
A comparison of the shared-memory parallel

programming models OpenMP, OpenACC and Kokkos

in the context of implicit solvers for high-order FEM

Jan Eichstädt1, Martin Vymazal1, David Moxey2, Joaquim Peiró1

Abstract

We consider the application of three performance-portable programming
models in the context of a high-order spectral element, implicit time-stepping
solver for the Navier-Stokes equations. We aim to evaluate whether the use
of these models allows code developers to deliver high-performance solvers
for computational fluid dynamics simulations that are capable of effectively
utilising both many-core CPU and GPU architectures. Using the core elliptic
solver for the Navier-Stokes equations as a benchmarking guide, we evaluate
the performance of these models on a range of unstructured meshes and give
guidelines for the translation of existing codebases and their data structures
to these models.

Keywords: Shared-memory parallel programming models, OpenMP ,
OpenACC , Kokkos , Helmholtz equation, FEM

1. Introduction

The use of computational fluid dynamics (CFD) in engineering design is
now well-established practice. Such usage requires quick turnover of simu-
lations in order to provide meaningful input into the design process. Sim-
pler models such as Reynolds-Averaged Navier-Stokes (RANS) and Detached
Eddy Simulation (DES) provide a route to computationally less expensive
simulations, but at the cost of substantial reduction in accuracy, partic-
ularly for geometries admitting highly unsteady and transitional flows. Al-
though higher fidelity models and, in particular, large eddy simulations (LES)

1Department of Aeronautics, Imperial College London
2College of Engineering, Mathematics and Physical Sciences, University of Exeter

Preprint submitted to Computer Physics Communications 6th March 2020

provide a route to increased accuracy for these flows, they come at substantial
increases in computational cost. Major efforts within CFD are therefore tar-
geted at developing efficient LES codes and give the capability for overnight
production runs of industrial scale LES.

One of the main issues that has been identified in producing such codes
is the choice of numerical method that underpins the simulation. Low-order
finite volume methods have long been the staple choice of industrial CFD soft-
ware. However, such methods come with relatively low levels of arithmetic
intensity: the balance between floating point operations (FLOP) and memory
bandwidth. At the same time, current architectural trends in high perform-
ance computing (HPC) systems steer algorithm design towards higher arith-
metic intensity, since memory latency and bandwidth continuously undergo a
slower improvement compared with FLOP performance increases. This nat-
urally limits the performance gains that can be realised on modern hardware
using lower-order methods. To date therefore, the combination of low-order
methods with LES models has typically not shown a sufficient increase in
fidelity in the resulting solution fields to justify the additional computational
cost.

This has driven CFD practitioners to contemplate alternative numerical
discretisations with more favourable performance characteristics. In partic-
ular, higher order finite element methods and their variants, such as discon-
tinuous Galerkin and flux reconstruction methods, offer an attractive altern-
ative to classical low-order methods: numerically, low diffusion and disper-
sion error enable flow structures to be more accurately propagated across long
convective lengths, and their higher arithmetic intensity allows for a more
effective balance of floating point operations against memory bandwidth, as
demonstrated in for example [1].

Although the theoretical performance of modern hardware is continu-
ously improving, the hardware itself is becoming increasingly heterogeneous.
Software is thus increasingly challenging to code and maintain for different
architectures, particularly those that rely on a mixture of CPU and GPU
hardware. This has lead to interest in how different programming models
can be constructed in order to better separate algorithmic from implementa-
tional concerns, providing performance portable and architecture independ-
ent models.

The aim of this work is to assess three such programming models, namely
Kokkos [2], OpenMP [3], and OpenACC [4], in the context of high-order
methods for CFD. Aspects to be compared are the implementational effort

2

and code maintainability, as well as the performance and its portability across
architectures. In particular, we focus on implicit time-stepping Navier-Stokes
solvers, as turbulent flow physics drives the algorithmic choices towards these
schemes which avoid severe CFL number restrictions associated with explicit
schemes.

This work provides novelty from a number of perspectives. Firstly, al-
though performance portability aspects of individual programming models
are regularly assessed, the corresponding results are still not meaningful
enough for our purpose. Common benchmark problems are most often based
on kernels for BLAS operations, or so-called mini-applications or mini-apps
for a variety of solver types. Examples of these can be found in a number of
parallel benchmark suites, e.g. [5, 6, 7, 8, 9]. In this approach, stripped-down
standalone versions of the core algorithms that form complete solvers are im-
plemented. This allows for a simpler development environment, whilst still
ensuring generally representative performance characteristics. Such mini-
apps then allow for easier performance benchmarking and experimentations
with programming models and other aspects, such as utilised hardware or
compiler versions. While each mini-app solver can consist either of bespoke
or of standard BLAS-type kernels, the relative weights of these kernels and
their interactions will still be an important factor in the overall performance,
so that isolated evaluations of individual kernels alone will not yield mean-
ingful enough results. The mini-application that comes the closest to our
purpose would be miniFE of the Mantevo suite [6]: however, this is only for
a linear finite element solver, whereas we are interested in high-order finite
element solvers.

In this article we will follow this approach to develop a mini-app to model
the performance characteristics of a complete Navier-Stokes flow solver, as
implemented within the spectral/hp element framework Nektar++ [10]. While
we make use of the Nektar++ framework for pre- and post-processing, the
time-stepping loop that we monitor for performance has been cleared of typ-
ical Nektar++ features and flattened to generic C++ code, before applying
the parallel programming models. Further to this, we note that the com-
plete Navier-Stokes implementation requires particularly heavy implementa-
tion effort that does not necessarily affect computational performance (e.g.
from specialised boundary conditions). We therefore select a simpler, more
lightweight solver, that still contains the relevant features of the complete
solver; in our case this will be an implicit solver for the 2D Helmholtz equa-
tion. We note that this forms the essential implicit solve for both pressure

3

Poisson and velocity correction steps within the commonly used fractional
time-stepping scheme for Navier-Stokes equations [11]. The matrices arising
from the discretisation are positive definite and, unless the mesh is highly dis-
torted, well-conditioned and thus we employ the Conjugate Gradient method
with a Jacobi preconditioner. The algorithm is executed in a global matrix-
free fashion, that avoids assembly and storing of the large global system,
whilst considering only local elemental matrices. As spatial discretisation we
employ triangular elements with a modal continuous Galerkin (CG) formula-
tion from [12]. The modal basis is formed with a tensor product, so that we
can use the efficient sum-factorisation technique within elemental operations.

A second novel aspect of this work is the focus on implicit versus ex-
plicit time-stepping routines. Certainly the combination of using explicit
time-stepping for high-order methods alongside performance portable and
architecture independent methods running on both CPUs and GPUs has
been demonstrate in solvers such as PyFR [13]. Additionally, work by other
finite element groups such as deal.II [14] and Dune [15] on mostly tensor
product quadrilateral and hexahedral elements has been conducted, but typ-
ically from the CPU perspective. In this work, we aim to demonstrate how
architecture-independent programming can be applied from the context of
implicit time-stepping.

The paper is structured as follows. In Section 2 we give a brief overview
of current portable-performance programming models that we will consider
in this work, alongside the architectures under which they will be applied.
Section 3 outlines the mathematical model under consideration for the Helm-
holtz model, and its implementation is discussed in Section 4. We conduct a
thorough performance evaluation in Section 5 on both many-core CPU and
GPU hardware, before giving conclusions and a summary in Section 6.

2. Parallel hardware and portable programming models

Current HPC architectures are characterised by a high degree of paral-
lelism. It does not only come in the more traditional form of distributed
memory parallelism, as would be the case for clusters of single-core CPUs,
but also in the form of intra-node or shared memory parallelism over mul-
tiple compute cores. It is this shared memory parallel hardware and the
programming model to make use of it, that we address in this work.

4

2.1. Multi-core and many-core architectures
The parallelism of multi-core CPUs comes on two different levels, firstly

over the multiple compute cores, and secondly over the vector lanes within
each core. These are addressed by the compiler using AVX instructions.
The length of the vector lane of the CPU that we use for our performance
benchmarks has 256 bits or 4 doubles.

Nvidia GPUs, an instance of many-core architectures, also provide their
parallelism in two levels. The first level consists of a number of streaming
multiprocessors (abbreviated as SM or SMX), with the second being the in-
dividual streaming processors (SP) or CUDA cores that lie on each SMX.
Groups of 32 CUDA cores have to execute as an individual SIMT unit, mak-
ing these comparable to vector lanes on CPU architectures.

At the same time, memory bandwidth of both these architectures is lim-
ited, particularly on GPUs. Algorithms therefore need a high arithmetic
intensity — the ratio of compute operations to memory accesses — to bene-
fit from the available computational resources. For example, the Nvidia P100
GPU has a double-precision FLOP-to-byte ratio of 9.66 FLOP/byte, based
on a theoretical peak of 5,304 GFLOP/s and 549GB/s memory transfer.
This level of arithmetic intensity therefore requires level-3 BLAS or similar
operations to fully utilise all CUDA cores.

