
EFFICIENT MATRIX-FREE HIGH-ORDER FINITE ELEMENT
EVALUATION FOR SIMPLICIAL ELEMENTS∗

DAVID MOXEY† , ROMAN AMICI‡ , AND ROBERT M. KIRBY‡

Abstract. With the gap between processor clock speeds and memory bandwidth speeds contin-
uing to increase, the use of arithmetically intense schemes, such as high-order finite element methods,
continues to be of considerable interest. In particular, the use of matrix-free formulations of finite
element operators for tensor-product elements of quadrilaterals in two dimensions and hexahedra
in three dimensions, in combination with single-instruction multiple-data (SIMD) instruction sets,
is a well-studied topic at present for the efficient implicit solution of elliptic equations. However, a
considerable limiting factor for this approach is the use of meshes comprising of only quadrilaterals
or hexahedra, the creation of which is still an open problem within the mesh generation community.
In this article, we study the efficiency of high-order finite element operators for the Helmholtz equa-
tion with a focus on extending this approach to unstructured meshes of triangles, tetrahedra and
prismatic elements using the spectral/hp element method and corresponding tensor-product bases
for these element types. We show that although performance is naturally degraded when going from
hexahedra to these simplicial elements, efficient implementations can still be obtained that are capa-
ble of attaining 50–70% of the peak FLOPS of processors with both AVX2 and AVX512 instruction
sets.

Key words. SIMD vectorisation, high-order finite elements, spectral/hp element method, high-
performance computing.

AMS subject classifications. 65N30, 65Y05, 68W10

1. Introduction. The development of robust, efficient solvers which utilise high-
order or spectral/hp element methods is an area of considerable interest at present.
The use of higher order polynomial expansions within elements carries a number of
benefits as seen from two main perspectives. Numerically, these methods exhibit far
lower levels of numerical dispersion and dissipation at higher polynomial orders. This
makes them a particularly well-suited approximation choice in areas such as computa-
tional fluid dynamics, where the accurate time-advection of energetic structures such
as vortices is a key concern [27]. However, perhaps the most appealing property of
these methods in recent years has been their computational performance, particularly
with respect to the present hardware landscape. Although the cost per degree of free-
dom in terms of algorithmic floating point operations (FLOPS) increases substantially
with polynomial order, the use of higher order expansions leads to formulations of the
underlying equations of state that involve dense, compact kernels for key finite ele-
ment operators, such as inner products and derivatives. This is important from the
perspective of modern hardware, where increasingly the bottleneck in performance
is memory bandwidth as opposed to the clock speed of processors. The underlying
arithmetic intensity of the algorithm at hand (i.e. the number of floating-point op-
erations performed for each memory operation) is therefore key to attaining optimal
performance. This is where high-order methods hold a significant advantage over
lower-order methods.

This potential for increased performance is an aspect that has attracted consid-

∗Submitted to the editors 14/1/20.
Funding: DM acknowledges support from the PRISM project under EPSRC grant

EP/R029423/1. RA and RMK acknowledge support from AFRL FA8650-17-C-5269.
†College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, UK

(d.moxey@exeter.ac.uk, https://davidmoxey.uk/).
‡Scientific Computing and Imaging Institute, University of Utah (amicir@gmail.com,

kirby@sci.utah.edu).

1

mailto:d.moxey@exeter.ac.uk
https://davidmoxey.uk/
mailto:amicir@gmail.com
mailto:kirby@sci.utah.edu

2 D. MOXEY, R. AMICI AND R. M. KIRBY

erable attention in the last few years. In particular, examining three key concepts in
combination has yielded impressive computational results:

• matrix-free implementations of finite element operators, which avoid the ex-
plicit construction of either large, assembled global matrices (as is standard
at lower orders) or even local, dense elemental operators (which is common
at higher orders);

• the use of tensor products of 1D basis functions to construct quadrilateral
and hexahedral elements to enable the use of sum-factorisation [20], which
reduces operation counts substantially and makes matrix-free methods com-
putationally attractive; and

• effective approaches for exploiting single-instruction multiple-data (SIMD)
vectorisation in a manner that aligns with the inherent parallelism of the
finite element method in a computationally efficient manner. As modern
hardware now relies on wide SIMD instructions to achieve increasing levels
of computational power in newer generations of hardware, attaining peak
performance relies on the efficient usage of such instructions. This may be
done either transparently, by considering techniques such as compiler auto-
vectorisation, or more opaquely through the adjustment of data layout to
align more closely with the vectorized nature of SIMD instructions.

This combination can be seen in many recent publications and finite element codes.
Implementations inside deal.II consider this extensively within both continuous [2, 26]
and discontinuous Galerkin settings [14, 13, 24] with various application areas includ-
ing the incompressible Navier-Stokes equations. Dune [6] considers similar approaches
for their Exa-DUNE implementation [4, 5]. Implementations utilising a matrix-free
approach without explicit SIMD vectorisation (but with efficient small matrix multi-
plication kernels which can adopt this approach) can also be found in the incompress-
ible fluid dynamics solver Nek5000 [15].

A limiting factor in this work, however, is that they rely on domains comprised
solely of quadrilateral or hexahedral elements for 2D and 3D simulations respectively.
This is a significant issue when simulating complex geometries, since all-hexahedral
mesh generation is an open problem even for linear finite element calculations. Indeed,
the issue is further exacerbated when considering that, in order for the geometry to be
accurately modelled, curvilinear meshes that are boundary conforming are required,
which is itself an area of considerable interest [39, 33]. Although non-conformal adap-
tive mesh refinement is a potential route to deal with this issue (and is an approach
considered in both deal.II [3] and Nek5000 [35] in combination with the parallel p4est
library [7]), this approach still relies on an initial coarse grid, which can still at present
be an issue for sufficiently complex geometries.

The simulation of complex geometries at high-order is instead under considera-
tion by solvers including Nektar++ [8, 31] and PyFR [42], which use general, un-
structured meshes of symplicial or hybrid elements: triangles in 2D and triangular
prisms, tetrahedra and square-based pyramids in 3D, potentially also in combination
with quadrilaterals and hexahedra. In particular, Nektar++ permits the matrix-free
evaluation of basic finite element operations which still utilise sum-factorisation even
for non tensor-product elements [40, 9, 32] through the use of a hierarchical C0 basis
introduced in [20]. Similarly, Berstein-Bézier basis functions such as those studied
extensively by Ainsworth [1] and Kirby [22], can leverage the same structure for fast
evaluation of finite element kernels. However, there is no particular consideration of
data layout and SIMD vectorisation in the aforementioned works; furthermore, for
implicit solutions of elliptic problems such as the Poisson and Helmholtz equations,

MATRIX-FREE FINITE ELEMENT OPERATORS ON SIMPLICIAL ELEMENTS 3

Nektar++ typically uses local matrix generation combined with static condensation
to reduce operator counts.

The aim of this paper, therefore, is to consider the aforementioned C0 basis,
and other similar tensor-product basis choices, in the context of a matrix-free imple-
mentation of the Helmholtz operator for meshes of high-order unstructured elements.
Adopting a similar approach to the previously cited work and, in particular [2], we con-
sider a memory layout that interleaves elemental degrees of freedom to allow explicit
exploitation of SIMD vectorisation. We combine this with hand-written kernels for
the key components of the Helmholtz operator, which make heavy use of intrinsics to
avoid the pitfalls of compiler auto-vectorisation. The efficiency of these kernels is then
examined by considering their application to a number of two- and three-dimensional
geometries in various hardware architectures.

The paper is structured as follows. In Section 2, we lay out basic theory and
background for high-order unstructured elements and the matrix-free evaluation of
the Helmholtz operator. In Section 3, we discuss the particulars of implementation.
Section 4 applies these kernels to a variety of geometries in order to detail their
performance properties. Finally, we conclude with a brief discussion of the results
and future work in Section 5.

2. Theory and background. The starting point for this article is the consid-
eration of a finite element decomposition of the Helmholtz equation

(2.1) ∇2u− λu = f(x)

on a domain Ω ⊂ Rd for d = 2, 3, with λ > 0 being a positive constant, and u, f : Ω→
R scalar functions denoting the desired solution and forcing term, respectively. For
simplicity of implementation, we assume homogeneous Neumann boundary conditions
on the boundary ∂Ω. We select the Helmholtz equation as a representative elliptic
problem that demonstrates various building-block finite element operators, as well as
itself playing a significant role in the solution of more complex systems of equations.
A prominent example of this is an implicit-explicit operator splitting scheme for the
incompressible Navier-Stokes equations [21], which is widely used and implemented
within a number of high-order codes [35, 15, 8, 14]. This scheme involves the solution
of a Poisson equation for pressure and d Helmholtz equations to perform a correction
step for each velocity component. Efficient techniques for the evaluation and solution
of these equations are therefore highly desired.

