0.5

r/
D



L = 50D History Data

1900  Re  2150.
0  t  12000.
c = U

B

.

Re-laminarization occurs at Re = 1750.

The data took roughly 4.1 CPU years to generate.

0 10 20 30 40 50
z

0

2000

4000

6000

8000

10000

12000

t

0 10 20 30 40 50
2150

2100

2050

2000

1950

1900

R
e

Re = 2050, t = 5400

0 5 10 15
z/D

�0.5

0.5

r/
D

20 25 30
z/D

�0.5

0.5

r/
D

35 40 45 50
z/D

�0.5

0.5

r/
D



L = 50D History Data

1900  Re  2150.
0  t  12000.
c = U

B

.

Re-laminarization occurs at Re = 1750.

The data took roughly 4.1 CPU years to generate.

0 10 20 30 40 50
z

0

2000

4000

6000

8000

10000

12000

t

0 10 20 30 40 50
2150

2100

2050

2000

1950

1900

R
e

Re = 2000, t = 7950

0 5 10 15
z/D

�0.5

0.5

r/
D

20 25 30
z/D

�0.5

0.5

r/
D

35 40 45 50
z/D

�0.5

0.5

r/
D



L = 50D History Data

1900  Re  2150.
0  t  12000.
c = U

B

.

Re-laminarization occurs at Re = 1750.

The data took roughly 4.1 CPU years to generate.

0 10 20 30 40 50
z

0

2000

4000

6000

8000

10000

12000

t

0 10 20 30 40 50
2150

2100

2050

2000

1950

1900

R
e

Re = 1900, t = 11900

0 5 10 15
z/D

�0.5

0.5

r/
D

20 25 30
z/D

�0.5

0.5

r/
D

35 40 45 50
z/D

�0.5

0.5

r/
D



Re = 2150

0 10 20 30 40 50
z

0

500

1000

1500

2000

t

Re = 2050

0 10 20 30 40 50
z

0

500

1000

1500

2000

t



Re = 2000

0 10 20 30 40 50
z

0

500

1000

1500

2000

t

1900  Re  2000

0 10 20 30 40 50
z

0

1000

2000

3000

4000

5000

6000

t

0 10 20 30 40 50
2000

1950

1900

R
e



0 20 40 60 80 100 120 140
z

0

2000

4000

6000

8000

10000

t

0 20 40 60 80 100 120 140
2500

2350

2200

2150

2100

2050

2000

R
e



Introduction Numerical Methods Results Conclusions

Domain Expansion

We saw that pu↵s tended to split apart in the Re = 2050 case. Is this just a
co-incidence or more of a natural behaviour of Navier-Stokes?

To answer the question, we take a pu↵ of L = 25D.

Then we expand the domain every 500 time units by L = 5D until we reach
L = 100D.

N
z

is increased with L so that the domain remains correctly resolved.

This was done for two separate simulations at both Re = 2000 and Re = 2050.

Again we plot the history data with the quantity q.



0 20 40 60 80 100
z

0

2000

4000

6000

8000

t



0 20 40 60 80 100
z

0

2000

4000

6000

8000

t



Introduction Numerical Methods Results Conclusions

Conclusions

Computing power has increased enough over the past decade to simulate long
pipes over large periods of time using highly accurate spectral and spectral
element methods.

Space-time plots reveal interesting behaviour in the transition from turbulent to
laminar flow. Previously unseen pattern formation with trains of pu↵s.

Domain expansion of the pu↵s reveals that the cases Re = 2000 and Re = 2050
are far di↵erent from one another.

We believe that the more ‘intermittant’ behaviour found in the latter case is
worth investigating in far greater detail.

The pu↵ splitting seen at Re = 2050 is previously unseen at such low Reynolds
numbers: usually this only happens for Re � 2400.
Future work will involve developing a quantitative method for identifying and
classifying di↵erent states found in the Navier-Stokes attractor during transition.


	Introduction
	Introduction

	Numerical Methods
	Introduction
	Finite Difference
	Spectral Methods
	Spectral/hp Element Methods

	Results
	Introduction
	50D/150D Results
	Domain Expansion

	Conclusions
	Conclusions


