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Abstract

We combine continuous and discontinuous Galerkin methods in the setting of a model
diffusion problem. Starting from a hybrid discontinuous formulation, we replace element
interiors by more general subsets of the computational domain – groups of elements that
support a piecewise-polynomial continuous expansion. This step allows us to identify
a new weak formulation of Dirichlet boundary condition in the continuous framework. We
show that the boundary condition leads to a stable discretization with a single parameter
insensitive to mesh size and polynomial order of the expansion. The robustness of the
approach is demonstrated on several numerical examples.

Keywords: High-order, Navier-Stokes equations, weakly imposed boundary conditions,
fluids

1. Introduction

High-order methods, combined with unstructured grids, are now becoming increasingly
popular in application areas such as computational fluid dynamics. They simultaneously
provide geometric flexibility and high-fidelity of flow solutions, whilst being able to utilize
modern computing hardware more effectively than traditional low-order methods [1]. These5

properties make high-order methods particularly attractive in various application areas
such as Large-Eddy Simulations (LES) over complex industrial geometries [2], which can be
used to gain detailed insight into flow physics. Simulations such as these, which are based on
the incompressible Navier-Stokes equations, can be efficiently tackled using discretizations
which employ high-order elements in space and a time-splitting scheme [3] that involves the10

solution of four scalar elliptic equations for pressure and velocity components respectively.
The cost of one time step in this scheme is then largely determined by the amount of
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work needed to obtain the pressure field, which is defined as a solution to a (frequently
ill-conditioned) scalar elliptic Poisson equation.

The difficulty in solving the governing equation for pressure is further increased when15

one considers complex flow features, for example the formation and evolution of a wingtip
vortex simulated by a high-order method (Figure 1). Under-integration of nonlinear terms
in Navier-Stokes equations introduces an aliasing error which may compromise the stability
of the simulation [4]. This is usually not problematic when the flow features are adequately
resolved. Once the buildup of aliasing errors becomes an issue, however, the stability of20

the solver is often compromised in the vicinity of (wall) boundaries, where the introduction
of boundary constraints into the discrete problem further degrades the conditioning of the
stiffness matrix. This problem motivated our search for a new formulation of boundary
terms, which is proposed in this paper.

Figure 1: Implicit LES of a wingtip vortex using a high-order hp/spectral element solver. Reproduced
from [2].

As noted by Hesthaven [5], in the context of hyperbolic conservation laws, if the require-25

ment to satisfy boundary conditions exactly (within machine accuracy) is relinquished and
the only requirement is that the boundary operator does not degrade the overall spatial
accuracy of the discretization, a range of new techniques becomes possible. More specifi-
cally, our aim is to be able to write the discrete form of the original differential equation as
a sum of an interior term and one or more boundary corrections which enforce the bound-30

ary conditions so that they are satisfied in the convergence limit, but not necessarily from
the first iteration of the linear solver.

Boundary conditions in the form of penalty terms can be incorporated into the vari-
ational form using the approach first described by Nitsche [6] and later on developed in
a number of other papers, for example in [7] or [8]. We compare its accuracy and perfor-35

mance with our method in Section 5.2.
Other work on weak imposition of Dirichlet boundary conditions includes the contribu-

tions of Bazilevs et al. [9, 10]. The authors used their formulation to solve an advection-
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diffusion problem and the incompressible Navier-Stokes equations with low-order stabilized
finite element methods. The Dirichlet constraints are incorporated directly into the vari-40

ational form as Euler-Lagrange equations. In their paper [11], the authors note that the
conditions render the simulation more robust on coarse meshes where near-wall resolution
is low. Building on their previous work, Evans et al. [12] utilised Nitsche’s method because
it allowed them to account for sharp boundary layers in a stable and consistent manner
without having to directly resolve them. They in fact claim that Nitsche’s method can be45

interpreted as a variationally consistent wall model (based upon [9, 10, 11]).
Conceptually similar mechanisms can also be found in the works of Liakos [13], Liakos

and Caglar [14], Layton [15] and Urquiza et al. [16], where the discrete form of the
governing law together with weak boundary conditions is again enforced either by Lagrange
multipliers or by penalizing certain components of the velocity field on wall boundaries.50

The existing body of work differs from our contribution in terms of scope, however. We
are interested in elliptic problems and high-order Galerkin finite element methods, while
the references cited above consider conservation laws of advection-diffusion type and use
low-order stabilized methods.