As in any other finite element decomposition, the starting point is to consider the
tessellation of the domain T (Ω) into discrete elements Ωe ∈ T (Ω). In two dimensions,
we consider elements of potentially curvilinear triangles and quadrilaterals; in three
dimensions, hexahedra, triangular prisms and tetrahedra. In this paper, we are mostly
concerned with the evaluation of finite element operators without consideration of ele-
mental connectivity. By focusing on elemental operations, the techniques we propose
are amenable to a wide range of schemes, including discontinuous and continuous
Galerkin discretisations, for both conformal and non-conformal meshes. However, for
the purposes of demonstration and discussion of basis choice later, we consider a con-
formal grid of elements and select test functions from a space of continuous, piecewise
polynomial functions given by

D(Ω) = {u ∈ C0(Ω) | u|Ωe ∈ Pk(Ωe),∀ Ωe ∈ T (Ω)},

where Pk(Ωe) denotes an appropriate polynomial space for each element type. This
comes from using the definition of a basis of polynomial functions φp : Ωst → R within

4 D. MOXEY, R. AMICI AND R. M. KIRBY

reference elements Ωst ⊆ [−1, 1]d. For example a reference triangle is defined as

Ωst = {(ξ1, ξ2) | ξ1, ξ2 ∈ [−1, 1], ξ1 + ξ2 ≤ 0}

where ξ is used to denote a coordinate position within Ωst. Subsequently we choose
a basis φp(ξ) which form a basis of the polynomial space

PP (Ωst) = span{ξp1ξq2ξr3 | (ξ1, ξ2, ξ3) ∈ Ωe, (pqr) ∈ I},

where the index set I defines the spanning polynomial space for each element type.
For the elements we consider here, these are given by

Iquad = {(pqr) | 0 ≤ p ≤ P, 0 ≤ q ≤ Q, r = 0}
Itri = {(pqr) | 0 ≤ p ≤ P, 0 ≤ p+ q ≤ Q, r = 0, P ≤ Q}
Ihex = {(pqr) | 0 ≤ p ≤ P, 0 ≤ q ≤ Q, 0 ≤ r ≤ R}
Ipri = {(pqr) | 0 ≤ p ≤ P, 0 ≤ q ≤ Q, 0 ≤ p+ r ≤ P, P ≤ R}
Itet = {(pqr) | 0 ≤ p ≤ P, 0 ≤ p+ q ≤ Q, 0 ≤ p+ q + r ≤ R, P ≤ Q ≤ R}

with P , Q and R defining a possibly heterogeneous polynomial order for each coordi-
nate direction. Finally, N(P, e) = |I| defines the number of local degrees of freedom
contained within each element.

In order to construct a discrete representation uδ ∈ D(Ω) of the scalar function
u, we follow a standard approach and construct a sub- or iso-parametric polynomial
mapping χe : Ωst → Ωe, using the same selection of basis functions φp, to define
both the world-space coordinates x ∈ Ωe of a given element, as well as the elemental
shape functions φep = φp ◦ (χe)−1 and the corresponding polynomial space Pk(Ωe).
These shape functions can then be used within expansions (alongside appropriate
projections) to construct discrete representations uδ of the form

(2.2) uδ(x) =

|T (Ω)|∑
e=1

N(P,e)∑
n=1

ûenφ
e
n(x).

For a C0 basis, appropriate conditions need to be imposed on ûep to ensure continuity of
the global basis functions, typically through the use of an appropriate global assembly
operation [28]. This can be viewed as a non-square matrix-vector multiplication by
an assembly matrix A, so that the vector of all element local coefficients ul and the
corresponding global modes of the system ug are connected through the relationship
ug = Aul and ul = ATug.

Finally then, proceeding in a standard fashion and recalling the use of homoge-
neous Neumann boundary conditions, we multiply Equation (2.1) by a test function
v ∈ D(Ω), integrate both sides and apply the divergence theorem to arrive at the
weak form

(∇u,∇v)Ω + λ(u, v)Ω = −(f, v)Ω,

where

(u, v)Ω =

∫
Ω

u(x)v(x) dx.

Substituting an expansion for u and v of the form of Equation (2.2), and considering
a single element of the mesh, the left hand side leads to the of a discrete Helmholtz

MATRIX-FREE FINITE ELEMENT OPERATORS ON SIMPLICIAL ELEMENTS 5

matrix He with

[He]pq =

∫
Ωe

λφep(x)φeq(x) +∇φep(x) · ∇φeq(x) dx

=

∫
Ωst

[
λφp(ξ)φq(ξ) + (Je)−1∇φp(ξ) · (Je)−T∇φeq(ξ)

]
|Je| dξ,(2.3)

where Je is the corresponding Jacobian matrix of the coordinate transformation χe(ξ).

2.1. Operator evaluation. Obtaining solutions to Equation (2.1) relies on find-
ing solutions to the linear system Hûg = f , where f denotes the vector of coefficients
resulting from the projection of the forcing function f(x) onto the global modes that
span D(Ω), ûg is a corresponding vector of global coefficients for the unknown solu-

tion, and H = A
[⊕Nel

e=1 H
e
]
AT the globally-assembled Helmholtz matrix. In paral-

lel execution, where memory is distributed across multiple computational nodes, the
explicit construction of H is generally infeasible. Solutions to this system are there-
fore commonly found using iterative Krylov-type solvers, and in this specific case, the
symmetry of the system leads to the preconditioned conjugate gradient method being
a popular choice [43]. The action of the matrix-vector multiplication Hûg is therefore
evaluated in a manner which gives the same mathematical outcome, but without the
explicit construction of the matrix. The main costs in solving this system can there-
fore be attributed to the time spent in evaluation of H; communication costs in the
distributed assembly of the operator and the reductions necessary for iterative meth-
ods; and preconditioner performance that governs the number of iterations required
for convergence. In this paper, we only consider the effect of operator evaluation,
since for large problems this is frequently the dominant cost in computation [43].
Evaluation of H can be performed in a number of ways, each of which yield different
performance characteristics:

• Assembly of a process-local sparse matrix H combined with a distributed
assembly. In the past this has been demonstrated to yield good performance
at lower polynomial orders [40].

• Assembly of local, dense, elemental matrices He. The direct sum
⊕Nel

e=1 H
e

may be evaluated element-by-element using a series of dense linear algebra
routines from, for example BLAS (e.g. dgemv). This can then be com-
bined with a process-local and distributed assembly operation to evaluate
A, thereby evaluating the action of H without explicitly constructing the full
global system.

• Optionally, elemental matrices can be combined with static condensation, in
which degrees of freedom are associated with either the boundary or interior
of the element. A Schur complement technique is then applied to solve a
system comprising of the ‘shell’ of degrees of freedom lying on the boundary.
This is then coupled with an embarrassingly parallel solve for interior degrees
of freedom on each element, which can be precomputed for additional per-
formance. As this system is considerably smaller than that arising from the
full element, particularly in 3D owing to favourable surface-to-volume ratios,
this can result in substantial cost savings, particularly when combined with
a suitable preconditioner (see [17]). However, it does require the choice of a
local basis that admits a boundary/interior decomposition; common choices
such as Lagrange basis with appropriate nodes admit this decomposition, but
e.g. the Legendre basis does not. Furthermore, the tensor-product structure

6 D. MOXEY, R. AMICI AND R. M. KIRBY

for general elements is lost under this operation, meaning that local matrix
generation is required. The exception to this is for Cartesian quadrilateral
and hexahedral elements, which can use appropriate factorisations to recover
this structure [19].

• Finally, where the local elemental basis is constructed from a tensor product
of one-dimensional functions, the sum-factorisation technique can be applied
to construct a matrix-free operator evaluation, to explicitly preclude the con-
struction of He. As an example, given a one-dimensional basis φp(ξ) for a seg-
ment, a basis for a quadrilateral can be formed as φpq(ξ1, ξ2) = φp(ξ1)φq(ξ2).
Evaluation of an expansion at a given point can then be represented as

u(ξ1, ξ2) =

P∑
p=0

P∑
q=0

ûpqφp(ξ1)φq(ξ2) =

P∑
p=0

φp(ξ1)

[
P∑
q=0

ûpqφq(ξ2)

]
,

where the brackets denote the use of a temporary storage. At a given dimen-
sion d, and considering a tensor product of quadrature or solution points that
require evaluation, this technique substantially reduces operator evaluations
from O(P 2d) to O(P d+1). We note that in this matrix-free setting, precondi-
tioning poses a problem as many traditional techniques (e.g. AMG or ILU)
typically rely on the presence of a globally-assembled sparse matrix. How-
ever, for elliptic problems, the use of p-multigrid techniques for high-order
simulations is particularly prevalent in the literature at present (see e.g [25]).
By using a pointwise Jacobi-type smoother, performant preconditioning can
be achieved in a matrix-free manner.

The relative performance of these approaches, specifically on modern hardware,
has been considered previously in separate work (e.g. [26]), but only for quadrilateral
and hexahedral elements that readily admit the definition of a tensor-product basis.
Although in theory these element types can be used in arbitrary complex geome-
tries, the generation of unstructured hexahedral and quadrilateral meshes is presently
an open problem. In this paper, we therefore aim to consider the effectiveness of
this matrix-free evaluation in the context of simplicial-type elements such as trian-
gles, tetrahedra and prisms, which more readily align with current mesh generation
capabilities. To do this requires the selection of a basis permitting tensor product
decomposition, which we discuss in the following section.