To address the parallelism of the CPU, the programming models (for
example OpenMP or Pthreads) schedule one threads per core (or two in case
of hyper-threading). Vector level parallelism is much harder to be achieved;
it can be done explicitly by using assembler-level intrinsic instructions or
with a number of implicit options like compiler auto-vectorisation, by using
Intel Cilk Plus C/C++ Extensions for Array Notations or the Intel IPP or
MKL libraries [16].

Nvidia GPUs are addressed using the CUDA [17] programming model,
which allows operations to be explictly assignemd to all parallelism levels.
The use of object-orientation programming must, however, be done with
care: while seamless integration of CUDA kernels into C++ code is pos-
sible, there are restrictions on what can be done within a kernel in terms
of data management, which could otherwise have been conveniently hidden
with object-oriented features. Most notably in our work are the limitations to
offload instances of classes (for example individual mesh elements of different
types) to the GPU and iterate over all instances and implicitly calling their
member functions and data, especially if they stem from class inheritance
and virtual functions.

5

All these aspects combined explain the difficulty to achieve good shared-
memory parallel performance, compared with distributed memory perform-
ance, enabled by domain decomposition. A good MPI distributed memory
implementation should achieve perfect weak and strong scaling, as long as
the problem size per MPI -rank is sufficient and communication costs can
be hidden. However, to further reduce the execution time per problem size,
shared memory parallelism need to be additionally employed. Yet, the addi-
tional fine-grained level of shared memory parallelism on the hardware needs
to be exploited by the application, both through parallel algorithms, as well
as programming-models and compilers that can map the algorithmic paral-
lelism to the underlying hardware. It is this aspect that often result in less
ideal strong-scaling within a compute node.

2.2. Kokkos versus OpenMP and OpenACC

The lifecycles of scientific applications are rather large, often spanning
more than a decade. In comparison, hardware developments are deemed to
proceed at an accelerated pace. HPC hardware has witnessed the advent
and disappearance of vector processing machines over the 1970s and 1980s,
and intermediate dominance of single-core multi-purpose CPUs until the mid
2000s. At this time the processor clock-speed has reached its energetic limit,
resulting in the development of multi-core processors and subsequently longer
vector-lanes. Additionally, through the introduction of OpenCL [18] and
CUDA it became possible to program massively parallel but light-weight
graphics processing units (GPUs). The recent strong demand for machine
learning hardware, that requires massively-parallel high-throughput and low-
precision architectures will further shift the available hardware for scientific
computing. Many current scientific computing frameworks origin from the
single-core CPU era and hence require updated capabilities to benefit from
the increased parallelism. The evolutionary approach will allow to adjust the
existing frameworks step-by-step with a compatible parallel programming
model. This avoids extensive rewriting of code, that often is in the order of
100,000 lines. It is this approach that we adopt in this work.

Alternatively, the code-base could be rewritten in a different low-level
language like CUDA. However, this only allows to address the currently pop-
ular GPU hardware, and in view of the rapidly changing HPC architectures
does not result in a sustainable solution. The low-level language OpenCL is
portable between CPUs and almost any device architectures including Nvidia
GPUs, AMD GPUs and FPGAs. OpenCL could therefore under this premise

6

be a viable option for many users. However, it requires either substantial tun-
ing efforts to yield good performance – which limits portability in practice,
or the use of specialised libraries – which would either limit performance or
complexity of our algorithms.

Another alternative that has been adopted by multiple groups is to design
a new framework that comprises enough flexibility to address a broad range of
current and future architectures. Examples of this include PyFR [13] for flux
reconstruction methods, Firedrake [19] for FEM methods, and OpenSBLI [20]
for finite difference methods. These frameworks consist of a high-level inter-
face to describe the system that is to be solved, with an abstraction layer
underneath this which translates high-level syntax to various low-level lan-
guages that can target different backends. Using a set of optimised BLAS
libraries and/or bespoke kernels for each type of architecture, alongside good
auto-tuning algorithms, can yield very competitive performance.

For this work we have identified three programming models that can be
added to our existing Nektar++ framework. As a requirement they needed
to support both CPU and GPU architectures to expose their parallel capab-
ilities, have open-access compiler support and a syntax that allows seamless
implementation in an existing C++ codebase.

Kokkos [2] is a library consisting of a performance portable abstraction
layer in C++, with OpenMP [3] and Pthreads [21] backend for multi-core
CPUs and a CUDA [17] backend for Nvidia GPUs. At the time of conducting
our study it only supported data- and no task-parallelism, which prevents
load sharing between host and device. The compiler support is very wide,
spanning the gcc, clang-llvm, and pgi open-access compilers. The Kokkos
syntax is based on Kokkos data arrays, that map the data between CPU
and device memory. Its unique quality is the polymorphic layout of the
2D arrays, that can automatically switch between row- and column-major
layout, to achieve coalesced memory access on different architectures. Up to
three levels of hierarchical parallelism can be specified and data arrays can be
explicitly placed on different cache levels or texture memories. Other similar
models based on libraries with multiple backends are RAJA [22], which has
been found in a less mature state than Kokkos and OCCA [23].

OpenMP [3] is a programming model based on compiler directives or so
called pragmas, that can be added to legacy codebases and specify paral-
lel constructs. Initially it only supported parallel executions on multi-core
CPUs, but from the OpenMP4.0 specifications onwards offloading to target
devices is supported. The specification supports both task- and data paral-

7

lelism, which would allow for a real heterogeneous execution and load sharing
between both host and device. The compiler support for the target offload-
ing, however, is very sparse. The gcc-7 compiler supports only the most basic
parallel-for construct. The most mature open-access compiler has been the
experimental clang-ykt compiler branch. We will show, that whilst it was
possible to implement, compile and execute our benchmark problem using
this compiler, it is still lacking crucial features that prevent its enrolment
within a complete framework like Nektar++.

OpenACC is a similar programming model to OpenMP that is based
on compiler directives, but primarily targeted at offloading to devices. It
supports both task and data parallelism. The gcc-6 compiler support very
simple offloading directives and is hence not complete enough for our purpose.
The pgi compiler, however, that supports Nvidia GPUs has a very mature
ecosystem and will be employed in this work. More recently not only a host
fallback is supported by the pgi -compiler, but also proper multi-core CPUs.
Without using a combined programming model of OpenACC for the device
and OpenMP for the host parallelism, no heterogeneous execution on host
and device is possible.

A rough equivalent of OpenACC, but with an OpenCL and not a CUDA
backend is SYCL [24]. However, our preliminary assessment of the supporting
ecosystem and first performance results were not encouraging and we did not
explore it further.

3. Method

We consider the solution of the inhomogeneous Helmholtz equation for a
scalar field variable u, defined in a domain Ω with boundary Γ = ΓD ∪ ΓN ,
represented by the system

∇2u+ λu = f on Ω (1)

u = uD on ΓD (2)

∂u

∂n
= g on ΓN , (3)

where λ is a real coefficient, f is a forcing function, ΓD and ΓN denote the
parts of the boundary where we impose Dirichlet and Neumann boundary
conditions, respectively.

8

Defining the inner products

(a, b)Ω =

∫
Ω

ab dΩ 〈a, b〉Γ =

∫
Γ

ab dΓ, (4)

a weak Galerkin approximation to the system is obtained through the inner
product with a shape function v, i.e.(

v,∇2u
)

Ω
+ λ (v, u)Ω = (v, f)Ω (5)

We can now apply the divergence theorem to reduce continuity require-
ments and get

(∇v,∇u)Ω + λ (v, u)Ω = (v, f)Ω +

〈
v,
∂u

∂n

〉
Γ

(6)

where the boundary integral allows to directly specify the Neumann bound-
ary conditions. The Dirichlet boundary conditions are lifted from the solu-
tion, u = uH + uD, so that we retain the unknown homogeneous term, uH ,
in the left-hand-side of the equation and all the known terms are moved to
the right-hand side, namely(
∇v,∇uH

)
Ω

+λ
(
v, uH

)
Ω

= (v, f)Ω+〈v, g〉ΓN
−
(
∇v,∇uD

)
Ω
−λ
(
v, uD

)
Ω

(7)

We can now discretize this expression to obtain a linear system of the form

H ûH = b̂ (8)

where H is the matrix of coefficients of the discrete Helmholtz operator, ûH

is a vector containing the discrete unknowns and b̂ is the vector that results
from the evaluation of the right-hand side using the known values of the
forcing function and boundary conditions.

3.1. Implicit solver

The linear Helmholtz equation system is to be solved iteratively using
the conjugate gradient method. This method is suitable, as the Helmholtz
operator is symmetric and positive definite.