High-order Navier-Stokes solvers on unstructured grids can be devised by considering55

one of many methods of Galerkin type, each of which has specific advantages and draw-
backs. The high-order continuous Galerkin (CG) method [17], [18] is the oldest. Compared
to its discontinuous counterparts, the unknowns at element interfaces are not duplicated,
as shown in Figure 2). The CG solution can be accelerated by means of static condensa-
tion [19], [20], [21], [22], which produces a globally coupled system involving only those60

degrees of freedom on the mesh skeleton. The element interior unknowns are subsequently
obtained from the mesh skeleton data by solving independent local problems that do not
require any communication.

Figure 2: Distribution of unknowns for continuous and discontinuous Galerkin methods.

Discontinuous Galerkin (DG) methods [23], on the other hand, duplicate discrete vari-
ables on element boundaries, thus decoupling mesh elements and requiring at most pairwise65

communication between them. This is at the expense of a larger linear system and more
time spent in the linear solver. Discontinuous discretization is therefore expected to scale
better on parallel computers, but the improved scaling is not necessarily reflected in sig-
nificantly smaller CPU times when compared to a CG solver. With regards to our work,
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many DG methods provide natural frameworks for the design of weak boundary conditions70

implemented by means of flux functions.
Hybrid discontinuous Galerkin (HDG) methods [24] address the performance deficiencies

of CG by introducing an additional (hybrid) variable on the mesh skeleton. The hybrid
degrees of freedom determine the rank of the global system matrix and HDG therefore
produces a statically condensed system that is similar in size to the CG case. In contrast75

with CG, the static condensation in HDG takes place by construction rather than being an
optional iterative technique.

The formulation used for Dirichlet boundary conditions in this paper was formally de-
rived by treating the whole domain triangulation as one element in HDG and by replacing
the commonly used polynomial basis in the element interior by a piecewise-polynomial and80

globally continuous CG interpolant. While the mixed HDG system was our starting point,
we eventually revert to the primal form of the local solver which leads to a variational
formulation for a scalar elliptic PDE obtained with continuous Galerkin method and aug-
mented by additional terms responsible for the enforcing of boundary constraints. These
terms preserve the symmetry and positivity of the discrete CG operator and thus consti-85

tute and attractive alternative to existing methods. In summary, our goal is to capitalize
on the properties seen when weakly imposing boundary conditions (such as in Nitsche’s
method [11, 12]) while leveraging the computational efficiencies seen in the Hybridized
Discontinuous Galerkin Method [25, 26].

1.1. Outline90

The paper is organized as follows. We first recall the mixed form of scalar elliptic
problems considered in this paper and its discretization by Hybridizable Discontinuous
Method in Section 2. In particular, we discuss the HDG local and global solvers which
provide a natural framework for prescribing Dirichlet boundary conditions in a weak sense.
Section 3 discusses the matrix form of the HDG local solver in more detail and then proceeds95

to the description of weak Dirichlet formulation in Section 4. Accuracy and convergence
rates of the CG solver with weak boundary conditions are compared with the classical strong
boundary formulation in Section 5. This Section also presents several test cases showcasing
the behaviour of weak boundary conditions in a fluid dynamics context. Before concluding
the paper, the differences between our formulation and existing penalty approaches for100

enforcing Dirichlet boundary conditions are discussed in Section 5.2.

2. Overview of the formulation of HDG method

We begin with a brief recap of the standard HDG formulation for a finite element
mesh, following a similar approach to that taken in [25] and [26]. For consistency, we have
selected to use the notation in [25]. Formulation details omitted here for brevity can be105

found therein.
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Figure 3: Computational domain and its tesselation demonstrating notation used in the text. Although
not explicitly highlighted in the diagram, we assume that element edges/faces can be isoparametric.

2.1. Continuous problem

We seek the solution of a Poisson equation as a representative elliptic problem

−∇2u(x) = f(x) x ∈ Ω, (1)

u(x) = gD(x) x ∈ ∂ΩD,

n · ∇u(x) = gN(x) x ∈ ∂ΩN ,

on a domain Ω with Dirichlet (∂ΩD) and Neumann (∂ΩN) boundary conditions, where
∂ΩD

⋃
∂ΩN = ∂Ω and ∂ΩD

⋂
∂ΩN = ∅. To formulate the HDG method, we consider

a mixed form of (1) by introducing an auxiliary variable q = ∇u:

−∇ · q = f(x) x ∈ Ω, (2)

q = ∇u(x) x ∈ Ω, (3)

u(x) = gD(x) x ∈ ∂ΩD, (4)

q · n = gN(x) x ∈ ∂ΩN . (5)

The gradient variable q is approximated together with the primal variable u, which con-
trasts with the CG method and other discontinuous methods for (1).