2.2. Choice of polynomial basis. The selection of the polynomial basis on
each element is a key consideration of this paper. Much of the prior work considered
in Section 1 exploits the use of a tensor product of one-dimensional nodal Lagrange
basis functions, where on the standard segment [−1, 1], these are defined as

(2.4) `p(ξ) =
∏

0≤q≤P
q 6=p

ξ − ξ̂q
ξ̂p − ξ̂q

where ξ̂q ∈ [−1, 1] denote a set of P+1 points. Frequently, these are chosen to align or
collocate with an underlying quadrature (e.g. Gauss or Gauss-Lobatto points). This
‘classical’ nodal spectral element approach yields the performance benefit of trivial
interpolations, making the mass matrix diagonal (albeit without an exact integration
of its entries) and reducing the cost of Helmholtz operator evaluations. Although
this approach can readily be extended to higher dimensional tensor-product elements,

MATRIX-FREE FINITE ELEMENT OPERATORS ON SIMPLICIAL ELEMENTS 7

η = (η1, η2) ∈ [−1, 1]2

collapsed element
ξ = (ξ1, ξ2) ∈ Ωtri

st

standard element

χe(ξ)

x = (x1, x2) ∈ Ωe

curvilinear element

Fig. 1. Illustration of the three coordinate systems used in the representation of a high-order
triangle. A representative equally-spaced distribution of points is used to highlight the distribution
of quadrature points in the resulting high-order element.

a formulation of these basis functions inside hybrid or simplicial elements such as
triangles and tetrahedra leads to a set of basis functions that lack the tensor prod-
uct structure required to enable the use of sum factorisation. More details on this
approach can be found in e.g. [18].

To arrive at a tensor product formulation, we follow standard practice [20] and
employ the use of a square-to-triangle Duffy transformation [12] to define two inde-
pendent coordinate directions over which to perform the decomposition (or otherwise
use other similar mappings, e.g. [36]). This process is shown in Figure 1. Analytically,
for a triangle this mapping is defined as

η1 = 2
1 + ξ1
1− ξ2

− 1, η2 = ξ2.

Although this mapping introduces a singularity, this can be mitigated (without a
loss of convergence order) using an appropriate choice of quadrature, as we outline
in Section 2.3. Multiple applications of this transformation can be used to arrive at
similar coordinate spaces for higher dimensional elements. The evaluation of integrals
such as Equation (2.3) then takes place on the collapsed coordinate space, leading to
a double application of the chain rule so that

∇uδ(x) = GJe∇uδ(η).

Specifically, for the elements we consider here, we have that

Gtri =

 2

1− η2

1 + η1

1− η2

0 1

 , Gprism =

2

1− η3
0

1 + η1

1− η3

0 1 0
0 0 1

 ,

Gtet =

4

(1− η2)(1− η3)

2(1 + η1)

(1− η2)(1− η3)

2(1 + η1)

(1− η2)(1− η3)

0
2

1− η3

1 + η2

1− η3

0 0 1

 .
The integrals in Equation (2.3) are then evaluated over the collapsed coordinates η
as opposed to standard coordinates ξ.

8 D. MOXEY, R. AMICI AND R. M. KIRBY

With these coordinates in place, we may define two common choices of basis
functions which permit tensor-product decompositions and that we will consider in
this work. The first are Dubiner-type basis functions [11], which form an orthogonal
modal basis on the elemental space. For example, the triangular Dubiner basis is of
the form

ψpq(η) =
√

2P (0,0)
p (η1)︸ ︷︷ ︸
ψa

p(η1)

P (2p+1,0)
q (η2)(1− η2)p︸ ︷︷ ︸

ψb
pq(η2)

where P (α,β) denotes the standard Jacobi polynomial and the indices p and q lie in the
indexing set Itri. It is clear that, under a different indexing strategy where the limits
on inner summations now rely on outer summations, this basis can be decomposed
into the product of two one-dimensional functions for η1 and η2 respectively. For
example the interpolation of a expansion at a point η can be expressed as

uδ(η) =
P∑
p=0

ψap(η1)

[
Q−p∑
q=0

ûpqψ
b
pq(η2)

]
.

Triangular prisms and tetrahedra admit similar decompositions.
The second choice of tensor product basis is that presented in [37] and [20] and

used in Nektar++, in which ‘standard’ linear finite element modes which are 1 at
each vertex and linearly decay to zero at other vertices, are augmented with a set of
orthogonal interior high-order polynomials. This leads to a basis that is not strictly
orthogonal within across the entire basis for each element, but allows a natural route
to impose C0 connectivity and a separation into boundary and interior modes. For
completeness, this basis and its use in the various elemental expansions is defined in
Appendix A.

2.3. Discrete evaluation of the Helmholtz operator. To discretely evaluate
Equation (2.1), a final point of concern is that of quadrature, as the evaluation of the
weak Helmholtz matrices requires an integration over each element. With the selection
of an appropriate quadrature we obtain

(2.5) [H]pq ≈
NQ∑
n=1

∇φp(ηn)Je(ηn)−1|Je(ηn)|wnJe(ηn)−T∇φq(ηn),

where ηn denotes the distribution of quadrature points and wn the corresponding
weights. For tensor-product elements, common choices of quadrature include Gauss-
Lobatto points to allow accurate and fast integration. This naturally incorporates
tensor product orderings of quadrature points and thereby enables sum-factorisation
to be used in either forward projections to polynomial space, or interpolation from
polynomial to physical space.

On the other hand, the other element types do not typically utilise such quadra-
ture, instead opting for cubature-type rules that lose this structure, such as those seen
in [18]. In the formulation of a collapsed coordinate η however, we may opt to use
a similar distribution of Gauss points in each collapsed coordinate direction. Indeed,
an appropriate choice of quadrature in the direction of the collapsed coordinate also
permits us to effectively deal with the singularity that occurs as a function of collaps-
ing vertices. Typically this is accomplished with appropriately weighted Gauss-Radau
points, which exclude the endpoints corresponding to the collapsed vertices. This also
allows us to use one fewer integration point in this direction, owing to the increased

MATRIX-FREE FINITE ELEMENT OPERATORS ON SIMPLICIAL ELEMENTS 9

accuracy of integration compared to Gauss-Lobatto points. An illustrated distribu-
tion of quadrature in the resulting world-space element, which describes this process
for a triangle and the effects of the Duffy transform, can be viewed in Figure 1.

Finally, one further choice that must be made is the number of quadrature points
to select in each coordinate direction. As noted previously, for the classical Lagrange
interpolants of Equation (2.4), one might opt to select Q = P + 1 quadrature points,
so as to recover a diagonal mass matrix. For more complex models such as the Navier-
Stokes equations, higher orders of quadrature are frequently used to exactly integrate
non-linear terms (such as the convection operator) or highly curvilinear elements
where Je is a now a high-order polynomial [23, 29]. In this work, we opt to exactly
integrate the mass matrix but omit any over-integration effects, so that we select
Q = P + 2 Gauss-Lobatto points in coordinate directions that are not collapsed, and
Q = P + 1 Gauss-Radau points in coordinate directions that are collapsed.

3. Matrix-free SIMD implementation. The main challenge in designing ef-
ficient tensor-product matrix-free algorithms for simplicial elements is the increased
complexity of data layout and indexing as opposed to standard tensor-product ele-
ments. For example, tetrahedral expansions are represented by the summation

(3.1) uδ(ξ) =

P∑
p=0

Q−p∑
q=0

R−p−q∑
r=0

ûpqrφ
a
p(η1)φbpq(η2)φcpqr(η3).

The full form of summations for each element type is given in Appendix A. Although
the dependency of indexes here is clearly more complex than is seen in the hexahedron,
and will likely result in performance degradation owing to this property, our aim is
to quantify this and determine whether highly performant implementations are still
attainable in a simplicial element setting.

In this section, we give a brief overview of our implementation choices which
we believe permits an efficient evaluation of the discrete Helmholtz operator from
Equation (2.5) for unstructured elements. The main result of this work is to consider
this implementation in Section 4, where it will be evaluated on different architectures
of varying SIMD widths.

3.1. Data layout and SIMD strategy. The implementation of the matrix-
free problem in Equation (2.5) is done in a standalone benchmarking utility for the
Helmholtz operator, although the initial construction of basis data, their derivatives,
quadrature points and weights as well as other ancillary functions such as mesh con-
nectivity and parallelisation is performed using the Nektar++ framework [8, 31]. The
main purpose of this utility is to examine the use of explicit single-instruction multiple-
data (SIMD) instructions in order to achieve optimal performance for kernels which
evaluate the Helmholtz operator. As the name implies, these instructions allow more
than one data entry to be operated on (through e.g. multiplication or addition) dur-
ing a single CPU cycle. On modern hardware, this typically takes the form of 4 or
8 floating-point instructions (FLOPS) in a single cycle using either 256-bit or 512-
bit advanced vector instructions (AVX), denoted as AVX2 and AVX512 respectively.
Furthermore, the use of one or more fused-multiply add (FMA) units, which combine
the multiplication and addition operation a · b+ c into a single cycle, further enhance
the potential FLOPS available. In order to attain the maximum peak performance of
these architectures, codes must be written using these important instruction sets in
mind.

10 D. MOXEY, R. AMICI AND R. M. KIRBY

(a) contiguous layout (b) interleaved layout

Fig. 2. Contiguous vs. interleaved memory layout for a group of four elements, denoted by
different coloured blocks. Arrows denote the memory storage direction.

The precise way in which SIMD can be used in finite element formulations has
been the consideration of various previous studies. Broadly, SIMD may be applied in
three different ways:

• Assuming the data regarding expansion coefficients are stored in an element-
by-element ordering, we may choose to iterate over either 4 or 8 degrees of
freedom at a time and load them into a vector register. The main drawback
for this method is that the number of degrees of freedom is rarely divisible
by the vector width, and so padding must be used for each element. This
approach can be seen in [4, 5].

