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Abstract—Generating and managing input data for large-scale
scientific computations has, for many classes of application, al-
ways been a challenging process. The emergence of new hardware
platforms and increasingly complex scientific models compounds
this problem as configuration data can change depending on the
underlying hardware and properties of the computation. In this
paper we present TemPSS (Templates and Profiles for Scientific
Software), a web-based service for building and managing ap-
plication input files in a semantically focused manner using the
concepts of software parameter templates and job profiles. Many
complex, distributed applications require the expertise of more
than one individual to allow an application to run efficiently
on different types of hardware. TemPSS supports collaborative
development of application inputs through the ability to save, edit
and extend job profiles that define the inputs to an application. We
describe the concepts of templates and profiles and the structures
that developers provide to add an application template to the
TemPSS service. In addition, we detail the implementation of the
service and its functionality.

I. INTRODUCTION

High Performance Computing (HPC) platforms are now
widely used across a wide range of scientific domains to
undertake complex and often highly computationally-intensive
processes. In recent years, computing hardware has evolved
to encompass a wide range of many-core architectures and
is becoming increasingly heterogeneous. This shift is also
evident in modern HPC infrastructure which now provides
developers with a broader range of choices for running their
software. While traditional cluster platforms are widely used,
other options such as computational grids and, more recently,
Infrastructure-as-a-Service (IaaS) cloud computing facilities
have become more widely available. These advances in hard-
ware platforms offer developers the potential to access hitherto
unseen levels of computational power, providing the capability
to extend their models to tackle increasingly large and complex
problems across a wide range of domains.

As both scientific models and the underlying hardware and
infrastructure become more complex, so too does the range of
parameters that underpin scientific codes. Inevitably, the wide
range of hardware that is now available means that end-users
of the software are faced with various performance-related
options, many of which will be difficult to understand without
a more detailed understanding of the numerical methods and

how they are implemented within the code. Similarly, complex
numerical models usually contain a vast array of options. Many
of these can be seen as advanced; for example, they may
add an additional element of stability or robustness to the
software whilst not significantly altering the results that are
obtained. Advanced options can therefore be extremely useful.
However it is not always clear to the end-user what appropriate
values for these parameters should be. This requires a detailed
understanding of the software that many end-users do not
necessarily possess, and they must therefore rely on more
experienced users and developers.

Ultimately, the way these parameters are interpreted and
handled will be a result of the understanding that the developer
or developers had of the scientific task being solved at the time
the code was written. Explicit parameters are straightforward
for users to specify, but in complex codes with a wide array
of inputs, the consequences of specifying particular groups
of parameters alongside different types of input data can be
hard to identify. Much of a developer’s understanding of the
problem being solved is lost in the process of converting
their solution into code. We believe that by representing this
information in a form of structured metadata, users can be
helped in understanding the software and efficiently specifying
their job inputs and developers can be assisted in maintaining
and extending the code.

To address these challenges, in this paper we detail our
model of software parameter templates and job profiles that
were initially introduced in [1] and introduce TemPSS (Tem-
plates and Profiles for Scientific Software), a service that
supports the development and use of templates and profiles.
TemPSS has been developed as part of the libhpc frame-
work [2] which is being built to provide an environment to
support the simplified specification and execution of scientific
applications on heterogeneous computational resources [3]. We
use templates and profiles to provide a means of representing
software parameters in a structured manner and describe how
they are defined by developers and used by an application’s
end users. The TemPSS service [4], which is available on
GitHub, consists of a web service and client-side JavaScript
library to handle the management of templates and their
use to create profiles which the service then transforms into
application input files or parameters. The service may be
used standalone but is designed to be able to be integrated



with other frameworks that support the configuration of HPC
software. To support standalone usage, TemPSS comes with
a prototype web-based user interface for creating, editing and
storing profiles.

In Section II, we describe the concepts of software param-
eter templates and job profiles in detail and explain their struc-
ture and aims. We then look at related work in Section III and
describe the developer-focused processes of defining templates
and producing the necessary transforms to generate application
input data from a job profile in Section IV. Section V describes
the TemPSS service itself, its design, implementation, API and
usage. We present conclusions and future work in Section VI.