2.2. HDG interpolation spaces and discretization110

We limit ourselves to two-dimensional problems for sake of simplicity, but the for-
mal description remains unchanged in three dimensions. We assume that in the discrete
setting, the computational domain Ω is approximated by its tesselation Th consisting of
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Figure 4: Index mappings relating edge and element ids.

non-overlapping and conformal elements Ke such that for each pair of distinct indices
ei 6= ej, K

ei ∩Kej = ∅. The symbol Γl denotes an interior edge of the tesselation Th, i.e.115

an edge Γl = K̄i ∩ K̄j where Ki and Kj are two distinct elements of the tesselation. We
say that Γl is a boundary edge of the tesselation Th if there exists an element Ke such that
Γl = Ke ∩ ∂Ω and the length of Γl is not zero, as shown in Figure 3. The set of all internal
edges is denoted by E0

h, while E∂h is a set of all boundary edges. Their union Eh comprises
of all mesh edges, Eh = E0

h ∪ E∂h .120

In order to describe some terms in the HDG formulation, it is also useful to introduce
mappings that relate elements to their local edges, as shown in Figure 4. Let ∂Ke

j be the
j-th edge of element Ke, and suppose that this is also the l-th edge Γl in the global edge
numbering. Then we define the local-to-global edge mapping σ by setting σ(e, j) = l so
that we can write ∂Ke

j = Γσ(e,j). An interior edge Γl is the intersection of the boundaries125

of two elements Ke and Kf , hence we set η(l,+) = e and η(l,−) = f in order to be able
to write Γl = ∂Kη(l,+) ∩ ∂Kη(l,−).

2.3. Approximation spaces

The finite element spaces supported by the (two-dimensional) tesselation Th are defined
as follows:

Vh := {v ∈ L2(Ω) : v|Ke ∈ P(Ke) ∀Ke ∈ Th},
Σh := {w ∈ [L2(Ω)]2 : w|Ke ∈ Σ(Ke) ∀Ke ∈ Th},
Mh := {µ ∈ L2(Γ) : µ|Γl ∈ P(Γl) ∀Γl ∈ Γ},

where P(Γl) = SP (Γl) is the polynomial space over the standard segment

SP (Γl) = {sp : 0 ≤ p ≤ P, [x1(s), x2(s)] ∈ Γl, −1 ≤ s ≤ 1},
and P(Ke) is the space of polynomials of degree P defined on a standard region, which
can either be the standard triangle

P(Ke) = TP (Ke) = {ξp1ξqw : 0 ≤ p+q ≤ P, [x1(ξ1, ξ2), x2(ξ1, ξ2)] ∈ Ke, −1 ≤ ξ1 +ξ2 ≤ 0},
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or standard quadrilateral

P(Ke) = QP (Ke) = {ξp1ξq2 : 0 ≤ p, q ≤ P, [x1(ξ1, ξ2), (x2(ξ1, ξ2)] ∈ Ke, −1 ≤ ξ1, ξ2 ≤ 1}.
Similarly Σ(Ke) = [TP (Ke)]2 or Σ(Ke) = [QP (Ke)]2. There is no requirement on global
continuity of the expansion. This is also true for the trace space Mh: a discrete variable130

λ ∈Mh is multi-valued at every mesh vertex shared by multiple interior edges.

2.4. Global formulation for HDG problem

Given an element K ∈ Th and two functions u, v ∈ L2(Th), we define their L2 scalar
product by

(u, v)Th =
∑
K∈Th

(u, v)K , where (u, v)K =

∫
K

uv dx.

Similarly, the L2 product of functions u and v that are square-integrable on element traces
are defined by:

〈u, v〉∂Th =
∑
K∈Th

〈u, v〉∂K where 〈u, v〉∂K =

∫
∂K

uv ds

The DG method seeks an approximation pair (uDG, qDG) to u and q, respectively, in
the space Vh ×Σh. The solution is required to satisfy the weak form of (2) and (3)(

qDG,∇v
)
Th

= (f, v)Th +
〈
ne · q̃DG, v

〉
∂Th

(6)(
qDG,w

)
Th

= −
(
uDG,∇ ·w

)
Th

+
〈
ũDG,w · ne

〉
∂Th

(7)

for all (v,w) ∈ Vh(Ω) × Σh(Ω), where the numerical traces ũDG and q̃DG have to be
suitably defined in terms of the approximate solution (uDG, qDG). For details, we refer the
reader to [24]. This choice of trace variables allows us to construct the discrete HDG system135

involving only trace degrees of freedom ũDG. Once ũ is known, the element-interior degrees
of freedom represented by both the primal variable u and gradient q can be reconstructed
from element-boundary values.