• We may alternatively choose to combine element data into groups correspond-
ing to the vector width of the architecture, as is seen in e.g. [14, 13, 26, 24, 2]
and visualised in Figure 2. For example, on an AVX2 machine with a 256-bit
vector width corresponding to 4 double-precision floating point numbers, we
may group 4 elements so that their data are interleaved in memory. In this
case, no padding per-element is required; however if the number of elements
is not divisible by the vector width then a small and indeed negligible degree
of padding will be required to mask the missing elements.

• Alternatively, if considering problems involving the function u and its three-
dimensional gradient ∇u, as would appear in e.g. the discontinuous Galerkin
method, the four components (u, ∂xu, ∂yu, ∂zu) can be loaded into a single
AVX register. However the limiting factor here is the restriction to three-
dimensional DG, as well as the need to combine this approach with these
previously mentioned in order to capitalise on wider vector widths such as
AVX512.

For simplicial-type elements, the interdependence of mode indices in each coor-
dinate direction means that the first choice above is vastly more difficult than the
second and, in all likelihood, more expensive, since each contraction would require a
different amount of padding as a function of the mode number. Moreover, since we
wish to make use of a C0 basis, rather than a DG setting in which derivatives are
desirable, as well as to consider 3D problems and the use of AVX512, it is clear that
the third choice here is not desirable either. We therefore adopt the second approach,
where we interleave element data into groups corresponding to the vector width of the

MATRIX-FREE FINITE ELEMENT OPERATORS ON SIMPLICIAL ELEMENTS 11

architecture. The same strategy is used to interleave storage of basis data and associ-
ated structures on the standard element such as quadrature points and weights. This
allows us to act on the group of elements simultaneously in, for example, interpolation
of the polynomial data at some point in an element, as well as other storage required
for e.g. the Jacobian Je and its determinant. The difference between a ‘standard’
contiguous ordering of element degrees of freedom and this interleaved ordering is
highlighted in Figure 2.

We additionally note that several performance optimisations can be made de-
pending on whether the reference-to-world mapping χe is affine or nonlinear. In
the former case, elements are planar-faced and parallelepipeds in the case of hex-
ahedral/prismatic/quadrilateral elements, whereas the latter gives the flexibility of
curvature to adapt to an underlying geometry. However, the affine case leads to ele-
mental Jacobian matrices Je that are constant, meaning that the d2 entries and its
determinant can be stored once per element. In the nonlinear case, we store these
entries at each quadrature point, meaning that far more memory is required to store
the mapping data in this case. The benchmarking code considers these two cases sep-
arately and optimises through the use of both template programming and appropriate
pointer arithmetic to reduce the memory footprint and/or FLOPS required in kernel
evaluations. We refer to these two cases as regular and deformed respectively in the
discussion below. We note that in some previous studies, further optimisation can be
made for Cartesian formulations, as each element has the same Jacobian determinant.
Since here we consider generally unstructured meshes where this will not be the case,
we do not consider this approach in this work.

In terms of other memory considerations, we also note that adjustments were
made throughout the code to ensure that any allocated memory are aligned to the
appropriate cache line sizes, to ensure the use of more optimal aligned vector loading
instructions. Additionally, basis functions, which can be thought of mathematically
as entries in a two dimensional array B where [B]ij = φi(ξj), are stored in one
dimensional flat arrays, indexed by both mode and quadrature point. The index over
quadrature point is always the fastest index. This was done to align with the memory
access pattern of the inner product kernel, described in the subsequent section, which
is the most frequently computed kernel within the Helmholtz operator. For basis
functions comprising multiple directions, such as the Dubiner basis φpq, the last index
is stored first so as to align with the layout of elemental degrees of freedom and ensure
contiguous memory access.

3.2. Programming considerations. We make a number of deliberate design
decisions in the implementation which are noted in this section. As noted in [2, 5]
and elsewhere, autovectorisation of code using a compiler is still a relatively difficult
problem. Reliance on a compiler alone to generate efficient SIMD code for even
relatively simple loop structures is therefore not usually possible. This is an important
factor in performance, since clearly as many AVX and FMA instructions as possible
are required to ensure good CPU utilisation. Additionally however, performance
penalties are incurred when frequent transitions are made between different kinds
of vector and legacy instructions are mixed; the density of these instructions can
therefore be maintained through the use of intrinsics.

To this end, our benchmarking code is written using C++ and makes use of com-
piler intrinsics to ensure the consistent and dense use of vector instructions. Template
programming, alongside operator overloading and a custom data type that encapsu-
lates the vector width of the processor and common vector operations on such data, is

12 D. MOXEY, R. AMICI AND R. M. KIRBY

used to produce accessible code without the need to call intrinsics functions directly
but retain performance. The vector data structure contains explicit support for FMA
instructions to enable these to be used where possible. Decompilation of the resulting
object code was performed to ensure that no additional instructions were inserted due
to the use of this technique.

Further to this, templates were used more generally within kernels to improve the
compiler’s ability to unroll loops and handle the complex structure of the nested loops
of the form of Equation (3.1) occurring within the operator evaluations. Specifically,
template parameters include the polynomial order and number of quadrature points
in each coordinate direction, the vector width being used and whether the element
is deformed or regular. In testing, we found the use of templating on these parame-
ters gave significant 20-30% improvements in execution times for more complex loop
structures found in triangles, prisms and tetrahedra. To enhance usability and pre-
clude the necessity for recompilation due to a change in polynomial order, a jump
table is used to select precompiled kernels from a range of common polynomial orders
between 1 ≤ P ≤ 10.

As noted in [32], the Helmholtz operator can be decomposed into a combination
of three routines:

• BwdTrans: performs a backwards transformation (polynomial interpolation)
onto the physical space, defined by equation (2.2), given the elemental coef-
ficients û and standard basis functions B;

• InnerProduct: calculates the L2 inner product (·, ·)Ω given a vector u de-
noting the function at a set of coordinates in physical space, along with
quadrature weights w and the basis (or its derivatives).

• TensorDerivative: calculates the partial derivatives of a polynomial ex-
pansion at physical points u, as represented on a tensor-product of Gauss
quadrature points, given the 1D derivative matrix D and appropriate map-
ping derivatives (Je)−1.

The combination of these operations can be seen in Algorithm 3.1 for the Helmholtz
operator. In the subsequent section, we will also consider their performance as stan-
dalone operators, as examined in [32, 40, 9].

3.3. Correction for C0 modified basis. As a final remark on implementation,
we give a brief note on the consideration of an effect of the tensor product storage of
the modified C0 basis, as described in [20]. This choice of basis relies on an additional
correction step in evaluating the modes of an expansion corresponding to any vertex
or edge mode that have been collapsed under the Duffy transform. As an example,
consider a linear expansion of the C0 basis on a triangle, which is given by

1∑
p=0

1−q∑
q=0

ûpqφpq(η) =

1∑
p=0

1−q∑
q=0

ûpqφ
a
p(η1)φbpq(η2).

Furthermore, we have that

φa0(η1) =
1− η1

2
, φa1(η1) =

1 + η1

2
, φb01(η1) =

1 + η2

2
.

The first two modes in this expansion recover the standard linear finite element modes
for a triangle; namely

φ00(η) =
ξ1 − ξ2

2
, φ10(η) =

1 + ξ1
2

.

MATRIX-FREE FINITE ELEMENT OPERATORS ON SIMPLICIAL ELEMENTS 13

Algorithm 3.1 Overview of the matrix free evaluation of the Helmholtz operator

procedure Helmholtz(û, w,B,∇B,D, (Je)−1, |Je|)
for each element group do

u←BwdTrans(û,B)
out← λ·InnerProduct(u,B, w, |Je|)
Du←TensorDerivative(u,D, (Je)−1)
if element is deformed then

for each quadrature point ξ̂n do
calculate Helmholtz metric M = (Je)−1(Je)−T

Du[n]←MDu[n]
end for

else
calculate element constant metric M = (Je)−1(Je)−T

for each quadrature point ξ̂n do
Du[n]←MDu[n]

end for
end if

end for
for each dimension d do

out← out+InnerProduct(Dud, ∂dB, w, |Je|)
end for

end procedure

However the mode corresponding to the collapsed vertex under this combination,
where p = 0 and q = 1, is given by

φ01(η) =
1− η1

2

1 + η2

2
6= 1 + ξ2

2

as desired for a linear finite element mode. The reason is that there is a missing
contribution arising from the collapsed vertex where η1 = η2 = 1. By constructing an
additional mode from the tensor product basis that corresponds to this contribution,
namely

1 + η1

2

1 + η2

2
,

we can correct for this omission to modify the mode so that

φ01(η) =

(
1− η1

2
+

1 + η1

2

)
1 + η2

2
=

1 + ξ2
2

.

The BwdTrans and InnerProduct kernels therefore need to be modified in order to
take this correction step into account. For a triangle, this amounts to a single cor-
rection of the mode corresponding to the top vertex. For the prismatic element, this
is required at all modes corresponding to the top collapsed edge. Finally, for the
tetrahedron, this is required for the two collapsed vertices as well as a collapsed edge.
Naturally, these corrections add additional floating point operations to the overall
evaluation, but have the potential to be masked by memory accesses if they occur
within a particularly memory-bound regime. In the subsequent section, we will de-
termine the overhead in terms of throughput of degrees of freedom that is incurred
by the choice of this basis.