II. SOFTWARE PARAMETER TEMPLATES AND JOB
PROFILES

Software parameter templates and job profiles are metadata
structures that are designed to represent application configu-
ration parameters and users’ job specifications in a manner
that makes them straightforward to understand and work with.
They were introduced in [1] and we define them as follows:

• Software parameter templates provide an explicit
representation of the decision-space and parameters
that exist within an application. These properties are
stored with associated metadata and can be grouped
according to their semantic relationship within the
application. A template does not define any specific
values for the properties it contains, it only includes
a definition of parameters, including constraints on
their values, their datatypes, documentation and other
related metadata.

• Job profiles are structures that provide instantiations
of templates. A profile assigns values to one or more
of the properties defined in a template. If a profile con-
tains values for a minimum set of required template
parameters that are necessary to run the underlying
application, the profile is said to be a valid profile. If
a profile contains only a subset of required values, it
is said to be a partial profile.
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Fig. 1. Example of a simple template structure containing nodes with different
data types.

A template consists of a root node, labelled with the
template’s name. Any node can have one or more child nodes
and each node has a type, such as a choice or a basic datatype
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Fig. 2. Three possible template instantiations are shown in Figure 1. (a) shows
a partially complete profile in an error state, (b) shows a partially complete
profile and (c) shows a complete and valid profile.

(e.g. string, int, double), or a category type which acts
to group a series of other nodes. A choice node displays a drop-
down box showing the possible values that may be selected.
The selection of a value determines the child nodes that will
be shown for this node. Basic type nodes display a text input
box in which the user can enter a value of the correct type.
Validation is carried out on values entered for basic type nodes
and an error is displayed if a value of the wrong type is entered.



Rather than providing a direct representation of application
input files or command line parameters, some properties in a
template may not map directly to any one input parameter but
instead represent complex groupings of values within appli-
cation input data. This semantically focused representation of
properties helps to provide a more straightforward approach to
software configuration.

Figure 1 shows an example of a simple template repre-
senting a subset of properties from an application to solve
a linear system. The template consists of two values at
the first level of the tree - solver type and rank.
solver type is a choice element from which the user
can select one of two options – Direct or Iterative.
Selecting Direct will result in the user having to provide
a value for matrix inversion, another choice element,
while selecting Iterative as the solver type will result
in the user needing to specify values for tolerance and
preconditioner. rank is required to be an integer and
has the constraint that the provided value must be greater than
0. tolerance must be a float value and has the constraint
that the provided value must be > ε. Realistic templates are,
of course, likely to be significantly more complex than this
but this small-scale example is designed to demonstrate how
a template is structured and how it can be instantiated as a
partially or fully complete profile.

Figure 2 shows three possible instantiations of the template
structure from Figure 1. Figure 2(a) shows a partially complete
profile that has an error due to the value for rank not meeting
the constraint that the value must be greater than 0. The
solver type property is shown as incomplete because not
all of its sub nodes have values assigned. Figure 2(b) shows
a partially complete profile with the error condition from (a)
resolved by setting rank to 12. The top level node still shows
the profile as being incomplete, however, since one of its child
nodes (solver type) is incomplete. This is, itself, a result
of one of the child nodes of solver type not having a value
assigned. This demonstrates how the state of any incomplete
node in a tree propagates up to the top level resulting in the
tree representing a partial profile. The same propagation can
be seen in the case of an error state in (a) where the error
with the rank property results in the entire profile being
in an error state. After assigning a valid value (10−6) to
tolerance, Figure 2(c) shows a complete and valid profile
which could then be used to generate input data for the target
application through processing with the template’s associated
Extensible Stylesheet Language Transformation (XSLT) [5]
document. An XSLT processor reads the XML document
representing the profile and applies the transformation defined
in the XSLT document to generate an application input file
or data representing a set of command line parameters for the
target application.

The template and profile model has been developed along-
side the libhpc framework [2], [6] which has been designed
to offer an environment for the specification, deployment and
execution of HPC jobs on heterogeneous resources. Templates
and profiles represent one element of the job specification layer
in libhpc which takes a user-focused approach to simplifying
HPC job execution. In Section V, when presenting the TemPSS
service, we describe how the template and profile functionality
has been integrated into one of libhpc’s exemplar applications,

the Nekkloud [7] web interface, for running high-order finite
element simulations via the Nektar++ spectral/hp element
framework [8].