We note that the element-interior variable u restricted to element traces is not equal
to the hybrid variable ũ, but only approximates it: due to the definition of approximation140

spaces Vh and Mh, u must be continuous along element boundaries, while ũDG is allowed
to have jumps in element vertices.

2.5. Local solvers in the HDG method

Assume that the function
λ := ũDG ∈Mh, (8)

is given. Then the solution restricted to element Ke is a function ue, qe in P (Ke)×Σ(Ke)
that satisfies the following equations:

(qe,∇v)Ke = (f, v)Ke + 〈ne · q̃e, v〉∂Ke (9)

(qe,w)Ke = − (ue,∇ ·w)Ke + 〈λ,w · ne〉∂Ke , (10)
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for all (v,w) ∈ P (Ke)×Σ(Ke). For a unique solution of the above equations to exist, the
numerical trace of the flux must depend only on λ and on (ue, qe):

q̃e(x) = qe(x)− τ
(
ue(x)− λ(x)

)
ne on ∂Ke (11)

for some positive function τ . The analysis presented in [24] reveals that as long as τ > 0,
its value can be arbitrary without degrading the robustness of the solver. For the limiting145

value of τ → ∞, one obtains a statically condensed continuous Galerkin formulation. In
this sense, τ plays the role of a method selector as opposed to traditional penalty parameter
used in Nitsche’s method, for example.

2.6. Global problem for trace variable

We denote by (Uλ,Qλ) and by (Uf ,Qf ) the solution to the local problem (9), (10) when
λ = 0 and f = 0, respectively. Due to the linearity of the original problem (1) and its
mixed form, the solution satisfies

(uHDG, qHDG) = (Uλ,Qλ) + (Uf ,Qf ). (12)

In order to uniquely determine λ, we require that the boundary conditions be weakly150

satisfied and the normal component of the numerical trace of the flux q̃ given by (11) is
single valued, rendering the numerical trace conservative.

We say that λ is the element of Mh such that

λ = Ph(gD) on ∂ΩD (13)

〈µ, q̃ · n〉∂T = 〈µ, gN〉∂ΩN
, (14)

for all µ ∈M0
h such that µ = 0 on ∂ΩD. Here Ph denotes the L2-projection into the space

of restrictions to ∂ΩD of functions of Mh.
In the following, we consider ue(x), qe(x) = [q1, q2]T and λl(x) to be finite expansions

in terms of basis functions φej(x) for the expansions over elements and the basis ψlj(x) over
the traces of the form:

ue(x) =

Ne
u∑

j=1

φej(x)ûe[j] qek(x) =

Ne
q∑

j=1

φej(x)q̂e
k
[j] λl(x) =

N l
λ∑

j=1

ψlj(x)λ̂
l
[j]

3. Discrete form of HDG local solver155

We now define several local matrices stemming from standard Galerkin formulation,
where scalar test functions ve are represented by φei (x), with i = 1, . . . , N e

u.

De
k[i, j] =

(
φei ,

∂φej
∂xk

)
Ke

Me[i, j] =
(
φei , φ

e
j

)
Ke

Eel [i, j] =
〈
φei , φ

e
j

〉
∂Ke

l

Ẽekl[i, j] =
〈
φei , φ

e
jn

e
k

〉
∂Ke

l

Fel [i, j] =
〈
φei , ψ

σ(e,l)
j

〉
∂Ke

l

F̃ekl[i, j] =
〈
φei , ψ

σ(e,l)
j nek

〉
∂Ke

l
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If the trace expansion matches the expansions used along the edge of the elemental expan-
sion and the local coordinates are aligned, that is ψ

σ(e,l)
i (s) = φk(i)(s) then Eel contains the

same entries as Fel and similarly Ẽekl contains the same entries as F̃ekl.
Inserting the finite expansions of the trial functions into equations (9) and (10), and

using the definition of the flux (11) yields the matrix form of local solvers

∑
k=1,2

(De
k)
T −

Ne
b∑

l=1

[
Ẽekl
] q̂e

k
+

Ne
b∑

l=1

τ e,l
[
Eel û

e − Fel λ̂
σ(e,l)

]
= f e (15)

Meq̂e
k

= −(De
k)
T ûe +

Ne
b∑

l=1

F̃eklλ̂
σ(e,l)

k = 1, 2 (16)

The global equation for λ can be obtained by discretizing the transmission condition (14).
We introduce local element-based and edge-based matrices

Fl,e[i, j] =
〈
ψli, φ

e
j

〉
Γl

'
F
l,e

k [i, j] =
〈
ψli, φ

e
jn

e
k

〉
Γl

Ḡl[i, j] =
〈
ψli, ψ

l
j

〉
Γl

and define
gl
N

[i] =
〈
gn, ψ

l
i

〉
Γl

⋂
∂ΩN

.