14 D. MOXEY, R. AMICI AND R. M. KIRBY

Model Xeon E5-2697 v4 Xeon Gold 6130

Architecture Broadwell Skylake
SIMD width 256 bit 512 bit
Standard clock speed 2.3 GHz 2.1 GHz
AVX2 clock speed 2.0 GHz 1.7 GHz
AVX512 clock speed - 1.3 GHz
L3 cache size 46080 KB 22528 KB
Cores per socket 18 16
Sockets per node 2 2
Max node GFLOPS/s (AVX) 1152 870
Max node GFLOPS/s (AVX512) - 1331
Peak memory bandwidth 110 GB/s -

Table 1
Specifications for Intel CPUs used for testing of SIMD evaluation.

4. Results. In this section, we perform hardware tests of the SIMD Helmholtz
implementation of the previous section. After describing the hardware used for test-
ing, as well as our methodology for the tests, we will consider three methods of
evaluation of the Helmholtz kernel. The first will observe the throughput of evalua-
tion, i.e. the number of degrees of freedom that can be processed by the Helmholtz
kernel per second. We will then aim to more rigorously quantify the performance of
the kernel in terms of the percentage of peak performance through a roofline and at-
tained GFLOPS/s analysis. Finally, we consider the effects of the C0 basis correction
described in the previous section.

4.1. Hardware and test methodology. Tests have been conducted on two
CPU models with varying SIMD vector widths, in order to evaluate the effectiveness
of the implementations across hardware architectures. An outline of the key hardware
characteristics can be found in Table 1. In particular we consider tests on both
a Broadwell architecture, with a 256-bit AVX2 SIMD (8 DP FLOPS/cycle) and a
Skylake architecture, with a 512-bit AVX512 SIMD (16 DP FLOPS/cycle). Both
CPUs in these tests support two FMA units, doubling their FLOPS/cycle count to
16 and 32 respectively. Only a single node is considered in this work and execution is
performed using solely MPI parallelisation.

For each element type under consideration, structured meshes of the domain
Ω = [0, 1]d were generated using the Gmsh mesh generation software [16]. The num-
ber of elements generated is designed to be divisible by both the number of cores on
each node as well as the vector width of the architecture. In this manner, data are
not padded to align to vector widths, and furthermore when running across all cores
the mesh is perfectly partitioned and therefore each core theoretically performs equal
computational work. In order to examine the balance between memory bandwidth
and floating point computations at different polynomial orders, mesh sizes were also
adjusted to ensure that the memory footprint of all elemental degrees of freedom ex-
ceed the L3 cache size reported in Table 1. On Broadwell nodes, gcc version 6.3.0 was
used to compile the code using the compiler flags -march=native -funroll-loops,
and run using OpenMPI 2.0.2. On Skylake nodes, we use the gcc compiler version
6.4.0 and run using Intel MPI 2018. Power governors for the machines were set to
performance mode to ensure optimal performance, and MPI ranks were pinned to

MATRIX-FREE FINITE ELEMENT OPERATORS ON SIMPLICIAL ELEMENTS 15

1 2 3 4 5 6 7 8 9 10

Polynomial order p

109

6× 108

2× 109

3× 109

T
h

ro
u

gh
p

u
t

(D
oF

/
s)

Quad (regular)

Quad (deformed)

Tri (regular)

Tri (deformed)

1 2 3 4 5 6 7 8 9 10

Polynomial order p

108

109

T
h

ro
u

gh
p

u
t

(D
o
F

/s
)

Tet (regular)

Tet (deformed)

Prism (regular)

Prism (deformed)

Hex (regular)

Hex (deformed)

Fig. 3. Throughput analysis of the Helmholtz implementation for 2D (top) and 3D (bottom)
elements on the Broadwell E5-2697v4 processor, for regular and deformed geometries.

individual cores to ensure memory allocation in the appropriate NUMA region and
prevent excessive memory transfer between sockets. As well as ensuring the dedicated
use of these nodes, all tests results below report average times for around 1 minute
of kernel executions per polynomial order and element type in order to mitigate any
underlying machine noise or lag due to other processes.

4.2. Throughput analysis. In this first section, we consider the performance
of the Helmholtz kernels from the perspective of throughput, i.e. the number of
degrees of freedom processed by the kernels per second of execution. All of the tests

16 D. MOXEY, R. AMICI AND R. M. KIRBY

in this section consider only the modified C0 basis. However, as we do not consider
the effects of full C0 connectivity here (i.e. in the assembly of the overall system), in
this sense ‘degrees of freedom’ can be equated with the total number of local degrees
of freedom at a given polynomial order P , i.e.

(4.1) Ndof =

Nel∑
e=1

N(P, e).

Figure 3 outlines the throughput analysis for both two- and three-dimensional ele-
ments on the Broadwell architecture. A number of immediate trends can be identified.

In terms of regular elements, which have the least amount of memory required
for the operator evaluations, there is a clear hierarchy of performance between dimen-
sions and element type. Two-dimensional elements outperform three-dimensional, and
overall the ‘naturally’ tensor product quadrilateral and hexahedral elements outper-
form their simplicial counterparts. The prismatic element, which has greater tensor
product structure than the tetrahedron, owing to the single direction of collapsed
coordinates, sees this represented through a moderate performance increase over the
tetrahedron. There is a further clear trend in the data for regular elements, in that
throughput monotonically decays as polynomial order is increased. This is indicative
that the kernels are performant mostly in a FLOPS-bound regime: i.e. the increase
in polynomial order is matched by a corresponding increase in computational work
and thus a decrease in throughput.

On the other hand, deformed curvilinear elements exhibit a richer spectrum of
performance characteristics. One immediately clear conclusion is that the introduc-
tion of curvature into the kernel leads to a significant drop in throughput, as can be
anticipated from the increased memory storage required to represent the curvilinear
mapping χe and its spatially-variable Jacobian Je. This is a characteristic observed
in other matrix-free implementations such as [26]. However, at moderate polynomial
orders, there is generally either a mild increase in throughput from the linear order,
or at least a reduction in the rate of decrease compared against their regular element
counterparts. This is indicative that these operations are more memory bound, as the
lack of decrease in throughput indicates the increased computational work is masked
by memory transfer. The exception to this is at higher polynomial orders, where the
rate of decrease matches regular elements, indicating that the increased computational
effort has now pushed these cases into a more FLOPS-bound regime.

4.2.1. Skylake AVX512 throughput. To examine the effect of SIMD vector
width on performance, we also consider throughput on the Skylake architecture. In
particular, this architecture supports both 256- and 512-bit SIMD through AVX2 and
AVX512 instruction sets. In theory and neglecting implementation-specific issues,
the change from 256-bit to 512-bit SIMD implies a theoretical doubling of available
FLOPS and potential for doubling of throughput. Observing this rise in throughput
should therefore point towards the efficiency of implementation. Importantly however
we note that on Skylake processors this doubling of performance is not possible, as
the AVX512 base clock speed (1.3GHz) is considerably reduced in comparison to the
AVX2 base clock speed (1.7GHz) by around 25%, so as to ensure the processor sits
within the intended thermal envelope. This leads to a total theoretical performance
increase of around 53%, as seen from the processor statistics in Table 1.

Figure 4 shows the relative throughput of AVX2 vs. AVX512 on the Skylake
hardware for both regular and deformed three-dimensional elements. For regular
elements, where the regime is mostly FLOPS-bound, a ratio of 40-45% improvement

MATRIX-FREE FINITE ELEMENT OPERATORS ON SIMPLICIAL ELEMENTS 17

1 2 3 4 5 6 7 8 9 10

Polynomial order p

108

109

T
h

ro
u

gh
p

u
t

(D
oF

/
s)

Tet (AVX512)

Tet (AVX2)

Prism (AVX512)

Prism (AVX2)

Hex (AVX512)

Hex (AVX2)

1 2 3 4 5 6 7 8 9 10

Polynomial order p

108

2× 108

3× 108

4× 108

6× 108

T
h

ro
u

gh
p

u
t

(D
o
F

/s
)

Tet (AVX512)

Tet (AVX2)

Prism (AVX512)

Prism (AVX2)

Hex (AVX512)

Hex (AVX2)

Fig. 4. Throughput comparison of the Helmholtz kernel for 3D elements, comparing the use of
AVX versus AVX512 instructions for regular (top) and deformed (bottom) element types.

can be seen across most polynomial orders. Deformed elements on the other hand
exhibit less improvement at lower polynomial orders, presumably due to the increased
memory footprint of this regime. However, at higher orders, similar performance
increases can be observed as in the regular element case. The conclusions from these
figures therefore is that kernel efficiency appears to be high; however, in the next
section we will confirm this assertion through a more rigorous roofline model analysis.

4.2.2. Comparison against other work. In terms of determining the gen-
eral implementation efficiency, one possibility is to try to compare throughput results

18 D. MOXEY, R. AMICI AND R. M. KIRBY

against other studies in the literature, since these are generally reported in most other
work in this area. We note that the general order of magnitude of∼ 109 DoF/second in
terms of throughput attained for quadrilaterals and hexahedral elements on Broadwell
hardware is very similar to that seen in other existing studies such as [26]. However,
specific comparison to other work in the literature is complex due to the rich variety
of choices in terms of implementation and numerical setup that can be considered
on a study-by-study basis, as well as the specific hardware under consideration. For
example, the aforementioned work can capitalise on the symmetricity of Lagrangian
basis functions defined on Gauss-Lobatto points to reduce computational work (the
‘even-odd’ decomposition), which we do not consider here. Additionally, most other
work in this area considers only the matrix-free evaluation of the Laplacian opera-
tor, which has one fewer mass-matrix evaluation than the Helmholtz operator. In
our experiments, evaluation of the Laplacian leads to around a 10-20% increase in
throughput, so again can be seen to be roughly similar to existing work in this area.