9

The method is initialised with an arbitrary solution ûH0 :

r0 = b̂−HH ûH0 (9)

w0 = Cr0 (10)

s0 = HHw0 (11)

β = 0 (12)

α =
rT0 w0

rT0 w0

, (13)

where r is the residual vector, C a suitable preconditioner, w and s are
the conjugate gradient vectors, and β and α are step sizes. The method
then loops over the following steps k, until the residual is smaller than a set
tolerance ε > εtol.

pk+1 = βpk + wk (14)

qk+1 = βqk + sk (15)

ûHk+1 = αpk+1 + ûHk (16)

rk+1 = rk − αqk+1 (17)

wk+1 = Crk+1 (18)

sk+1 = HHwk+1 (19)

β =
rTk+1wk+1

rTk wk
(20)

α =
rTk+1wk+1

sTk+1wk+1 − rTk + 1wk+1 · βk+1/αk
(21)

ε = rTk+1rk+1 (22)

Here p and q are search direction vectors and ûHk+1 is the updated solution
to the linear system that is to be solved. As the preconditioner C, we use a
simple diagonal Jacobi preconditioner.

3.2. Discretisation of the Helmholtz equation

We now give a brief overview of the discretisation of the Helmholtz equa-
tion, which is described further in [12]. The previous algorithm is applicable
to any spatial discretisation, but the size, structure and numerical properties
of the matrices will depend on our choice of discretization. Here were will
be using a continuous Galerkin projection over triangular elements with a

10

hierarchical modal basis. We note the central aspect of using a matrix-free
scheme, that avoids assembling the complete global matrix of the Helmholtz
operator. Instead we are breaking down the global operator into as a sum
of elemental operators. This implies that our global vector of solution coeffi-
cients ûH needs to be mapped first to the element local solution coefficients
in a scatter-type operation:

ûl = Aûg (23)

Since the global-to-local matrix A is very sparse it is implemented using a
mapping vector vmap and a sign vector vsign of length nlocal as

ûl[i] = vsign[i] ûg[vmap[i]] for i ∈ [0 : nlocal) (24)

On each element e the elemental Helmholtz operator can then be applied
as

ŝel = Heûel for e ∈ [0 : nel) (25)

Finally, the local solution coefficients need to be mapped back to the
global solution coefficients in a gather-type operation:

ŝg = AT ŝl (26)

Equivalently to the global-to-local operation this is implemented as

ŝg[vmap[i]] = ŝg[vmap[i]] + vsign[i] ŝl[i] for i ∈ [0 : nlocal) (27)

Here it can be seen that boundary modes of neighbouring elements need to
be added. In a parallel implementation this basic implementation can lead
to a race-condition.

The elemental Helmholtz operation for a 2D element is the combination
of the Laplacian operator and the mass operator and is written as

ŝel = Heûel (28)

ŝel = [Le + λM e]ûel (29)

ŝel = [(Dx1B)TWDx1B + (Dx2B)TWDx2B + λBTWB] ûel (30)

The basis matrix B with Bi,j = φj(ξi) denotes the backward-transform from
coefficient space to physical space, its transform BT is the forward operator
from physical space to coefficient space. The diagonal weight matrix W
with Wi,j = Ji,jwiwj includes the Jacobian J , that is the mapping between

11

the standard element defined on ξ ∈ [−1, 1] and the curvilinear element on
coordinates x, as well as the quadrature weightings wi and wj. Following [12]
we select a Gauss-Lobatto-Legendre quadrature for wi and a Gauss-Radau
quadrature for wj to mitigate the effects of the singularity in the collapsed
coordinate Duffy mapping. The derivative matrices Dx1 and Dx1 are

Dx1 = Λ

(
∂ξ1

∂x1

)
Dξ1 + Λ

(
∂ξ2

∂x1

)
Dξ2 (31)

Dx2 = Λ

(
∂ξ1

∂x2

)
Dξ1 + Λ

(
∂ξ2

∂x2

)
Dξ2 , (32)

with the diagonal coefficient matrices Λ. The block-diagonal derivative
matrices Dξ1 and Dξ2 are

Dξ1 =
∂

∂ξ1

(33)

Dξ2 =
∂

∂ξ2

(34)

To minimise the operator count for an efficient CPU implementation, the
elemental matrices W for the mass operator have been precomputed and
stored. For the elemental Laplacian operators, the following matrices have
been precomputed and stored:

L11 = DT
x1WΛ

(
∂ξ1

∂x1

)
L12 = DT

x1WΛ

(
∂ξ2

∂x1

)
L21 = DT

x2WΛ

(
∂ξ1

∂x2

)
L22 = DT

x2WΛ

(
∂ξ2

∂x2

)
Where possible, we additionally exploit the tensor-product construction

of the C0 basis to apply the sum-factorisation technique [25]. This is a
widely used stratgy for attaining substantial reductions in operator count for
tensor-product operations, including backwards transforms and derivatives.
For example, the matrix-vector product Bû would naively be calculated as:

u(~ξ) =
∑
p

∑
q

ûpqφp(ξ1, ξ2)

12

which has around P 4 floating-point operations. Using sum-factorisation how-
ever, and noting that φpq(ξ1, ξ2) = ψ1

p(ξ1)ψ2
q (ξ2), this matrix vector product

can be expressed as:

u(~ξ) =
∑
p

ψp(ξ1)

[∑
q

ûpqψq(ξ2)

]

where the brackets denote temporary storage, at a cost of order P 3. Note
that, in the above, these smaller one-dimensional products can be represented
as matrix-matrix products. For example, taking B1 and B2 to denote the
basis matrices of the one-dimensional shape functions φ1 and φ2, we have
that

Bû =
[
B1û[Q1]

]
[Q2]

B>2 ,

where [Q1] denotes the reinterpretation of a vector as a Q1×Q2 matrix with
Qi denoting the order of the quadrature in each direction. Existing imple-
mentations therefore focus on the use of optimised matrix-matrix routines
such as the BLAS level-3 dgemm, as in [26], to perform these operations effi-
ciently, or through the use of optimised libraries for small-matrix multiplica-
tions such as libxsmm [27]. In our implementation, we therefore consider an
application of the Helmholtz operator in a matrix-free fashion that utilises
these sum-factorisation kernels for each of the components of the Helmholtz
equation above, rather than storing the elemental matrices He. More details
of this technique applied to the spectral element method on triangles and
other higher dimensional shape types can be found in references [26, 12, 28].

4. Implementation and parallelisation strategy

In the following, we discuss the individual components of the method,
as introduced in Section 3. For each one we develop an individual parallel
kernel, that ideally performs well on both CPU and GPU architectures. As
will be seen, this is achieved apart from the gather -type reduction kernels,
see Section 4.2.

The first kernel implements the AXPY operations specified by Equa-
tion 14 to Equation 18. All three programming models, Kokkos, OpenMP,
and OpenACC have a suitable syntax and implementation for these parallel-
for-loop-type of equations. The same applies to the scatter -type operation,
specified by Equation 24.

13

The gather -type operation specified by Equation 27 can not readily be
parallelised without causing a race-condition, as multiple local modes are
added up to one global mode and hence need to write to the same memory
space. How we still achieve reasonable parallel performance is discussed in
Section 4.2.

The calculation of the conjugate gradient step sizes α and β and the re-
sidual ε, as given by Equation 21, Equation 20, and Equation 22 are classical
reduction operations. These can be parallelised using the parallel-reduce-
type syntax. Even though all three programming models support this opera-
tion, the llvm-ykt compiler branch for OpenMP4.0 did not support it at the
time of conducting this work. Instead, we wrote our own kernel for parallel-
reductions. This kernel is based on a two level-implementation as follows.
A first level that spawns multiple blocks to utilise the individual streaming
multiprocessors of the GPU, so that each reduces a chunk of the overall ar-
ray down to one scalar. The second level then takes all this intermediate
results and performs another reduction on a single SMX to yield the final
reduced scalar. We use zero-padding of the arrays on both levels to improve
the performance. Although this custom kernel does not achieve the optim-
ised performance of an optimal BLAS library implementation, it does not
compromise the overall performance of the method. This will e shown in the
results section (see Section 5).

All of the components above have costs that roughly scale with the de-
grees of freedom in the system. The computationally most demanding part,
though, is the evaluation of the elemental Helmholtz operator, as given by
Equation 30. A careful evaluation of the parallel algorithm is hence per-
formed in Section 4.1.

4.1. Interleaved data structures and kernels
Each of the elemental Helmholtz operations (see Equation 30) can be

performed independently and thus in parallel. On a CPU without vectorisa-
tion, we would assign one thread per element or set of data, but on the GPU,
there are multiple options. These are primarily explained by the constraint of
GPUs and the CUDA programming model, which forces all 32 CUDA threads
in one warp to perform the same mathematical or logical operation in any
one cycle. Otherwise the warp will diverge so that the different operations
are executed sequentially over multiple cycles, decreasing the performance.
Three different work distributions can be distinguished here:

(a) Each CUDA kernel or GPU processes one set of data.

14

(b) Each CUDA block or streaming multiprocessor (SMX) processes one set
of data.

(c) Each CUDA thread or core processes one set of data.