III. RELATED WORK

There are various examples of user interfaces designed to
simplify access to, and configuration of, complex scientific
software across a wide range of domains. An early example
of a toolkit for developing web-based or standalone graphical
interfaces for scientific software is Javamatic [9]. Built in Java,
this organises a collection of software components (executa-
bles) relating to an application (workflow) into a hierarchical
tree of categories allowing the user to input parameters used
by multiple components at a common node. The web-based
interface allows execution of the software remotely via the
web-browser. A similar functionality is provided by a web-
based interface for molecular biology [10] which provides
a homogeneous interface to multiple programs, suppressing
syntactic and semantic complexity by providing context-based
access to documentation.

More recently, Rappture [11] has been developed, which
automatically generates standalone user interfaces for scientific
software, in a variety of programming languages based on an
XML definition of possible input parameters. Default values
can be provided, but no constraints between parameters can
be imposed. The GUI [12] developed for Zori, a quantum
Monte Carlo program, is built on Rappture and extends its
capabilities to provide parameters for a linear sequence of
separate software components, and to dynamically present
parameter choices depending on the algorithm selection. It
also includes deployment to PBS clusters as well as local
execution. Another example of a domain-specific web interface
is ScattPort [13], which provides a single interface for users
to configure and run light scattering experiments using a vast
range of available simulation tools.

The interfaces described so far provide minimal validation
of the values entered by the user, particularly in terms of inter-
parameter constraints. This aspect is essential for complex
simulation codes, such as those used in ocean modelling, where
a web-based interface, LEGEND, has been designed [14] for
job specification and execution. An XML mark-up language,
LCML [15], is used to describe the compile-time and run-
time parameters needed to generate and execute a simulation.
Parameters are grouped into categories (e.g. by program,
compilation/runtime, makefile parameters, stdin parameters)
and are validated (with checks for type, range and conflicts
with other parameters). In contrast to our approach here,
support for compile-time options is included, as an alternative
to the software component model used in libhpc. FoSSI [16]
focuses on providing a simple end-user programming interface
for a range of solvers and relying on a domain expert to
maintain and extend the interface to support new software. This
is similar to our approach of requiring experienced domain
scientists or developers to develop the template structures in
TemPSS while providing a straightforward interface to the
end-user. TAPM [17], an air pollution modelling application,
provides a user interface for model configuration. To support
rapid setup of a model by a user, it also provides datasets of
key simulation inputs, a similar method to our use of profiles to
store job configurations. Recent demand for simplified access



to scientific applications is illustrated by the recent emergence
of a company providing user-friendly interfaces to scientific
software [18].

Focusing more on metadata and the information that
defines and supports computational models, Velo [19] is a
knowledge-management framework based on a wiki environ-
ment. It provides management of input data and the results
of simulations and supports the running of simulations on
remote resources. Work described in [20] on the PRIMA
platform demonstrates how bringing together Velo with a
workflow environment, MeDICI, combines the capabilities of
the two systems allowing running and real-time monitoring of
workflows through via Velo environment.

Existing web-based user interface solutions already provide
a domain-focused interface to complex scientific software.
However, parameters are often presented as a flat list or col-
lated into broad categories and validation of parameter values
against constraints is mostly minimal. This aspect has been
considered in greater detail in relation to software component
testing, where parameters, their possible values and their inter-
dependencies are mapped out through a directed graph [21].
This ensures all valid (and only valid) parameter combinations
can be tested. The graph represents the input parameters as
nodes and possible values on the edges. However, parameters
are evaluated in a fixed order. To our knowledge none of
these interfaces provide the collaborative approach to job
specification we describe here.

IV. DEFINING TEMPLATES AND TRANSFORMS

In order for TemPSS to provide users with a template for a
particular application, the underlying template metadata must
be specified. Further, to allow profiles, which are instantiations
of templates, to be useful to an application user, mappings or
transforms must be defined that convert a complete and valid
profile to one or more input files required by an application.
This work should be undertaken by someone familiar with the
implementation details of the application in question, perhaps
an application developer. Ideally the information required to
produce the template metadata and transformation should be
recorded as the application is developed. However, a wide
array of existing scientific applications are potential targets
for TemPSS and for these applications, the required metadata
is not necessarily readily available.