4.3. Roofline analysis. To more adequately quantify the performance of the
kernel implementation in relation to the theoretical peak performance of the hardware,
in this section we consider an analysis of the computational performance by examining
the commonly-used roofline performance model [41]. This model considers that the
two main performance bottlenecks in algorithmic implementation are FLOPS/s and
memory bandwidth. By considering arithmetic intensity α of the algorithm as the
main independent variable, one can then consider a ‘roofline’ of performance defined
by

Max GFLOPS/s = min(peak GFLOPS/s, peak memory bandwidth× α).

Although this model has limitations, such as the lack of modelling of CPU caching
effects, generally it is recognised as a straightforward and visual way through which to
judge the potential of algorithms in attaining full utilisation of the available FLOPS
in relation to memory bandwidth limits.

To capture performance data required for this model, namely FLOPS/s and mem-
ory bandwidth, we make use of the Likwid performance monitoring and benchmarking
suite [38], which uses either per-core or socket-based ‘uncore’ hardware counters to
determine key performance characteristics. Tests were performed using Likwid ver-
sion 4.3.0 and the MEM DP performance group used to record memory bandwidth and
GFLOPS/s attained using the likwid-mpirun utility for parallel execution. Likwid
was also used to determine the peak memory bandwidth of the computational node,
recorded in Table 1, using likwid-bench with the stream mem avx fma test.

The results of this analysis are presented in Figure 5. This figure displays recorded
arithmetic intensity against GFLOPS/s for each shape at a range of polynomial orders
between 1 ≤ P ≤ 10. A general trend between all simulations, which is not presented
on the figure for clarity, is a steady increase in arithmetic intensity as polynomial order
is increased, so that marker points from left to right generally denote simulations at
increasing polynomial order. From the figure, it is evident that in all cases there is a
clear distinction here between the FLOPS-bound regular elements and the memory-
bound deformed elements, which was highlighted in the previous section in terms of
throughput trends.

Furthermore, these roofline models allow us to firmly validate the efficiency of
the implementation. In the case of deformed elements, simulations are close to the
memory-bandwidth imposed roofline, aside from at higher polynomial orders where
the simulations tend to become more FLOPS-bound. Similarly, for regular elements,

MATRIX-FREE FINITE ELEMENT OPERATORS ON SIMPLICIAL ELEMENTS 19

1
4

1
2 1 2 4 8 16 32 64 128 256

Arithmetic intensity

32

64

128

256

512

1024

G
F

L
O

P
S

Peak FLOPS, 2.0 GHz with FMA/AVX2

without FMA

without vectorisation

Quad (regular)

Quad (deformed)

Tri (regular)

Tri (deformed)

1
4

1
2 1 2 4 8 16 32 64 128 256

Arithmetic intensity

32

64

128

256

512

1024

G
F

L
O

P
S

Peak FLOPS, 2.0 GHz with FMA/AVX2

without FMA

without vectorisation

Tet (regular)

Tet (deformed)

Prism (regular)

Prism (deformed)

Hex (regular)

Hex (deformed)

Fig. 5. Roofline analysis of the Helmholtz implementation for 2D (top) and 3D (bottom)
elements on the Broadwell E5-2697v4 processor, for both regular and deformed geometries.

the results clearly indicate that simulations are running at FLOPS counts that re-
quire heavy use of vectorisation and consistent use of FMA, particularly in two di-
mensions. We also note that, when not limited by memory bandwidth, FLOPS counts
are typically within 50-70% of the peak attainable. To highlight this, we consider the
GFLOPS/s attained in Helmholtz evaluation of a regular tetrahedron in Figure 6 as a
typical example of performance in this regime. This figure additionally highlights the
same trend of increased performance through use of AVX512 instructions observed in
the previous section and Figure 4.

20 D. MOXEY, R. AMICI AND R. M. KIRBY

1 2 3 4 5 6 7 8 9 10
P

0

200

400

600

800

G
F

L
O

P
/s

Tet (Broadwell)

Tet (Skylake, AVX2)

Tet (Skylake, AVX512)

Fig. 6. GFLOPS/s of Helmholtz operator between the three architectures under consideration
for regular tetrahedral elements.

Returning to the roofline plots, another clear observation is that simplicial ele-
ments result in broadly larger arithmetic intensity as the element type is made more
compact; that is, tetrahedra offer greater arithmetic intensity than prisms, and prisms
offer greater arithmetic intensity than hexahedra. Although it may appear somehow
counterintuitive to observe this trend, the overall memory footprint of these elements
reduces as the element is made more compact. At the same time, for the C0 basis,
the use of repeated Duffy transformations leads to more corrections in tetrahedra
than prisms, and thus offers the opportunity to increase FLOPS further for the same
memory transfer.

4.4. Effect of correction in modified C0 basis. As a final consideration for
implementation of tensor-product kernels for simplicial elements, in this section we
examine the use of the orthogonal Dubiner-type basis in place of the C0 basis. It is
worth emphasising that the orthogonal basis is frequently used in popular discontin-
uous Galerkin formulations for various systems of equations, which further generalise
the findings of this study beyond simply the C0 formulation.

Figure 7 highlights the difference in throughput between the two choices of basis.
As can be expected, it is clear that the use of the orthogonal basis results in a higher
throughput of degrees of freedom, as no additional corrections of the form of Sec-
tion 3.3 are required. Further to this, as the number of modes that require correction
increases as we move from triangle to prism to tetrahedron, so too does the gap in
performance.

In Figure 8, we consider the effects of the orthogonal basis in the context of the
roofline model. For simplicity of observation, we consider only regular elements and
omit quadrilateral and hexahedral elements. Comparing against the results from the
modified C0 basis in Figure 5, it is clear that the peak FLOPS attained is roughly

MATRIX-FREE FINITE ELEMENT OPERATORS ON SIMPLICIAL ELEMENTS 21

1 2 3 4 5 6 7 8 9 10

Polynomial order p

109

T
h

ro
u

gh
p

u
t

(D
oF

/
s)

Tet (modified)

Tet (orthogonal)

Prism (modified)

Prism (orthogonal)

Tri (modified)

Tri (orthogonal)

Fig. 7. Throughput analysis to examine the correction step used within the C0 basis, against
the orthogonal basis in which no correction is necessary.

1
4

1
2 1 2 4 8 16 32 64 128 256

Arithmetic intensity

32

64

128

256

512

1024

G
F

L
O

P
S

Peak FLOPS, 2.0 GHz with FMA/AVX2

without FMA

without vectorisation

Tet (orthogonal)

Prism (orthogonal)

Tri (orthogonal

Fig. 8. Roofline analysis of the Helmholtz implementation for simplicial elements on the Broad-
well E5-2697v4 processor using an orthogonal basis.

comparable (or slightly higher) than that previously observed. However, at the same
time, arithmetic intensity has been somewhat reduced in this regime, as viewed by
the distinct shift to the left of all results, owing to the lack of correction step required
in this basis.

22 D. MOXEY, R. AMICI AND R. M. KIRBY

4.5. Effect of C0 assembly operation. All of the results of the previous sec-
tions have focused on the implementation of elementally-local kernels; i.e. without
the consideration of how basis functions across elements are connected as part of the
appropriate CG or DG function space. In this section, we perform a further series
of tests to incorporate the effects of global assembly in a C0 setting, so that basis
functions are forced to be continuous across elemental boundaries. This is imposed
through the local-to-global mapping A. Since this operation incurs a memory indi-
rection, we expect to see a reduction in throughput and achieveable FLOPS.

In order to examine this effect, the benchmarking utility leverages the graph par-
titioner SCOTCH [10] to perform the initial domain decomposition, so as to give
each processor equal work and minimise communication costs between MPI ranks.
Additionally, for assembly across processors, we use the gslib gather-scatter library
(described briefly in [30]) which is part of the Nek5000 spectral element solver [15].
The global Helmholtz operator is then performed in the manner described in Algo-
rithm 4.1.

Algorithm 4.1 Overview of the evaluation of the global Helmholtz operator

procedure GlobalHelmholtz(ûg, w,B,∇B,D, (Je)−1, |Je|,A)
v̂g ← 0 . zero resulting output vector v̂g
for each element group e do

ûl ← AT ûg[e] . global-to-local into small, reused temporary storage ûl
ûl ←Helmholtz(ûl, w,B,∇B,D, (Je)−1, |Je|)
v̂g ← v̂g +Aûl . assembly of local contributions from group e

end for
v̂g ←gsmpi(v̂g,A) . perform parallel assembly

end procedure

To highlight the performance effects arising from the assembly operator, we per-
form the same throughput and roofline tests as in the previous sections. Throughput
is measured using the same definition as before; i.e. we measure the number of lo-
cal degrees of freedom processed per second, so as to provide a common baseline for
comparison between the two schemes. Figure 9 shows the results from these tests
compared against the local elemental operators measured in the previous section. As
expected, all element types incur a reduction in throughput due to the additional cost
of assembly. Although there is a higher relative cost for assembly at lower polynomial
orders, likely owing to the larger number of elements and higher average node valencies
in this regime, there is a fairly constant drop in throughput across polynomial order
and element type, indicating that assembly costs are comparable between polynomial
orders. This is expected since, in these tests, mesh sizes vary with polynomial order
so as to keep the number of degrees of freedom relatively constant, meaning that com-
munication and memory indirection costs will be roughly equivalent. This trend is
also reflected in the roofline modelling, where all element types see a reduction in the
FLOPS obtained, as well as a shift to the left in terms of arithmetic intensity. Both
of these features can be attributed to the additional memory bandwidth required for
assembly.