Option (a) is only suitable for a single, very large operation and hence can
be discarded for our purpose here. On the Nvidia P100 GPU for example,
a matrix size of 128 × 16384 on a sgemm kernel is necessary to get more
than 50% of the peak performance of CuBLAS sgemm operations. Option
(b) is mostly suited for operations on rather few, but large sets of data. The
individual sets might vary in size and might undergo different operations,
without inducing performance breakdowns. Option (c) is only suited for
operations on many, small sets of data. For good performance, however, the
individual sets should all have the same size and undergo the exact same
operations.

In option (b), vectors or matrices need to be sufficiently large so that
the overall operation can be efficiently split into multiple warps, in which all
threads perform the same elemental mathematical operation. This is because
in order to be fully occupied, each SMX of a Nvidia GPU needs to schedule
32 or 64 warps at the same time. Operations over multiple CUDA blocks
are not synchronised, so that different operations can be executed without
performance penalty, as long as a good load balancing between the different
CUDA blocks is ensured. In terms of data structures, option (b) can operate
efficiently on data that is arranged one set after the other. For matrix-matrix
multiplication, techniques like tiling are further employed to split the overall
operation efficiently into elemental operations on which each thread in a warp
operates on coalesced data. This option is commonly implemented as batched
or strided BLAS operations. Both these operations are collections or batches
of BLAS operations that are performed concurrently, so that the batches
will be automatically distributed over the individual SMX. As a special case,
strided operations assume the same lengths of data arrays across all batches.
The MAGMA library [29], the Intel MKL library, and the CuBLAS lib-
rary [30] all support batched gemm operations, the latter also strided batched
operations. Again on the Nvidia P100, 128 batched single precision matrix
multiplciations with matrix size of 128 × 128 will result in about 50% peak
performance. This is already an improvement from individual sgemm kernels,
but lower polynomial order elemental matrix sizes are still far smaller than
128× 128. E.g. a gemm operation occuring in the sum-factorisation kernel of
a triangular element with polynomial order 10 has matrix sizes of 11 · 12.

15

In option (c), all data sets need to have the same size and undergo the
same overall operation, so that 32 threads can always be efficiently combined
into a warp. Here a sufficiently large number of the small data sets is required
to fully occupy the number of concurrent warps that need to be scheduled.
For this approach however, the naive memory layout of having data sets
consecutively in memory would violate any coalesced data access. This is
because in this case, the specific data entries of each set are separated by the
whole length of each data set. Yet, all these specific data entries have to be
loaded for the warp operations at the same time. For an efficient memory
access, it follows that all specific data entries of a group of sets need to be
coalesced. The group of sets is chosen as a multiple of the warp-size of 32
threads. As a result, the data sets of one such group become interleaved. The
distance or stride between following entries of one data set is equal to the
number of data sets that are combined in one group. Interpreting the simple
data layout in which one data set is stored after each other, corresponds to a
stride of one. For CPUs, this concept of explicit vectorisation over multiple
elements using interleaved memory layouts has also been implemented in the
DUNE library [15], and the deal.II library [14, 31] to benefit from the wider
vector lanes.

For level-1 and level-2 BLAS operations, stride can be specified as a
variable, so that no major code adjustment is necessary. Standard level-3
BLAS operations like dgemm which are used for our sum-factorisation kernels,
however, do not possess a stride variable, so that we decided to implement a
custom strided dgemm function, that can operate on the interleaved memory
layout. Following the function call syntax of other strided batched gemm,
we introduced two additional variables for each of the three data arrays
representing the 3 sets of matrices. The two variables are the stride between
the following entries, which is equal to the size of the group, and a variable
denoting the number of the group a specific thread operates on. The function
call syntax and the operations the algorithms of our custom dgemm kernel is
given in Listing 1.

Listing 1: Custom interleaved dgemm syntax and algorithm

int interleavedDgemm(char transa , char transb ,

int M, int N, int K,

const double alpha ,

const double *A, int lda , int strideA , int instA ,

const double *B, int ldb , int strideB , int instB ,

const double beta ,

16

double *C, int ldc , int strideC , int instC)

{

// one of four cases shown

if (transa == ’T’,transb == ’N’) {

for (int m = 0; m < M; ++m) {

for (int n = 0; n < N; ++n) {

double c_mnp = 0;

for (int k = 0; k < K, ++k)

c_mnp += A[(m + k*ldA) * strideA + instA]

* B[(k + n*ldB) * strideB + instB];

C[(m + n*ldC) * strideC + instC] =

alpha * c_mnp +

beta * C[(m + n*ldC) * strideC + instC];

}

}

}

}

Having developed an efficient and working implementation for option (c),
and because the performance of option (b) would be severely limited due to
the small matrix sizes considered here, we proceed with option (c) throughout
this work.

There is another limitation of using a batched function as in option (b),
because a new kernel needs to be scheduled for each of these BLAS functions.
This is not ideal in conjunction with our framework, in which the code is
structured in a way that describes the operations to be executed for each
element or data set. Ideally, the data will be loaded into the cache at the
beginning of such extended kernels and then operated on by a sequence of
BLAS functions and, at the end, stored back into global memory. Using
CuBLAS functions that start a kernel for each BLAS function will require
multiple memory copies between global memory and cache, compromising
efficiency. Further, it would require to re-factor the code so that the extended
kernel is broken up into chunks corresponding to one BLAS function each.

We further found, that explicitly using the interleaved memory layout and
strided kernel has only been strictly necessary for kernels in which dynamic
memory allocation within the kernel is specified. This is the natural way to
write with the Kokkos syntax and the natural extension from our initial CPU
code. The variable length of arrays depending on the element polynomial
order can more readily been accounted for using dynamic memory allocation.
However, the OpenMP -target compiler did not cover this functionality and
the OpenACC implementation was poorly performing. Here we had to write

17

Algorithm 1 Initial local-to-global reduction algorithm

1: procedure LocalToGlobalInitial(ŝg, ŝg, vsign, vmap)
2: for all global coefficients j do in parallel
3: ŝg[j]← 0
4: end for
5: for all elements e do in serial
6: for all coefficients c do in parallel
7: i← e ∗ ncoeffs + c
8: ŝg[vmap[i]]← ŝg[vmap[i]] + vsign[i] ∗ ŝl[i]
9: end for

10: end for
11: end procedure

our kernels with static memory allocation and use templating to account for
the varying array lengths of varying polynomial orders. We found, that in
this case, the compiler optimisation can implicitly deal with this situation
and create an interleaved memory layout.

4.2. Parallel element colouring and reduction operations

The local-to-global mapping, as given in Equation 27 is an operation that
is not trivial to parallelise. This gather -type or reduction operation can be
expressed as a double for-loop, as in algorithm 1. The inner loop over all
local coefficients or modes can be implemented in parallel, the outer loop
over all elements needs to be in serial to avoid a race-condition.

Although we found this algorithm to perform very well on the CPU, on
the GPU performance was far more limited, since even at reasonable element
polynomial orders, not even a single SMX can be fully utilised. To enable
more parallelism we introduced an initial elemental colouring of the mesh.
This ensures that no neighbouring elements are in the same colourgroup, and
hence no write conflict of multiple local modes to global modes can occur.
With this colouring in place, it is now safe to parallelise the for-loop over
all elements within one colourgroup and introduce a third outermost serial
loop over all colourgroups, as in algorithm 2. Our colouring algorithm uses
a re-balancing step so we yield colourgroups that are typically within 25% of
the average group size.

The algorithm requires a global synchronisation between the different
colourgroups, which can be realised using two options on the GPU. This is

18

Algorithm 2 Parallel local-to-global reduction algorithm using element col-
ouring

1: procedure LocalToGlobalParallel(ŝg, ŝg, vsign, vmap, C)
2: for all global coefficients j do in parallel
3: ŝg[j]← 0
4: end for
5: for all coloursets c ∈ C do in serial
6: for all elements e ∈ c do in parallel
7: for all coefficients c do in parallel
8: i← e ∗ ncoeffs + c
9: ŝg[vmap[i]]← ŝg[vmap[i]] + vsign[i] ∗ ŝl[i]

10: end for
11: end for
12: end for
13: end procedure

either launching a new kernel per colourgroup, or launching a single kernel
for all colourgroups, but only utilise one SMX, since it is not possible to
synchronise between SMX in a single kernel. The first option comes with a
greater overhead, whereas the second utilises only a fraction of the GPU. For
reasonably large mesh sizes, each colourgroup kernel receives enough work
so that the first option will be more performant. Another challenge occurs
as the inner parallel-loop is relatively skinny and the outer parallel loop is
relatively fat, which does not map well to the GPU hardware. However, since
the two loops are perfectly nested, a good compiler implementation will be
able to collapse the two loops, resulting in better performance.

For all CPU executions we utilise the initial algorithm 1, for all GPU
executions we utilise the mesh-colouring approach and the parallel algorithm
2.