The transmission condition in matrix form is then[
'
F
l,e

1

'
F
l,e

2

] q̂e
1

q̂e
2

+

[
'
F
l,f

1

'
F
l,f

2

] q̂f
1

q̂f
2

+ (τ e,i + τ f,j)Ḡlλ̂
l − τ e,iF̄l,eue − τ f,jF̄l,fuf = gl

N
,

where we are assuming that l = σ(e, i) = σ(f, j).
We see that the transmission condition can be constructed from elemental contributions.160

In Section 4 of [25], it was shown how to use the elemental local solvers given by the
equations above to obtain a matrix equation for λ only. Due to space considerations, we
refer the reader to [25] for further details.

4. Continuous finite elements with weak Dirichlet boundary conditions

With the standard HDG formulation now outlined, we investigate how this approach165

can be applied to derive a weak Dirichlet boundary condition implementation for a con-
tinuous Galerkin problem. Since the HDG local solver naturally imposes a weak boundary
condition on a single element, we choose to apply the HDG local solver to a single ‘macro
element’ that covers the whole domain tesselation Th. The term ‘macro element’ in this
setting denotes a conformal triangulation (as described in section 2) which supports a piece-170

wise polynomial expansion, as is generally common in Galerkin methods.
We start again from the weak mixed problem (9), (10), but integrate the second term

in the flux equation (10) by parts once again. This modified flux form allows for a sym-
metric boundary contribution to the linear system as will be explained shortly. In order
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to distinguish between the standard HDG local solver within a single element and HDG
applied to the whole domain tesselation Th, the superscript ‘e’ has been replaced by Th
where appropriate. The ’macro element’ form yields a system(

qTh ,∇v
)
Th

= (f, v)Th +
〈
nTh · q̃Th , v

〉
∂Tn

(17)(
qTh ,w

)
Th

=
(
∇uTh ,w

)
Th
−
〈
uTh ,w · nTh

〉
∂Th

+
〈
λ,w · nTh

〉
∂Th

(18)

The numerical approximation uTh belongs to the space V Thh and qTh lies in ΣThh , which are
defined as

V Th := {v ∈ C0(Ω) : v|Ke ∈ P (Ke) ∀Ke ∈ Th},
ΣTh := {w ∈ [L2(Ω)]2 : w|Ke ∈ Σ(Ke) ∀Ke ∈ Th}.

Using the definition of the trace flux

q̃Th(x) = qTh(x)− τ(uTh(x)− λ(x))nTh on ∂Th,
and the fact that the integral over Th can be written as a sum of integrals over all Ke ∈ Th,
equations (17) and (18) become∑

Ke∈Th

(∇v, qe)Ke −
∑
Ke

∂Ke∩∂Th,D 6=∅

〈v,ne · qe〉∂Ke + τ
∑
Ke

∂Ke∩∂Th,D 6=∅

〈v, ue〉∂Ke

−τ
∑
Ke

∂Ke∩∂Th,D 6=∅

〈v, λ〉∂Ke =
∑
Ke∈Th

(v, f)Ke (19)

∑
Ke∈Th

(w, qe)Ke +
∑
Ke

∂Ke∩∂Th,D 6=∅

〈ue,w · ne〉∂Ke

−
∑
Ke∈Th

(w,∇ue)Ke −
∑
Ke

∂Ke∩∂Th,D 6=∅

〈w · ne, λ〉∂Ke = 0 (20)

A continuous Galerkin solver with Dirichlet data prescribed by the variable λ can be
obtained by eliminating the flux variable from the system and reverting back to primal form
for the unknown u. The mass matrix which appears in the second equation of the local
solver after evaluating the dot product

(
qTh ,w

)
Th

is now block-diagonal as a consequence

of the discontinuous nature of the discrete flux qTh , hence the elimination of qTh from the
system can be performed element-wise. The matrix equivalent of (19), (20) written for
a single element Ke ∈ Th adjacent to Dirichlet boundary reads

∑
k=1,2

(De
k)
T −

Ne
b∑

l=1

Ẽekl

 q̂e
k

+

Ne
b∑

l=1

τ e,l
[
Eel û

e − Fel λ̂
σ(e,l)

]
= f e (21)