5. Conclusions. In this paper, we have presented formulations of the Helmholtz
operator evaluation for simplicial elements that leverages explicit SIMD instructions,
sum-factorisation and tensor-product basis functions to achieve near-peak perfor-
mance across a range of both polynomial orders and AVX2 and AVX512 hardware

MATRIX-FREE FINITE ELEMENT OPERATORS ON SIMPLICIAL ELEMENTS 23

1 2 3 4 5 6 7 8 9 10

Polynomial order p

109

T
h

ro
u

gh
p

u
t

(D
oF

/
s)

Tet (global)

Tet (local)

Prism (global)

Prism (local)

Hex (global)

Hex (local)

1
4

1
2 1 2 4 8 16 32 64 128 256

Arithmetic intensity

32

64

128

256

512

1024

G
F

L
O

P
S

Peak FLOPS, 2.0 GHz with FMA/AVX2

without FMA

without vectorisation

Tet (global)

Tet (local)

Prism (global)

Tet (local)

Hex (global)

Hex (local)

Fig. 9. Throughput (top) and roofline (bottom) analysis of the Helmholtz implementation for
3D elements on the Broadwell E5-2697v4 processor for global C0 operator evaluations.

types. Formulations such as these are highly important in the context of simulation
across complex geometries, for which the generation of all-hexahedral meshes is still
an open challenge.

It is clear and inevitable that simplicial element types will struggle to attain the
same performance of the more naturally tensor-product structure of quadrilateral and
hexahedral elements. With this said, in the worst case of regular elements which have
no curvature, prismastic and triangular elements in particular suffer a reduction of
throughput by only a factor of around 1.5–2 when compared against hexahedra and

24 D. MOXEY, R. AMICI AND R. M. KIRBY

quadrilaterals respectively, depending on the polynomial order. Tetrahedra inevitably
suffer a more significant drop in throughput by a factor of around 5–8. This is in line
with expectations: since we use a square or cube of (collapsed) quadrature points for
all element types, and our meshes contain two or six times the number of elements for
triangles/prisms and tetrahedra respectively, we see that evaluations costs of a triangle
are roughly equivalent to a quadrilateral, and a prism or tetrahedron equivalent to a
hexahedron.

On the other hand, deformed elements present a wider range of performance
characteristics, owing to a larger memory footprint due to the storage of a nonlinear
Jacobian Je matrix at each quadrature point. Here, at low to moderate polynomial
orders, the difference in performance between the element types is considerably less
pronounced. In all cases, roofline modelling of the implementation has demonstrated
the high performance of resulting kernels as being within 50–70% of peak attainable
FLOPS across all architectures under consideration.

We note that the performance of prismatic elements is important in particular,
since for complex geometries in e.g. fluid dynamics, meshes tend to be generated using
a combination of prismatic elements in the boundary layer, and tetrahedra in the
remainder of the interior [34]. The presence of a boundary layer comprising prismatic
elements can account for between 30–50% of the total element count, indicating the
potential for significant performance increases against standard full-system or static-
condensation solves.

Further to this, we have demonstrated that the choice of basis (between the
modified C0 basis and orthogonal Dubiner basis) does impact on performance due to
the correction steps required for the C0 basis. However, this reduction in throughput
does not necessarily paint the full picture. In the context of continuous Galerkin,
this performance gap is likely recovered by the increased complexity of imposing
continuity through the assembly mapping A for the Dubiner basis. In a discontinuous
Galerkin setting, unlike the orthogonal basis, the C0 basis offers a boundary-interior
decomposition which makes the introduction of face flux terms straightforward. On
the other hand, additional computational cost is required in order to impose this
flux term on all degrees of freedom of the orthogonal basis, which does not have the
boundary-interior property.

Finally, we have examined the additional costs incurred in a global C0 assembly
operation. Our tests indicate that there is an expected reduction in performance
across element types and polynomial orders. We note that the use of structured
grids in this study represents a more favourable case for the simplicial element types,
where for complex geometries one may find much larger node valencies, requiring a
higher level of memory indirection and therefore further reductions in the observed
throughput. However, we do see that the trends observed in the local operator are
still seen in this regime.

In this light, there is a clear direction to pursue further research in this area. In
particular, there is the possibility to consider the application in a wider variety of use
cases, with a particular focus on elliptic solvers for the incompressible Navier-Stokes
equations, but under a number of different discretisation choices in order to examine
the resulting performance characteristics. Other areas of potential study include the
generalisation of these results to other many-core architectures; in particular, the use
of GPUs in which vector widths are considerably larger than the AVX512 instructions
considered here.

MATRIX-FREE FINITE ELEMENT OPERATORS ON SIMPLICIAL ELEMENTS 25

Acknowledgements. We would like to thank M. Kronbichler for a number of
helpful discussions. DM acknowledges support from the EPSRC Platform Grant
PRISM (EP/R029423/1). RA and RK acknolwedge support from the Air Force Re-
search Laboratory under award FA8650-17-C-5269.

Appendix A. Modified C0 basis.
The modified C0 basis for the elements we consider in this work are defined using

three tensor product bases:

φap(ξ) =

1−ξ

2 p = 0
1+ξ

2 p = 1(
1−ξ

2

)(
1+ξ

2

)
P 1,1
p−1(ξ) 2 ≤ p < P

φbpq(ξ) =

φq(ξ) p = 0 0 ≤ q < P(

1−ξ
2

)p
1 ≤ p < P q = 0(

1−ξ
2

)p (
1+ξ

2

)
P 2p−1,1
q−1 (ξ) 1 ≤ p < P, 1 ≤ q < P − p

φcpqr(ξ) =

φqr(ξ) p = 0 0 ≤ q < P 0 < r < P − q(

1−ξ
2

)p+q
1 ≤ p < P, 0 ≤ q < P − p, r = 0(

1−ξ
2

)p+q (
1+ξ

2

)
P 2p+2q−1,r
r−1 (ξ) 1 ≤ p < P, 0 ≤ q < P − p, 1 ≤ r < P − p− q

where P , Q and R denote the polynomial order in each coordinate direction, and
Pα,βp (ξ) is the standard Jacobi polynomial. Elemental expansions then take the form

uδquad(ξ) =

P∑
p=0

Q∑
q=0

ûpqφ
a
p(ξ1)φaq (ξ2)

uδtri(ξ) =

P∑
p=0

Q−p∑
q=0

ûpqφ
a
p(η1)φbpq(η2)

uδhex(ξ) =

P∑
p=0

Q∑
q=0

R∑
r=0

ûpqrφ
a
p(ξ1)φaq (ξ2)φar(ξ3)

uδprism(ξ) =
P∑
p=0

Q∑
q=0

R−p∑
r=0

ûpqrφ
a
p(η1)φaq (η2)φbpr(η3)

uδtet(ξ) =

P∑
p=0

Q−p∑
q=0

R−p−q∑
r=0

ûpqrφ
a
p(η1)φbpq(η2)φcpqr(η3)

where η denote appropriate collapsed coordinates, and the above are amended with
appropriate corrections as noted in [20] and Section 3.3.

REFERENCES

[1] M. Ainsworth, G. Andriamaro, and O. Davydov, Bernstein–Bézier Finite Elements of
Arbitrary Order and Optimal Assembly Procedures, SIAM J. Sci. Comput., 33 (2011),
pp. 3087–3109.

[2] W. Bangerth, C. Burstedde, T. Heister, and M. Kronbichler, Algorithms and data struc-
tures for massively parallel generic adaptive finite element codes, ACM Transactions on
Mathematical Software (TOMS), 38 (2011), p. 14.

26 D. MOXEY, R. AMICI AND R. M. KIRBY

[3] W. Bangerth, R. Hartmann, and G. Kanschat, Deal. II—a general-purpose object-oriented
finite element library, ACM Transactions on Mathematical Software (TOMS), 33 (2007),
p. 24.

[4] P. Bastian, C. Engwer, J. Fahlke, M. Geveler, D. Göddeke, O. Iliev, O. Ippisch,
R. Milk, J. Mohring, and S. Müthing, Hardware-based efficiency advances in the EXA-
DUNE project, in Software for Exascale Computing-SPPEXA 2013-2015, Springer, 2016,
pp. 3–23.

[5] P. Bastian, C. Engwer, D. Göddeke, O. Iliev, O. Ippisch, M. Ohlberger, S. Turek,
J. Fahlke, S. Kaulmann, and S. Müthing, EXA-DUNE: Flexible PDE solvers, numerical
methods and applications, in European Conference on Parallel Processing, Springer, 2014,
pp. 530–541.

[6] P. Bastian, F. Heimann, and S. Marnach, Generic implementation of finite element methods
in the distributed and unified numerics environment (DUNE), Kybernetika, 46 (2010),
pp. 294–315.