4.3. Ease of implementation and maintainability of the programming models

All three tested programming models, Kokkos, OpenACC, and OpenACC
advertise their capability to incrementally parallelise and port legacy applic-
ations written in C++ to multicore CPUs and GPUs. While this is certainly
the case, we noted a few obstacles that indicate this process is not as seam-
less. In fact, care has to be taken when the initial code-base features many
object-oriented programming structures. While they can be parallelised over

19

the cores of a CPU, they do not map to the CUDA programming model, that
underlies all GPU backends of the considered programming models.

For example, with CUDA it is not possible to parallelise over an array of
element objects, in which each object holds its data as member-variables and
calls its overloaded member-functions, depending on which type of element
it is. In this case, the functions and hierarchies of objects need to be de-
tangled and implemented in a more straightforward C -syntax, in which the
corresponding variables and functions for each element are taken care of
explicitly. This can result in a complete re-writing of the involved compute-
heavy kernels.

Similarly, encapsulated data-structures can not be mapped directly to the
GPU memory. Instead the raw pointers would need to be passed, which in
turn requires all functions further down the call-tree to be adapted for the
plain data-type. Kokkos uses its own encapsulated data-arrays, that map
between different memory spaces. It follows that, if in the case of Nektar++,
encapsulated data-arrays are employed, a large initial implementation effort
is necessary for all three programming models. If the legacy application
already uses plain C arrays, OpenMP and OpenACC would be favourable.

The limitation of using dynamic memory allocation within the kernels
also requires the introduction of templating for variable array lengths. This
is a further step away from initial OOP-oriented C++ code-bases.

When it comes to the actual syntax of specifying parallel loops, the
three programming models are comparable, but the Kokkos syntax is slightly
more complex than that of the OpenMP and OpenACC compiler directives.
Kokkos allows for the possibility to explicitly specifying an array to be placed
into shared memory, which can be rather cumbersome to optimise when deal-
ing with different element polynomial orders and attempting to align this
placement with the shared memory size restriction. OpenACC can place
arrays into shared memory implicitly, whereas the tested OpenMP -clang-ykt
implementation does not cover this functionality. In addition, the OpenMP
and OpenACC syntaxes are so similar that a change between them should
be straightforward.

5. Performance evaluation

Our test case involves the solution of the Helmholtz equation

∇2u+ λu = −(λ+ 2π2) cos(πx) cos(πy) (35)

20

with λ = 2.5, on a square domain Ω = {(x, y) : −1 ≤ x ≤ 1,−1 ≤ y ≤ 1}.
On the sides x = −1 and x = 1 we apply the Dirichlet boundary condition

u = cos(πx) cos(πy) (36)

and the Neumann boundary condition

∂u

∂n
= π cos(πx) sin(πy) (37)

is imposed on the sides y = −1 and y = 1.
We compare the same algorithms as presented in Section 3 that solve this

equation implemented with three different programming models: Kokkos,
OpenMP and OpenACC. We use the same codebase for both CPU and GPU
applications and only at compile time specify the relevant compile flags for
each architecture. The only algorithmic difference between architectures is
the parallelism in the local-to-global reduction operation discussed in Sec-
tion 4.2.

The individual meshes for the spatial discretisation consist of triangular
straights-sided elements, but different element polynomial orders between
2nd and 11th order. The number of degrees of freedom in each mesh is fixed
at 4 million, so that the meshes consist of between 66k to 1975k elements
from highest to lowest order respectively. We iterate the conjugate gradient
loop until the solution is converged to a tolerance of 10−9.

In terms of compiler toolchains, for our Kokkos implementation we use the
GNU compiler gcc-5.4.0 with optimisation flag -O3. For the OpenACC im-
plementation we use the PGI compiler version pgc++-18.4 with optimisation
flag -O3. The OpenMP implementation is compiled with the experimental
llvm-clang compiler branch clang-ykt and optimisation flag -O3.

At the time of conducting this work the clang-ykt branch has not been fea-
ture complete. Even though the OpenMP4.0 specifications support parallel-
reduce operations, it has not been implemented, yet. As a workaround, we
wrote an own kernel for parallel reductions, that is based on a two level-
implementation.

The llvm-ykt compiler branch also did not support linking to external
libraries at the time of conducting this work. Thus, our OpenMP -GPU im-
plementation had to be completely decoupled from the Nektar++ framework.

For a better performance on the CPU we set the environmental variable
OMP PROC BIND=true. For the GPU versions we always use CUDA8.0.

21

5.1. Comparison of Kokkos, OpenMP and OpenACC on multi-core archi-
tectures

For the multi-core system, we use a Intel E5-2690 v0 CPU with 16 cores
and a base frequency of 2.9GHz and 64GB RAM with 1600Hz. The peak
FP64 performance considering FMA and AVX is 371.2GFLOPs, the max-
imum memory bandwidth is 51.2GB/s, the thermal design point (TDP) is
135W.

As a benchmark, we also present the results obtained with our basic MPI
implementation within Nektar++. It uses the same algorithms, but realises
its parallel execution using domain decomposition.

5.1.1. Strong scaling exercise

As is customary for multi-core CPU applications, we conduct a strong
scaling exercise between 1 and 16 threads on a mesh consisting of 7th-order
triangles with 116k elements. This allows us to evaluate the performance of
each model and identify potential performance overheads. The results are
given in Figure 1. Here we see that the OpenMP and OpenACC implementa-
tions perform better than the Kokkos implementation; however their relative
performance varies with polynomial order and will be clearer to evaluate in
this context in Section 5.1.2. More important is the observation that all three
implementations scale very similarly with increasing numbers of threads and
do not reach the almost ideal scaling of our MPI implementation. This is
probably due to the reduction operations that do not allow us to fully utilise
all threads continuously.

5.1.2. Efficiency of different polynomial orders

For this test series we use meshes with elements of varying polynomial
orders where the degree of freedom count is fixed across the polynomial
orders. We utilise all 16 threads on our multi-core CPU. The runtimes for
one iteration of the conjugate gradient solve of all four applications scaled
by the exact number of DOFs are given in the upper left subplot of Figure 2.
The runtimes improve with increasing element order up to about 6th order
and then plateau. The low element orders have a lower FLOP count per
DOF, but also a lower FLOP-per-byte ratio or arithmetic intensity. As our
applications are memory-bound, they do not benefit from a lower FLOP
count per se. Overall, the MPI implementation is the fastest across the range
of polynomial orders, but closely matched by the OpenMP and the OpenACC

22

1 2 4 8 16
Number of threads

102

R
un

tim
e

in
se

c

Ideal scaling
Kokkos
OpenMP
OpenACC
MPI

Figure 1: Strong scaling on 16-core CPU

versions. The Kokkos version gives the worst performance generally, with
around twice the runtime.

The remaining three subplots of Figure 2 present the runtime-splits between
the five different kernels of the application, as discussed in Section 4. The
elemental Helmholtz operation consumes about 50% of the overall runtimes.
The local-to-global reduction also shows bad performance for the lower ele-
mental orders, as the involved arrays are too short in this case. Overall,
the splitting of runtime between the Kokkos, OpenMP, and OpenACC is
comparable.

5.1.3. Detailed performance evaluation

In order to evaluate how well the underlying CPU hardware is utilised
we consider two metrics, the achieved double precision (FP64) FLOPs and
the DRAM memory bandwidth. The FLOPs that the different kernels have
achieved are given in Figure 6. The gather and scatter operations, as well as
the conjugate gradient reductions and for-loops perform very poorly, as they
are strongly memory bound. Only very few operations are performed on each
data element, which is read and written back to DRAM memory. Only for the
parallel reduction kernel data can be re-used from higher cache levels, leading
to faster loading to registers. The gather and scatter operations perform
especially poor, as the data is usually not read and written in continuous
cache blocks. The Helmholtz operation is the critical kernel and achieves

23

2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th
0.0

0.2

0.4

0.6

0.8

1.0

R
un

tim
e

/D
O

F
/i

t

×10−7

2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th
0.0

0.2

0.4

0.6

0.8

1.0 ×10−7 Kokkos

2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th
Element Order

0.0

0.2

0.4

0.6

0.8

1.0

R
un

tim
e

/D
O

F
/i

t

×10−7 OpenMP

2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th
Element Order

0.0

0.2

0.4

0.6

0.8

1.0 ×10−7 OpenACC

Helmholtz Operation
LocToGlo Gather

CG Reductions
CG Loop

GloToLoc Scatter

Kokkos OpenMP OpenACC MPI

Figure 2: Runtime comparison of different CPU implementations over a range of elemental
orders

24

2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th
0
5

10
15
20
25
30
35
40

G
FL

O
P/

s
CG Loop

2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th
0
5

10
15
20
25
30
35
40

CG Reductions

2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th
0
5

10
15
20
25
30
35
40

G
FL

O
P/

s

Helmholtz Operation

2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th
0
5

10
15
20
25
30
35
40

GloToLoc Scatter

2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th
Element Order

0
5

10
15
20
25
30
35
40

G
FL

O
P/

s

LocToGlo Gather

2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th
Element Order

0
5

10
15
20
25
30
35
40

Overall

Kokkos OpenMP OpenACC

Figure 3: Achieved FP64 FLOPs for the main kernels on 16-core CPU

much better performance of up to 38GFLOP/s for the OpenMP version,
31GFLOP/s for the OpenACC version, but only 23GFLOP/s for the Kokkos
version. For the OpenMP version, this translates to utilising more than 10%
of peak FLOPs. The trend for higher FLOPs with higher element orders is
very clear, as it requires more compute operations per loaded byte, i.e. a
higher arithmetic intensity. The overall FLOPs performance is dominated
by the Helmholtz operation kernel, but pulled down by about one third by
the less performant kernels.