Meq̂e
k

=

(De
k)−

Ne
b∑

l=1

Ẽekl

 ûe +

Ne
b∑

l=1

F̃eklλ̂
σ(e,l)

k = 1, 2 (22)
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The discrete flux q̂e
k

expressed from (22) and substituted in equation (21) yields element-
wise contribution to the left- and right-hand side of the linear system which can be ex-
pressed as

∑
k=1,2

{
(De

k)
T
(
Me
)−1De

k︸ ︷︷ ︸
1

−
( Ne

b∑
l=1

Ẽekl
)(

Me
)−1De

k︸ ︷︷ ︸
2a

}
ûe

−
∑
k=1,2

{
(De

k)
T
(
Me
)−1
( Ne

b∑
l=1

Ẽekl
)

︸ ︷︷ ︸
2b

+

( Ne
b∑

l=1

Ẽekl
)(

Me
)−1
( Ne

b∑
l=1

Ẽekl
)

︸ ︷︷ ︸
3

}
ûe +

Ne
b∑

l=1

τ (e,l)Eel û
e

︸ ︷︷ ︸
4

=f e +
∑
k=1,2


( Ne

b∑
l=1

Ẽekl − (De
k)
T

)(
Me
)−1
( Ne

b∑
l=1

F̃eklλ̂
σ(e,l)

)+

Ne
b∑

l=1

τ (e,l)Fel λ̂
σ(e,l)

Term 1 on the left-hand side is a discrete Laplacian that arises from the standard contin-
uous Galerkin discretization, which would typically be accompanied by the forcing term f e

on the right hand side. This new expression therefore denotes a modification of the existing
matrix system and right hand side, which makes implementation relatively straightforward.175

The matrix expressions 2a , 2b , 3 and 4 appear in the formulation only for elements

Ke containing at least one edge on Dirichlet boundary of Ω. In addition, expressions 3

and 4 are symmetric as a consequence of symmetry of Ẽekl,Eel and
(
Me
)−1

. The products

2a and 2b are transposes of each other, hence their sum is again symmetric. The modi-
fications to the symmetric discrete Laplacian therefore preserve symmetry of the discrete180

weak form, meaning that efficient iterative solvers such as the conjugate gradient method
can be used to obtain solutions.

When the domain trace λ and forcing term f are both zero, the bilinear forms (19), (20)
yield a homogeneous linear system with a regular matrix. This can be shown by testing
the two forms with v = u and w = q:∑

Ke∈Th

(∇ue, qe)Ke −
∑
Ke

∂Ke∩∂Th,D 6=∅

〈ue,ne · qe〉∂Ke + τ
∑
Ke

∂Ke∩∂Th,D 6=∅

〈ue, ue〉∂Ke = 0

∑
Ke∈Th

(qe, qe)Ke +
∑
Ke

∂Ke∩∂Th,D 6=∅

〈ue, qe · ne〉∂Ke −
∑
Ke∈Th

(qe,∇ue)Ke = 0

Their sum ∑
Ke∈Th

(qe, qe)Ke + τ
∑
Ke

∂Ke∩∂Th,D 6=∅

〈ue, ue〉∂Ke = 0

has a unique solution q = 0 and u = 0 provided τ > 0. This means that the CG system
with weakly imposed Dirichlet boundary conditions is uniquely solvable.
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5. Results185

In this section, we apply the weak Dirichlet boundary conditions to various elliptic
problems. We demonstrate that this technique preserves the expected convergence prop-
erties of high-order methods, and then apply it to a standard fluid dynamics test case in
order to showcase its use in a more realistic application.

5.1. Convergence of continuous Galerkin solver with weak boundary conditions190

We first present a straightforward evaluation of the convergence properties of weakly
imposed Dirichlet boundary conditions on a scalar Helmholtz problem

∇2u− λu = f (23)

in a square domain (−1, 1)2 with λ = 1 and f(x, y) chosen so that the exact solution is of
the form

u(x, y) = sin(10πx) cos(10πy) + x+ y (24)

Two meshes were considered: a structured Cartesian grid and an unstructured mesh con-
sisting of triangles. Figure 6 compares the L2 error for polynomial orders varying between

0 0.25 0.5 0.75 1
0
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0.5

0.75

1

0 0.25 0.5 0.75 1
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0.75

1

Figure 5: Meshes for Helmholtz convergence test.

1 and 20 when the Dirichlet boundary conditions are imposed strongly and weakly. The
behaviour of both strong and weak methods produces nearly identical errors up to p = 12
on the structured grid and p = 11 on triangles. With further increase of polynomial degree195

of the basis, however, the weak errors fail to further decrease. The observed differences are
not surprising, because the HDG-based algorithm only penalizes the solution in order to
satisfy boundary conditions, while the strong implementation completely eliminates known
degrees of freedom and moves them to the right-hand side of the linear system, thus ful-
filling the boundary conditions exactly by construction. Furthermore, the stiffness matrix200
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Figure 6: Convergence to the exact solution in L2 norm.

with weak constraints is larger, hence less favourably conditioned and round-off errors in
the linear solver become important as the error values approach the limits of finite-precision
arithmetic on a given machine.