[7] C. Burstedde, L. C. Wilcox, and O. Ghattas, P4est: Scalable algorithms for parallel adap-
tive mesh refinement on forests of octrees, SIAM Journal on Scientific Computing, 33
(2011), pp. 1103–1133.

[8] C. D. Cantwell, D. Moxey, A. Comerford, A. Bolis, G. Rocco, G. Mengaldo,
D. de Grazia, S. Yakovlev, J.-E. Lombard, D. Ekelschot, B. Jordi, H. Xu, Y. Mo-
hamied, C. Eskilsson, B. Nelson, P. Vos, C. Biotto, R. M. Kirby, and S. J. Sherwin,
Nektar++: An open-source spectral/hp element framework, Computer Physics Communi-
cations, 192 (2015), pp. 205–219.

[9] C. D. Cantwell, S. J. Sherwin, R. M. Kirby, and P. H. J. Kelly, From h to p efficiently:
Strategy selection for operator evaluation on hexahedral and tetrahedral elements, Com-
puters & Fluids, 43 (2011), pp. 23–28.

[10] C. Chevalier and F. Pellegrini, PT-Scotch: A tool for efficient parallel graph ordering,
Parallel Computing, 34 (2008), pp. 318–331.

[11] M. Dubiner, Spectral methods on triangles and other domains, Journal of Scientific Computing,
6 (1991), pp. 345–390.

[12] M. G. Duffy, Quadrature over a pyramid or cube of integrands with a singularity at a vertex,
SIAM journal on Numerical Analysis, 19 (1982), pp. 1260–1262.

[13] N. Fehn, W. A. Wall, and M. Kronbichler, Efficiency of high-performance discontinu-
ous Galerkin spectral element methods for under-resolved turbulent incompressible flows,
International Journal for Numerical Methods in Fluids, (2018).

[14] N. Fehn, W. A. Wall, and M. Kronbichler, Robust and efficient discontinuous Galerkin
methods for under-resolved turbulent incompressible flows, Journal of Computational
Physics, 372 (2018), pp. 667–693.

[15] P. F. Fischer, An overlapping Schwarz method for spectral element solution of the incompress-
ible Navier–Stokes equations, Journal of Computational Physics, 133 (1997), pp. 84–101.

[16] C. Geuzaine and J.-F. Remacle, Gmsh: A 3-D finite element mesh generator with built-in
pre-and post-processing facilities, International journal for numerical methods in engineer-
ing, 79 (2009), pp. 1309–1331.

[17] L. Grinberg, D. Pekurovsky, S. J. Sherwin, and G. E. Karniadakis, Parallel performance
of the coarse space linear vertex solver and low energy basis preconditioner for spectral/hp
elements, Parallel Computing, 35 (2009), pp. 284–304.

[18] J. S. Hesthaven and T. Warburton, Nodal Discontinuous Galerkin Methods: Algorithms,
Analysis, and Applications, Springer Science & Business Media, 2007.

[19] I. Huismann, J. Stiller, and J. Fröhlich, Factorizing the factorization–a spectral-element
solver for elliptic equations with linear operation count, Journal of Computational Physics,
346 (2017), pp. 437–448.

[20] G. Karniadakis and S. Sherwin, Spectral/Hp Element Methods for Computational Fluid
Dynamics, Oxford University Press, 2013.

[21] G. E. Karniadakis, M. Israeli, and S. A. Orszag, High-order splitting methods for the
incompressible Navier-Stokes equations, Journal of Computational Physics, 97 (1991),
pp. 414–443.

[22] R. C. Kirby, Fast simplicial finite element algorithms using Bernstein polynomials, Nu-
merische Mathematik, 117 (2011), pp. 631–652.

[23] R. M. Kirby and G. E. Karniadakis, De-aliasing on non-uniform grids: Algorithms and
applications, Journal of Computational Physics, 191 (2003), pp. 249–264.

[24] B. Krank, N. Fehn, W. A. Wall, and M. Kronbichler, A high-order semi-explicit discon-
tinuous Galerkin solver for 3D incompressible flow with application to DNS and LES of
turbulent channel flow, Journal of Computational Physics, 348 (2017), pp. 634–659.

MATRIX-FREE FINITE ELEMENT OPERATORS ON SIMPLICIAL ELEMENTS 27

[25] M. Kronbichler and W. A. Wall, A performance comparison of continuous and discon-
tinuous Galerkin methods with fast multigrid solvers, arXiv preprint arXiv:1611.03029,
(2016).

[26] M. Kronbichler and W. A. Wall, A performance comparison of continuous and discontinu-
ous Galerkin methods with fast multigrid solvers, SIAM Journal on Scientific Computing,
40 (2018), pp. A3423–A3448.

[27] J.-E. W. Lombard, D. Moxey, S. J. Sherwin, J. F. A. Hoessler, S. Dhandapani, and
M. J. Taylor, Implicit large-eddy simulation of a wingtip vortex, AIAA Journal, 54 (2016),
pp. 506–518.

[28] G. R. Markall, A. Slemmer, D. A. Ham, P. H. J. Kelly, C. D. Cantwell, and S. J.
Sherwin, Finite element assembly strategies on multi-core and many-core architectures,
International Journal for Numerical Methods in Fluids, 71 (2013), pp. 80–97.

[29] G. Mengaldo, D. de Grazia, D. Moxey, P. E. Vincent, and S. J. Sherwin, Dealiasing
techniques for high-order spectral element methods on regular and irregular grids, Journal
of Computational Physics, 299 (2015), pp. 56–81.

[30] K. Mittal, S. Dutta, and P. Fischer, Nonconforming Schwarz-spectral element methods for
incompressible flow, Computers & Fluids, 191 (2019), p. 104237.

[31] D. Moxey, C. D. Cantwell, Y. Bao, A. Cassinelli, G. Castiglioni, S. Chun, E. Juda,
E. Kazemi, K. Lackhove, J. Marcon, G. Mengaldo, D. Serson, M. Turner, H. Xu,
J. Peiró, R. M. Kirby, and S. J. Sherwin, Nektar++: Enhancing the capability and ap-
plication of high-fidelity spectral/hp element methods, Computer Physics Communications,
(2019), p. 107110.

[32] D. Moxey, C. D. Cantwell, R. M. Kirby, and S. J. Sherwin, Optimizing the performance of
the spectral/hp element method with collective linear algebra operations, Computer Meth-
ods in Applied Mechanics and Engineering, 310 (2016), pp. 628–645.

[33] D. Moxey, D. Ekelschot, Ü. Keskin, S. J. Sherwin, and J. Peiró, High-order curvilinear
meshing using a thermo-elastic analogy, Computer-Aided Design, 72 (2016), pp. 130–139.

[34] D. Moxey, M. D. Green, S. J. Sherwin, and J. Peiró, An isoparametric approach to high-
order curvilinear boundary-layer meshing, Computer Methods in Applied Mechanics and
Engineering, 283 (2015), pp. 636–650.

[35] A. Peplinski, P. F. Fischer, and P. Schlatter, Parallel performance of h-type Adaptive
Mesh Refinement for Nek5000, in Proceedings of the Exascale Applications and Software
Conference 2016, ACM, 2016, p. 4.

[36] M. D. Samson, H. Li, and L.-L. Wang, A new triangular spectral element method I: Imple-
mentation and analysis on a triangle, Numerical Algorithms, 64 (2013), pp. 519–547.

[37] S. J. Sherwin and G. E. Karniadakis, A new triangular and tetrahedral basis for high-order
(hp) finite element methods, International Journal for Numerical Methods in Engineering,
38 (1995), pp. 3775–3802.

[38] J. Treibig, G. Hager, and G. Wellein, Likwid: A lightweight performance-oriented tool
suite for x86 multicore environments, in Parallel Processing Workshops (ICPPW), 2010
39th International Conference On, IEEE, 2010, pp. 207–216.

[39] M. Turner, J. Peiró, and D. Moxey, Curvilinear mesh generation using a variational frame-
work, Computer-Aided Design, 103 (2018), pp. 73–91.

[40] P. E. Vos, S. J. Sherwin, and R. M. Kirby, From h to p efficiently: Implementing finite
and spectral/hp element methods to achieve optimal performance for low-and high-order
discretisations, Journal of Computational Physics, 229 (2010), pp. 5161–5181.

[41] S. Williams, A. Waterman, and D. Patterson, Roofline: An insightful visual performance
model for multicore architectures, Communications of the ACM, 52 (2009), pp. 65–76.

[42] F. D. Witherden, A. M. Farrington, and P. E. Vincent, PyFR: An open source framework
for solving advection–diffusion type problems on streaming architectures using the flux
reconstruction approach, Computer Physics Communications, 185 (2014), pp. 3028–3040.

[43] S. Yakovlev, D. Moxey, S. J. Sherwin, and R. M. Kirby, To CG or to HDG: A comparative
study in 3D, Journal of Scientific Computing, 67 (2016), pp. 192–220.

	Introduction
	Theory and background
	Operator evaluation
	Choice of polynomial basis
	Discrete evaluation of the Helmholtz operator

	Matrix-free SIMD implementation
	Data layout and SIMD strategy
	Programming considerations
	Correction for C0 modified basis

	Results
	Hardware and test methodology
	Throughput analysis
	Skylake AVX512 throughput
	Comparison against other work

	Roofline analysis
	Effect of correction in modified C0 basis
	Effect of C0 assembly operation

	Conclusions
	Appendix A. Modified C0 basis
	References