25

2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th
Element order

0

5

10

15

20

B
an

dw
id

th
in

G
B

/s
Kokkos Write
Kokkos Read

OpenMP Write
OpenMP Read

OpenACC Write
OpenACC Read

Figure 4: DRAM memory bandwidth on 16-core CPU

The DRAM memory bandwidth is given in Figure 4. Generally it can be
seen from the data that especially the OpenMP and to a slightly lower de-
gree also the OpenACC implementation utilise the memory more efficiently
than the Kokkos implementation. As a tendency, higher polynomial orders
are processed more efficiently, as can be expected due to the larger arrays.
The OpenMP implementation achieves a combined read and write memory
bandwidth of 17GB/s, which amounts to about 33% of the theoretical band-
width.

5.2. Comparison of Kokkos, OpenMP and OpenACC on GPU architectures

As the GPU system we use a Nvidia Tesla P100 with 60 streaming multi-
processors (SMX), a peak FP64 performance of 5304GFLOPS, a maximum
bandwidth of 549GB/s, and a TDP of 300W.

5.2.1. Efficiency of different polynomial orders

We employ the same test methodology as in the multi-core CPU case in
Section 5.1.2. The runtimes for one iteration scaled by the DOFs is given
in Figure 5. Across the whole range of elemental orders, the OpenACC im-
plementation is the most performant, while the variation between elemental

26

2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th
0.0

0.5

1.0

1.5

2.0
R

un
tim

e
/D

O
F

/i
t

×10−8

2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th
0.0

0.5

1.0

1.5

2.0 ×10−8 Kokkos

2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th
Element Order

0.0

0.5

1.0

1.5

2.0

R
un

tim
e

/D
O

F
/i

t

×10−8 OpenMP

2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th
Element Order

0.0

0.5

1.0

1.5

2.0 ×10−8 OpenACC

Helmholtz Operation
LocToGlo Gather

CG Reductions
CG Loop

GloToLoc Scatter

Kokkos OpenMP OpenACC

Figure 5: Runtime comparison of different GPU implementations over a range of elemental
orders on P100

orders is low. The runtime splits show a much larger proportion of time
spent in the elemental Helmholtz operation, that varies between about 65%
for 2nd order and 90% for 11th order. The performance for the OpenMP
implementation is only about 25% worse for high polynomial orders, but suf-
fers greatly for low polynomial orders. It becomes clear that primarily the
bad performance of the local-to-global reduction is responsible and only sec-
ondarily the lower performance of our custom-written CG-reduction kernel.
The embarrassingly parallel elemental Helmholtz kernel is on par with the
OpenACC version. The performance of the Kokkos implementation is about
40% worse than the OpenACC implementation across the range of elemental
orders. Examining the runtime splits of the Kokkos version, no individual
kernel can be pointed out that would be responsible, indicating a general
performance issue with this version.

27

5.2.2. Detailed performance evaluation

Runtimes alone do not inform about how well the implementation is util-
ising the underlying hardware. To this end we first provide the achieved
double precision (FP64) FLOP/s in Figure 6. Comparing the three different
programming models, it can be seen again that Kokkos does not achieve the
same performance as OpenACC and OpenMP for the Helmholtz operation
kernel and hence for the overall application. Furthermore, the poor perform-
ance of the OpenMP reduction/gather kernels becomes obvious. In general,
the achieved FLOP/s translate to utilising actually less than 2% of the the-
oretical FP64 performance, which indicates that the memory bandwidth is
actually the performance bottleneck.

To prove this, we provide the DRAM memory bandwidth in Figure 7.
Here it can be seen, that our implementations operate very close to the
theoretical maximum across al elemental orders for the CG-Loop, the CG-
reductions and the global-to-local scatter kernels. The most important ker-
nel, the Helmholtz operation, though, is not fully utilising the DRAM band-
width indicating that either the bandwidth of a higher level memory or cache
level is limiting the overall performance or the memory latency results in a
stall. The three programming models perform very similar, just the OpenMP
application is falling off slightly.

Comparing the utilisation or bandwidth of the global (Figure 8) against
the local and shared memory (Figure 9) for the Helmholtz operation ker-
nel, we can see that the Kokkos kernel is utilising more of the slower global
memory (residing on DRAM, L2 and L1 cache) than the faster local and
shared memory that resides only on the L1 cache. This could explain the
performance deficit of the Kokkos implementation. It has to be acknow-
ledged, though, that a better performance could be achieved if tuning the
Helmholtz operation kernel for each elemental order by explicitly specifying
the utilisation of L1 cache for certain arrays. This tuning approach however
defeats the idea of a performance portable programming model.

It can be concluded, that our applications are heavily memory bound.
It shows, that just porting a legacy CPU-optimised algorithm can not fully
utilise modern GPUs. More effort to reduce the memory dependency of the
algorithms and hence increase the arithmetic intensity are necessary.

5.3. Cost comparison between different architectures

We use system acquisition costs to identify the most efficient architectures
in terms of run-time and operational costs.

28

2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th
0

20

40

60

80

100

G
FL

O
P/

s

CG Loop

2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th
0

20

40

60

80

100
CG Reductions

2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th
0

20

40

60

80

100

G
FL

O
P/

s

Helmholtz Operation

2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th
0

20

40

60

80

100
GloToLoc Scatter

2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th
Element Order

0

20

40

60

80

100

G
FL

O
P/

s

LocToGlo Gather

2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th
Element Order

0

20

40

60

80

100
Overall

Kokkos OpenMP OpenACC

Figure 6: Achieved FP64 flops for the main kernels

29

2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th
0

100

200

300

400

500

600

G
B

/s

CG Loop

2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th
0

100

200

300

400

500

600
CG Reductions

2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th
0

100

200

300

400

500

600

G
B

/s

Helmholtz Operation

2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th
0

100

200

300

400

500

600
GloToLoc Scatter

2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th
Element Order

0

100

200

300

400

500

600

G
B

/s

LocToGlo Gather

2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th
Element Order

0

100

200

300

400

500

600
Overall

Kokkos Load
Kokkos Store

OpenMP Load
OpenMP Store

OpenACC Load
OpenACC Store

Figure 7: DRAM memory bandwidth for the main kernels

30

2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th
0

200

400

600

800

1000

G
B

/s

CG Loop

2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th
0

200

400

600

800

1000
CG Reductions

2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th
0

200

400

600

800

1000

G
B

/s

Helmholtz Operation

2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th
0

200

400

600

800

1000
GloToLoc Scatter

2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th
Element Order

0

200

400

600

800

1000

G
B

/s

LocToGlo Gather

2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th
Element Order

0

200

400

600

800

1000
Overall

Kokkos Load
Kokkos Store

OpenMP Load
OpenMP Store

OpenACC Load
OpenACC Store

Figure 8: Global memory bandwidth for the main kernels

31

2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th
0

200
400
600
800

1000
1200
1400
1600

G
B

/s

CG Loop

2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th
0

200
400
600
800

1000
1200
1400
1600

CG Reductions

2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th
0

200
400
600
800

1000
1200
1400
1600

G
B

/s

Helmholtz Operation

2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th
0

200
400
600
800

1000
1200
1400
1600

GloToLoc Scatter

2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th
Element Order

0
200
400
600
800

1000
1200
1400
1600

G
B

/s

LocToGlo Gather

2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th
Element Order

0
200
400
600
800

1000
1200
1400
1600

Overall

Kokkos Load
Kokkos Store

OpenMP Load
OpenMP Store

OpenACC Load
OpenACC Store

Figure 9: Local and shared memory bandwidth for the main kernels

32

0.0 0.5 1.0 1.5 2.0
Costs / DOF / it in $ ×10−12

0

1

2

3

4

5

6

7
R

un
tim

e
/D

O
F

/i
ti

n
se

c

×10−8

CPU Kokkos
CPU OpenMP
CPU OpenACC
P100 Kokkos
P100 OpenMP
P100 OpenACC

Figure 10: Cost vs time comparison of the CPU and GPU system

The acquisition costs are the sum of the CPU or GPU by itself plus a
hosting system. We estimate the current price of the Nvidia Tesla P100 GPU
as $6000, the Intel E5-2690 v0 CPU with 2 sockets or 16 cores as $800, and
the hosting system as $2000. We use a time frame of 3 years for complete
linear depreciation, to obtain hourly prices for both the complete CPU and
GPU system. The costs of code execution is then the product of run-time
with hourly system costs. This follows the approach presented in [32]. The
result is given in Figure 10. It illustrates very well the benefit of employing
GPU systems for the presented type of algorithms, as both the runtime
and costs are lower on the P100, the costs by 20%, the runtimes by 72%,
considering the most performant cases. Considering only the two OpenMP
implementations, though, the costs of utilising the P100 GPU is higher than
for the CPU, although it is faster. In terms of both cost and time performance
metrics, the OpenACC version for the GPU is the most beneficial. This
result would only become more pronounced, when optimising the algorithms
further and replace pre-computations and loading from memory with on-
the-fly calculations to reduce the required memory bandwidth that so far
slows down the GPU implementations to a higher degree than the CPU
implementations.

