Simulations Of Turbulence Transition In Long Pipes A numerical investigation of transition from turbulent to laminar flow in long pipes

David Moxey, Dwight Barkley

Mathematics Institute and Centre for Scientific Computing University of Warwick

EFMC7, 16th September 2008

Simulations Of Turbulence Transition In Long Pipes

L Introduction

Introduction

- Instability in pipe flow has been an outstanding problem in fluid dynamics over the past century -- first observed by Reynolds in his paper of 1883, where he defined the Reynolds number, Re.
- Previous papers on the transition problem have mainly concentrated on transition from laminar to turbulent flow. We wish to build a phase portrait of the fluid going from turbulent to laminar flow, and investigate states of laminar-turbulent co-existance.
- This talk outlines initial results that we have obtained from direct numerical simulations (DNS) of the pipe flow problem at transitional Reynolds numbers.
- None of these simulations would have been possible without the computing resources at the Centre for Scientific Computing, University of Warwick. (We use a recently built 960-core machine using 3GHz Intel Xeon processors.)

Simulations Of Turbulence Transition In Long Pipes

Introduction

Large-scale Structures

Large-scale structures

■ For 1900 ≤ Re ≤ 2200, we observe *puffs* in the fluid. These turbulent structures co-exist with laminar flow and propagate down the length of the pipe.

This puff was recorded at Re = 2000 and has length $L \approx 25D$, so larger lengths are needed to capture their behaviour.

Introduction

Large-scale Structures

Large-scale structures

■ For 1900 ≤ Re ≤ 2200, we observe *puffs* in the fluid. These turbulent structures co-exist with laminar flow and propagate down the length of the pipe.

- This puff was recorded at Re = 2000 and has length $L \approx 25D$, so larger lengths are needed to capture their behaviour.
- Because correctly resolved DNS is computationally expensive, most turbulence simulations use short pipes. The most recent numerical simulations of these structures have been in a pipe of length $L = 16\pi D \approx 50D$ [Pringle & Kerswell, *PRL*, 2007].
- Experimental pipes can be several hundred diameters long [Darbyshire & Mullin, *JFM*, 1995]. Thanks to Moore's law, we can now begin to study these pipe lengths using DNS.

- Introduction

- DNS Techniques

DNS Techniques

- Our simulations use an existing DNS code, Semtex [Blackburn & Sherwin, J. Comput. Phys., 2004].
 - Spectral-element discretization in circular cross-sections.
 - Fourier pseudo-spectral down length of pipe with periodic boundary conditions.
 - Parallelized using MPI.
- Although the problem is a natural choice for a cylindrical-polar co-ordinate system, we use a Cartesian geometry for finer control over the placement of data points in circular cross-sections.

Results

L Simulations

Simulations

Parameters for the simulations were:

L	$16\pi Dpprox 50D$	$48\pi Dpprox 150D$
Nz	768	2048
Re	$1900 \le \text{Re} \le 2150$	$2100 \le \text{Re} \le 2200$
Δt	2×10^{-3}	$2 imes 10^{-3}$

- The flow is driven using a constant volumetric flux *q* = 1 through a circular cross-section of the pipe.
- The simulation is started with uniform turbulence using a short run at Re = 5000. We then reduce Re as follows:

$5000 \rightarrow 4000 \rightarrow 3000$	500 time units
$2800 \rightarrow 2650 \rightarrow 2500 \rightarrow 2350$	1000 time units
$2200 \rightarrow 2150 \rightarrow 2100 \rightarrow 2050 \rightarrow \cdots$	2000 time units

Lesults	Simulations Of Turbulence Transition In Long Pipes
	L _{Results}
	L History Plots

History Plots

■ Field data is too large to record regularly. Instead we measure *history data*: every 0.1 time units, we record velocity field data along the axis of the pipe.

Simulations Of Turbulence Transition In Long Pipes — Results — History Plots

History Plots

Field data is too large to record regularly. Instead we measure *history data*: every 0.1 time units, we record velocity field data along the axis of the pipe.

For the velocity field $\mathbf{u} = (u, v, w)$, we construct the quantity

$$q(z, t) = \sqrt{u^2 + v^2}\Big|_{(x=0, y=0, z, z)}$$

and then change to a moving frame of reference by applying

$$q(z,t) \rightarrow q(z-ct,t)$$

where *c* is, for example, the speed of a puff.

This data produces a space-time contour plot which is useful for analysing general qualities of the fluid.

- 1900 \leq Re \leq 2150.
- 0 ≤ *t* ≤ 12000.
- Re-laminarization occurs at Re = 1750.
- The data took roughly 4.1 CPU years to generate.

- 1900 \leq Re \leq 2150.
- 0 ≤ *t* ≤ 12000.
- Re-laminarization occurs at Re = 1750.
- The data took roughly 4.1 CPU years to generate.

- 1900 \leq Re \leq 2150.
- 0 ≤ *t* ≤ 12000.
- Re-laminarization occurs at Re = 1750.
- The data took roughly 4.1 CPU years to generate.

- 1900 \leq Re \leq 2150.
- 0 ≤ *t* ≤ 12000.
- Re-laminarization occurs at Re = 1750.
- The data took roughly 4.1 CPU years to generate.

- 1900 \leq Re \leq 2150.
- 0 ≤ *t* ≤ 12000.
- Re-laminarization occurs at Re = 1750.
- The data took roughly 4.1 CPU years to generate.

- 1900 \leq Re \leq 2150.
- 0 ≤ *t* ≤ 12000.
- Re-laminarization occurs at Re = 1750.
- The data took roughly 4.1 CPU years to generate.

 $1900 \leq \text{Re} \leq 2000$

Summary

Summary and Future Work

- Full DNS of pipe flow at transitional and turbulent Reynolds numbers is now possible for lengths $\geq 100D$.
- Although these are initial results, history plots show that puffs are found in the transition from turbulent to laminar flow, and multiple puffs are observed for the L = 50D case.
- Investigate periodicity of puffs: for a single puff of length L = 25D, will extending the pipe length cause the puff to 'split' into two puffs?
- Perform a comparison between the results of the L = 150D and L = 50D cases, and see if similar behaviour is observed (especially in relation to any multiple-puff states).
- Simulations in pipes of length L = 400 500D?