5.2. Comparison with classical penalty techniques

We now provide a comparison of our method against an existing technique for imposing
weak boundary conditions. The main motivation for this example is to highlight a known
drawback of the classic formulation: that the penalty parameter τN is problem-dependent.
A classical penalty approach for boundary conditions in finite element methods is due to
Nitsche [6]. Consider a Poisson equation

−∇2u(x) = f(x) x in Ω

u(x) = gD(x) x ∈ ∂Ω,

Multiplying both sides of the equation by a test function v and adding a term 〈u− gD,∇v · n〉∂Ω

which should vanish for u satisfying the boundary condition yields

(∇u,∇v)Ω − 〈∇u · n, v〉∂Ω − 〈u− gD,∇v · n〉∂Ω = (f, v)Ω

A coercive bilinear form can be obtained by adding a penalty term τN 〈u− gD, v〉∂Ω which
should again be equal to zero for the exact solution. Nitsche’s method is therefore defined
as: find uh ∈ Vh such that

B(uh, v) = F(v) ∀v ∈ Vh, (25)

where

B(u, v) = (∇u,∇v)Ω − 〈v,∇u · n〉∂Ω − 〈u,∇v · n〉∂Ω + τN 〈u, v〉∂Ω ,

F(v) = (f, v)Ω − 〈g,∇v · n〉∂Ω + τN 〈g, v〉∂Ω

13



and
Vh := {v ∈ H1(Ω) : v|Ke ∈ P (Ke) ∀Ke ∈ Th}.

The main drawback of the above formulation is that the penalty parameter τN is problem-205

dependent; estimates are discussed in more detail in papers [7] or [8].
To demonstrate the differences in behaviour of (25) and our method in a concrete

setting, we solve a two-dimensional Laplace problem with exact solution given by

u = sin(10πx) cos(10πy) + x+ y, (26)

i.e. the same exact solution as in Section 5.1. The numerical approximation was represented
by Lagrange finite elements with polynomial degree varying between 1 and 7 and we solved
the underlying linear system by a preconditioned conjugate gradient (PCG) method with
algebraic multigrid as preconditioner. Each computation was required to reach a relative210

tolerance threshold of 10−9.
The results summarized in Table 1 show that the weak boundary algorithm has little

sensitivity to values of τ with respect to the obtained L2 errors. Large values of the penalty
parameter help reduce the number of PCG iterations by approximately 10%. Nitsche’s
method, on the other hand, yields larger variations in L2 errors when the penalty parameter215

is changed, and this can be observed even for low orders. Too low values of τN initially
lead to larger errors and with increasing p eventually prevent the method from converging.

Value of τ in weak BCs Value of τN in Nitsche’s method

10−6 1 106 106 108

p NAMG ‖e‖L2 NAMG ‖e‖L2 NAMG ‖e‖L2 NAMG ‖e‖L2 NAMG ‖e‖L2

1 17 3.15 · 10−1 17 3.15 · 10−1 15 3.29 · 10−1 15 4.18 · 10−1 14 4.15 · 10−1

2 23 4.51 · 10−2 23 4.51 · 10−2 21 4.66 · 10−2 22 5.42 · 10−2 20 5.25 · 10−2

3 35 2.90 · 10−3 35 2.89 · 10−3 31 2.47 · 10−3 32 8.68 · 10−3 29 5.06 · 10−3

4 49 6.34 · 10−4 49 6.34 · 10−4 46 6.39 · 10−4 47 1.17 · 10−2 42 6.79 · 10−4

5 66 1.45 · 10−4 66 1.45 · 10−4 61 1.54 · 10−4 – – 55 1.64 · 10−4

6 95 1.06 · 10−5 95 1.06 · 10−5 87 1.09 · 10−5 – – 79 5.04 · 10−5

7 141 2.08 · 10−6 141 2.08 · 10−6 128 2.19 · 10−6 – – 116 5.17 · 10−5

Table 1: Iterative convergence and L2 errors for different values of penalty parameters in weak boundary
conditions and Nitsche’s method. Missing entries in the table indicate cases where Nitsche’s algorithm
did not converge. NPMG represents the number of iterations in preconditioned conjugate gradient solver
using an algebraic multigrid solver as preconditioner and ‖e‖L2

is the obtained L2 error norm.