33

6. Conclusions

There are two main conclusions to be drawn from this study.
Firstly, when comparing three different performance-portable program-

ming models, namely Kokkos, OpenACC and OpenMP using open-access
compilers in a high-order FEM setting, we conclude that the choice of pro-
gramming model is still a complex question.

All three programming models require very similar implementational ef-
forts. There are syntactical differences, which are minor between OpenMP
and OpenACC (and would enable a seamless switch between the two) and
slightly deeper compared with Kokkos, mostly due to the requirement of us-
ing Kokkos-specific arrays. Kokkos further allows addressing many aspects of
performance tuning which are connected with native CUDA applications, al-
lowing more individual trade-offs between portability and performance. The
main current drawback of the OpenMP model is the lack of robust open-
access compiler implementations. The best compiler currently available,
which is the llvm-ykt branch, still lacks a parallel reduction functionality,
has no linking support for external libraries, and showed bad performance
of the gather-type operation, probably due to the implementation of the
collapsing-clause and the implicit compiler choice for block-sizes. The Open-
ACC model has shown the best overall performance results, yielding the
fastest runtimes on Nvidia GPUs, and only slightly slower runtimes on Intel
CPUs than OpenMP.

Secondly, this study has helped us to identify the steps to be undertaken
in order to port a legacy CPU code to modern multi-core CPUs and many-
core GPUs and achieve good performance. The mapping of the algorithmic
parallelisation to the hardware parallelisation, together with the right data
layout, plays a fundamental role in achieving reasonable performance on
modern hardware. Here we have employed a very fine grained parallelism
in which we process a single mesh element on each thread. This requires the
processing of elements to be vectorised either on the AVX vector lanes or
over the CUDA threads of a warp. This vectorisation in turn necessitates
the use of interleaved data structures and custom BLAS functions to operate
on them. Reduction operations can become a major bottleneck in massively
parallel applications. We employ mesh colouring to counteract this aspect
and regain more parallelism.

The performance of our three applications is very reasonable on multi-core
CPUs, but lacks the ability to fully leverage the arithmetic potential of GPUs.

34

To do so, it is not enough to translate the traditional algorithms, that often
just minimise FLOP count, as we did in this study. Instead of pre-computing
data and loading it when required, more data should be recomputed on the
fly, as it can often be faster than loading a large array from DRAM memory,
when latencies are of the order of 104 cycles. For example, the framework
OpenSBLI [20] offers the option to variably execute either or a mix of these
two approaches.

These observations show that performance portability might not be real-
isable in practice just by employing a performance portable programming
model. The algorithmic choices between current CPUs and GPUs that have
to be made now are fundamentally different. To deal with this increasing code
complexity, auto-tuning frameworks and just-in-time compilation, that can
make algorithmic choices based on the underlying architecture at runtime,
should be considered.

Acknowledgements

JE acknowledges the constructive discussions with Niki Loppi that led
to the development of the strided kernels. JE also acknowledges the sup-
port through the President’s Scholarship of Imperial College London. MV
acknowledges support from the EU Horizon 2020 project ExaFLOW (Grant
no. 671571). DM and JP acknowledge support from the EPSRC under grant
EP/R029423/1. The Quadro P5000 GPU used for this work has been kindly
donated by the NVIDIA corporation.

References

[1] J.-E. W. Lombard, D. Moxey, S. J. Sherwin, J. F. A. Hoessler,
S. Dhandapani, M. J. Taylor, Implicit large-eddy simulation of a wingtip
vortex, AIAA Journal 54 (2) (2016) 506–518. doi:10.2514/1.J054181.

[2] H. Carter Edwards, C. R. Trott, D. Sunderland, Kokkos: Enabling
manycore performance portability through polymorphic memory access
patterns, Journal of Parallel and Distributed Computing 74 (12) (2014)
3202–3216. doi:10.1016/j.jpdc.2014.07.003.

[3] OpenMP 4.5 Specifications (2015).
URL http://www.openmp.org/wp-content/uploads/openmp-4.5.

pdf

35

https://doi.org/10.2514/1.J054181
https://doi.org/10.1016/j.jpdc.2014.07.003
http://www.openmp.org/wp-content/uploads/openmp-4.5.pdf
http://www.openmp.org/wp-content/uploads/openmp-4.5.pdf
http://www.openmp.org/wp-content/uploads/openmp-4.5.pdf

[4] OpenACC Programming and Best Practices Guide (2015).
URL http://www.openacc.org/sites/default/files/OpenACC_

Programming_Guide_0.pdf

[5] J. J. Dongarra, P. Luszczek, A. Petite, The LINPACK benchmark: Past,
present and future, Concurrency Computation Practice and Experience
15 (9) (2003) 803–820. doi:10.1002/cpe.728.

[6] M. A. Heroux, D. W. Doerfler, P. S. Crozier, J. M. Willenbring, H. C.
Edwards, A. Williams, M. Rajan, E. R. Keiter, H. K. Thornquist,
R. W. Numrich, Improving performance via Mini-applications, Tech.
Rep. September, Sandia National Labs (2009).
URL https://mantevo.github.io/pdfs/MantevoOverview.pdf

[7] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S. H. Lee,
K. Skadron, Rodinia: A benchmark suite for heterogeneous comput-
ing, in: Proceedings of the 2009 IEEE International Symposium on
Workload Characterization, IISWC 2009, IEEE, 2009, pp. 44–54. doi:

10.1109/IISWC.2009.5306797.

[8] A. Danalis, G. Marin, C. McCurdy, J. S. Meredith, P. C. Roth, K. Spaf-
ford, V. Tipparaju, J. S. Vetter, The Scalable HeterOgeneous Com-
puting (SHOC) Benchmark Suite Categories and Subject Descriptors,
in: Proceedings of the 3rd Workshop on General-Purpose Computation
on Graphics Processing Units, 2010, pp. 63–74. arXiv:1107.1714v2,
doi:10.1145/1735688.1735702.

[9] J. A. Stratton, C. Rodrigues, I.-J. Sung, N. Obeid, L.-W. Chang, N. Ans-
sari, G. D. Liu, W.-m. W. Hwu, Parboil: A Revised Benchmark Suite
for Scientific and Commercial Throughput Computing, Tech. rep., Uni-
versity of Illinois at Urbana-Champaign (2012).
URL http://impact.crhc.illinois.edu/parboil.php

[10] C. D. Cantwell, D. Moxey, A. Comerford, A. Bolis, G. Rocco,
G. Mengaldo, D. De Grazia, S. Yakovlev, J. E. Lombard, D. Ekelschot,
B. Jordi, H. Xu, Y. Mohamied, C. Eskilsson, B. Nelson, P. Vos, C. Bi-
otto, R. M. Kirby, S. J. Sherwin, Nektar++: An open-source spectral/hp
element framework, Computer Physics Communications 192 (2015) 205–
219. doi:10.1016/j.cpc.2015.02.008.

36

http://www.openacc.org/sites/default/files/OpenACC_Programming_Guide_0.pdf
http://www.openacc.org/sites/default/files/OpenACC_Programming_Guide_0.pdf
http://www.openacc.org/sites/default/files/OpenACC_Programming_Guide_0.pdf
https://doi.org/10.1002/cpe.728
https://mantevo.github.io/pdfs/MantevoOverview.pdf
https://mantevo.github.io/pdfs/MantevoOverview.pdf
https://doi.org/10.1109/IISWC.2009.5306797
https://doi.org/10.1109/IISWC.2009.5306797
http://arxiv.org/abs/1107.1714v2
https://doi.org/10.1145/1735688.1735702
http://impact.crhc.illinois.edu/parboil.php
http://impact.crhc.illinois.edu/parboil.php
http://impact.crhc.illinois.edu/parboil.php
https://doi.org/10.1016/j.cpc.2015.02.008

[11] G. E. Karniadakis, M. Israeli, S. A. Orszag, High-Order Splitting Meth-
ods for the Incompressible Navier-Stokes Equations, Journal of Compu-
tational Physics 97 (2) (1991) 414–443. doi:10.1016/0021-9991(91)

90007-8.

[12] G. Karniadakis, S. Sherwin, Spectral/hp Element Methods for Compu-
tational Fluid Dynamics, 2nd Edition, Oxford University Press, 2005.
doi:10.1093/acprof:oso/9780198528692.001.0001.

[13] F. D. Witherden, A. M. Farrington, P. E. Vincent, PyFR: An open
source framework for solving advection–diffusion type problems on
streaming architectures using the flux reconstruction approach, Com-
puter Physics Communications 185 (11) (2014) 3028–3040. doi:10.

1016/j.cpc.2014.07.011.

[14] M. Kronbichler, K. Kormann, Fast Matrix-Free Evaluation of Dis-
continuous Galerkin Finite Element Operators, ACM Transactions on
Mathematical Software 45 (3) (2019) 1–40. doi:10.1145/3325864.

[15] P. Bastian, C. Engwer, J. Fahlke, M. Geveler, D. Göddeke, O. Iliev,
O. Ippisch, R. Milk, J. Mohring, S. Müthing, M. Ohlberger, D. Ribbrock,
S. Turek, Hardware-Based Efficiency Advances in the EXA-DUNE Pro-
ject, in: H.-J. Bungartz, P. Neumann, W. E. Nagel (Eds.), Software for
Exascale Computing - SPPEXA 2013-2015, Springer International Pub-
lishing, Cham, 2016, pp. 3–23. doi:10.1007/978-3-319-40528-5_1.

[16] Intel Corporation, Using AVX Without Writing AVX Code (2012).
URL https://software.intel.com/en-us/articles/

\using-avx-without-writing-avx-code

[17] Nvidia, CUDA8.0 Release Note (2016).
URL http://docs.nvidia.com/cuda/pdf/CUDA_Toolkit_Release_

Notes.pdf

[18] Khronos Group, OpenCL Overview (2019).
URL https://www.khronos.org/opencl/

[19] F. Rathgeber, D. A. Ham, L. Mitchell, M. Lange, F. Luporini, A. T. T.
McRae, G.-T. Bercea, G. R. Markall, P. H. J. Kelly, Firedrake: auto-
mating the finite element method by composing abstractions, ACM

37

https://doi.org/10.1016/0021-9991(91)90007-8
https://doi.org/10.1016/0021-9991(91)90007-8
https://doi.org/10.1093/acprof:oso/9780198528692.001.0001
https://doi.org/10.1016/j.cpc.2014.07.011
https://doi.org/10.1016/j.cpc.2014.07.011
https://doi.org/10.1145/3325864
https://doi.org/10.1007/978-3-319-40528-5_1
https://software.intel.com/en-us/articles/\using-avx-without-writing-avx-code
https://software.intel.com/en-us/articles/\using-avx-without-writing-avx-code
https://software.intel.com/en-us/articles/\using-avx-without-writing-avx-code
http://docs.nvidia.com/cuda/pdf/CUDA_Toolkit_Release_Notes.pdf
http://docs.nvidia.com/cuda/pdf/CUDA_Toolkit_Release_Notes.pdf
http://docs.nvidia.com/cuda/pdf/CUDA_Toolkit_Release_Notes.pdf
https://www.khronos.org/opencl/
https://www.khronos.org/opencl/

Transactions on Mathematical Software 43 (3) (2015) 24:1 – 24:27.
doi:10.1145/2998441.

[20] C. T. Jacobs, S. P. Jammy, N. D. Sandham, OpenSBLI: A framework
for the automated derivation and parallel execution of finite difference
solvers on a range of computer architectures, Journal of Computational
Science 18 (2017) 12–23. doi:10.1016/j.jocs.2016.11.001.

[21] The Open Group, POSIX Threads (1997).
URL http://pubs.opengroup.org/onlinepubs/007908799/xsh/

threads.html

[22] R. Hornung, H. Jones, J. Keasler, R. Neely, A. Kunen, O. Pearce, RAJA
Overview, Tech. Rep. LLNL-TR-677453, Lawrence Livermore National
Laboratory (2015).
URL https://github.com/LLNL/RAJA

[23] D. S. Medina, A. St-Cyr, T. Warburton, OCCA: A unified approach to
multi-threading languages, ArXiv (2014) 1–25.
URL http://arxiv.org/abs/1403.0968

[24] Khronos Group, SYCL Provisional Specification (2016).
URL https://www.khronos.org/registry/sycl/specs/sycl-2.2.

pdf

[25] S. A. Orszag, Spectral methods for problems in complex geometries,
Journal of Computational Physics 37 (1) (1980) 70–92. doi:10.1016/

0021-9991(80)90005-4.

[26] D. Moxey, C. D. Cantwell, R. M. Kirby, S. J. Sherwin, Optimising the
performance of the spectral/hp element method with collective linear
algebra operations, Computer Methods in Applied Mechanics and En-
gineering 310 (2016) 628–645. doi:10.1016/j.cma.2016.07.001.

[27] A. Heinecke, G. Henry, M. Hutchinson, H. Pabst, LIBXSMM: Acceler-
ating Small Matrix Multiplications by Runtime Code Generation, In-
ternational Conference for High Performance Computing, Networking,
Storage and Analysis, SC (2017) 981–991doi:10.1109/SC.2016.83.

[28] C. D. Cantwell, S. J. Sherwin, R. M. Kirby, P. H. J. Kelly, From h to
p efficiently: Strategy selection for operator evaluation on hexahedral

38

https://doi.org/10.1145/2998441
https://doi.org/10.1016/j.jocs.2016.11.001
http://pubs.opengroup.org/onlinepubs/007908799/xsh/threads.html
http://pubs.opengroup.org/onlinepubs/007908799/xsh/threads.html
http://pubs.opengroup.org/onlinepubs/007908799/xsh/threads.html
https://github.com/LLNL/RAJA
https://github.com/LLNL/RAJA
https://github.com/LLNL/RAJA
http://arxiv.org/abs/1403.0968
http://arxiv.org/abs/1403.0968
http://arxiv.org/abs/1403.0968
https://www.khronos.org/registry/sycl/specs/sycl-2.2.pdf
https://www.khronos.org/registry/sycl/specs/sycl-2.2.pdf
https://www.khronos.org/registry/sycl/specs/sycl-2.2.pdf
https://doi.org/10.1016/0021-9991(80)90005-4
https://doi.org/10.1016/0021-9991(80)90005-4
https://doi.org/10.1016/j.cma.2016.07.001
https://doi.org/10.1109/SC.2016.83

and tetrahedral elements, Computers and Fluids 43 (1) (2011) 23–28.
doi:10.1016/j.compfluid.2010.08.012.

[29] T. Dong, A. Haidar, P. Luszczek, S. Tomov, A. Abdelfattah, J. Don-
garra, MAGMA Batched: A Batched BLAS Approach for Small Matrix
Factorizations and Applications on GPUs, ICL Tech Report 08/2016,
Innovative Computing Laboratory, University of Tennessee, Knoxville,
TN, 37996 (2016).

[30] Y. Shi, U. N. Niranjan, A. Anandkumar, C. Cecka, Tensor Contractions
with Extended BLAS Kernels on CPU and GPU, in: Proceedings - 23rd
IEEE International Conference on High Performance Computing, HiPC
2016, 2017, pp. 193–202. doi:10.1109/HiPC.2016.031.

[31] G. Alzetta, D. Arndt, W. Bangerth, V. Boddu, B. Brands, D. Davydov,
R. Gassmoeller, T. Heister, L. Heltai, K. Kormann, M. Kronbichler,
M. Maier, J.-P. Pelteret, B. Turcksin, D. Wells, The deal.II Library,
Version 9.0, Journal of Numerical Mathematics.
URL https://doi.org/10.1515/jnma-2018-0054

[32] J. Eichstädt, M. Green, M. Turner, J. Peiró, D. Moxey, Accelerat-
ing high-order mesh optimisation with an architecture-independent pro-
gramming model, Computer Physics Communications 229 (2018) 36–53.
doi:10.1016/j.cpc.2018.03.025.

39

https://doi.org/10.1016/j.compfluid.2010.08.012
https://doi.org/10.1109/HiPC.2016.031
https://doi.org/10.1515/jnma-2018-0054
https://doi.org/10.1515/jnma-2018-0054
https://doi.org/10.1515/jnma-2018-0054
https://doi.org/10.1016/j.cpc.2018.03.025

	Introduction
	Parallel hardware and portable programming models
	Multi-core and many-core architectures
	Kokkos versus OpenMP and OpenACC

	Method
	Implicit solver
	Discretisation of the Helmholtz equation

	Implementation and parallelisation strategy
	Interleaved data structures and kernels
	Parallel element colouring and reduction operations
	Ease of implementation and maintainability of the programming models

	Performance evaluation
	Comparison of Kokkos, OpenMP and OpenACC on multi-core architectures
	Strong scaling exercise
	Efficiency of different polynomial orders
	Detailed performance evaluation

	Comparison of Kokkos, OpenMP and OpenACC on GPU architectures
	Efficiency of different polynomial orders
	Detailed performance evaluation

	Cost comparison between different architectures

	Conclusions