The situation is different when an anisotropic mesh such as the one depicted in Figure
7 is considered. Despite the fact that errors computed with weak boundary conditions are220

now larger, the formulation remains stable and yields consistent results across a range of
values of τ .
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Figure 7: Anisotropic mesh of a unit square.

Nitsche’s method, however, lacks in robustness in this case. Table 2b contains two
different values of stabilization parameter τ for each polynomial order: the first is chosen
as the smallest power of 10 for which the method converged, the second is then equal to225

the first multiplied by 105. This is to demonstrate that not even a significant increase of
the stabilization parameter helps reduce the error.

Value of τ in weak BCs

10−6 1 106

p NAMG ‖e‖L2 NAMG ‖e‖L2 NAMG ‖e‖L2

1 19 3.73 · 10−1 19 3.73 · 10−1 19 3.73 · 10−1

2 37 8.44 · 10−2 37 8.44 · 10−2 37 8.44 · 10−2

3 57 1.34 · 10−2 57 1.34 · 10−2 57 1.34 · 10−2

4 81 3.44 · 10−3 81 3.44 · 10−3 81 3.44 · 10−3

5 112 6.84 · 10−4 112 6.84 · 10−4 112 6.84 · 10−4

6 166 1.24 · 10−4 166 1.24 · 10−4 166 1.24 · 10−4

7 252 2.28 · 10−5 252 2.28 · 10−5 252 2.28 · 10−5

(a) Iterative convergence and L2 errors for different values of penalty
parameters in weak boundary conditions on anisotropic mesh.

p τN NAMG ‖e‖L2

1 1014 18 1102.71
1 1019 14 927.93
2 1015 30 22.76
2 1020 22 22.53
3 1015 47 55.57
3 1020 32 54.17
4 1015 64 3.05
4 1020 46 2.89
5 1016 90 1.53
5 1021 58 1.52

(b) Iterative convergence
and L2 errors for Nitsche’s
method on anisotropic mesh.

Table 2: Performance of Nitsche’s method and weak boundary conditions on anisotropic mesh.

5.3. Navier-Stokes Results: NACA 6412

The incompressible flow past a NACA6412 airfoil was used to evaluate the performance
of weak boundary conditions when computing derived quantities such as aerodynamic230
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forces. The airfoil is placed in the flow with angle of attack α = 15◦ and the Reynolds
number based on chord length is Re = 500. No-slip condition on airfoil surface was
imposed weakly, while inlet values were prescribed using the classical strong algorithm.
The simulation ran for 20,000 time steps with ∆t = 5 × 10−3 using a velocity correction
scheme implemented in the open-source library Nektar++ [27]. The obtained flow field at235

t = 10 is plotted in Figure 8 for both strong and weak boundary conditions. Note that
the flow fields look visually identical; however, the legends indicate the minor differences
incurred to the differences in the imposition of the boundary conditions.

We compared lift and drag computed on the same mesh using a modal expansion with
degrees 4 and 8 (Figure 9). In both cases, the forces computed with weak and strong240

approach are in excellent agreement.
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Figure 8: Viscous incompressible flow past NACA airfoil: velocity magnitude obtained with strong Dirichlet
boundary conditions imposed on the airfoil surface (top) and with weak boundary conditions (bottom).
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Figure 9: Viscous incompressible flow past NACA airfoil: drag and lift on P4 elements (top) and P8

elements (bottom).
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6. Conclusion

This paper proposes a new method for the imposition of Dirichlet boundary conditions
for elliptic PDEs of Helmholtz type which enforces the constraints weakly, i.e. by amending
the underlying weak form with penalty terms instead of lifting known boundary values from245

the linear system.
The presented technique is conceptually based on hybrid Discontinuous Galerkin method,

but replaces the polynomial space typically used in element interiors (a finite element basis
defined in single element) by a piecewise continuous multi-element Galerkin expansion.
The weak form augmented by newly derived penalty terms has all desirable properties250

for this particular class of problems: symmetry, positivity and very low sensitivity to un-
derlying mesh and the polynomial degree of finite element basis. The original penalty
parameter introduced in HDG acts rather as a method selector with limited effect on iter-
ative convergence and accuracy. The weak boundary algorithm inherits this characteristic
and the positivity of τ leads to a well-posed problem and its efficient discretization. This255

contrasts with Nitsche’s method, where the failure to properly scale the penalty term yields
an ill-defined problem.

Our future work will focus on application of weak boundary conditions in more chal-
lenging set ups featuring more complex geometries and turbulent flows.
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