Instead, analysis of an application’s input data, and where
required, the application code itself, must be undertaken to
identify decisions that take place during application execution
and their associated configuration options and descriptions.
It is then necessary to identify how best to represent these
properties in metadata. In addition to representing standard
input parameters, the aim of this process is to identify how
different parameter groupings or values can affect application
execution with respect to different input data or target hardware
platforms. Templates and their associated transforms can then
be structured to offer users more intuitive configuration options
that may not always represent a direct mapping to one value in
the resulting application input data. The template specification
process has been undertaken for a group of solvers from Nek-
tar++ [8], a high-order spectral/hp element framework, and for
a subset of tools within the GROMACS molecular dynamics

software [22], [23]. The process of specifying templates is
now described, along with details of how the metadata and
transforms are defined.

A. Template specification

Nektar++ provides a collection of libraries that implement
the spectral/hp element method, and a set of solvers that
implement a number of partial differential equations including
the incompressible and compressible Navier-Stokes equations
and the monodomain model for simulating cardiac electrophys-
iology. Templates for a set of the most widely used solvers in
Nektar++ have been developed. As described in Section II,
TemPSS templates are displayed as trees and a major part of
the template specification process is deciding the best way
to group and present application parameters within the tree
structure. The way that parameters are grouped is important
for two reasons. Firstly, to support collaborative profile de-
velopment, parameters should be grouped according to their
relevance to different stakeholders, for example, all parameters
related to the target hardware platform should ideally be shown
together. Secondly, from the end-user perspective, a poorly
structured set of parameters may be confusing and end up
making the job specification process less intuitive. Developing
application templates requires an understanding of the many
input parameters and the relationship between them, and of the
internal processes of an application such as the algorithms that
are undertaken and the way they are implemented. In the case
of Nektar++ the template development process was performed
by a TemPSS developer, and required a detailed study of
the Nektar++ configuration files, the underlying application
code itself, and many helpful interactions with the Nektar++
developers. The result is a set of templates which are clearly
defined, grouping related parameters, and providing a means to
understand both the interface to the application and therefore
the application itself.

For GROMACS, a slightly different approach was taken.
GROMACS was chosen because of existing links with users
of the software, its wide use within the molecular dynam-
ics community and because it consists of many different
components, each with their own set of inputs, providing a
means of experimentation with linking different component
templates together. To drive the template development process
a small-scale, but realistic, protein simulation example was
chosen. A full template was developed for the main simulation
component (mdrun) and minimal templates were developed
for the other components in the example in order to enable a
complete run. The GROMACS template development required
study of the GROMACS online manual [24], which provides
detailed information on input parameters. The intention is to
develop the structure of the templates further based on user
feedback.

The current manual process of template development, if
undertaken thoroughly and comprehensively, represents sig-
nificant overhead for developers. However, where scientific
applications are complex but widely used, it is believed that
the investment of time in undertaking this process is reasonable
given the potential benefit to existing users and the opportunity
to target the application at a wider range of new users.
Structuring an application’s metadata, such as the information
contained within the GROMACS manual referred to above,



into a form that encompasses the expert knowledge of the
developers who built the application, offers the opportunity
to present the information in a way that should make it
understandable by anyone with even a cursory knowledge of
the domain. We could even conjecture that the way developers
think through the process of mapping knowledge to code is
in the form of a tree, based on a series of statements of
the form “if A then B”. As a result, mapping this knowledge
into a visual representation could help both users, who can
obtain information in a clear form without having to request
the assistance of developers, and the developers themselves, by
providing them with a representation of their code in a manner
that makes it easier for them to support and maintain it. New
users may understand the scientific processes undertaken by an
application but not have the technical computing knowledge or
experience to build their own input files from scratch. In such
cases, the ability to interact with a visual interface providing
context-specific documentation and input validation can help
end-users to undertake jobs that may have previously required
support from computer scientists and hardware providers.

B. Template implementation

Implementation of a template structure requires the specifi-
cation of each input parameter within the tree, and the ability
to annotate parameters with, for example, documentation or
units of measurement. The choice for this task was XML
Schema Definition (XSD) language [25], [26]. XML Schema
provides a series of structures and datatypes that are used
to provide the definition of template parameters. A simple
type is used to describe an individual parameter, while a
complex type is used to link parameters together to form
branches of the tree. Use may be made of XML Schema’s
primitive data types to define a parameter, such as a float
or string, and these may be extended to construct new types
by, for example, placing a restriction on the range of allowed
values, for instance specifying that a float must be positive, or
providing an enumeration of choices. As an example, a strictly-
positive double precision number can be defined as follows:

<xs:simpleType name="positiveDouble">
<xs:restriction base="xs:double">
<xs:minExclusive value="0"/>

</xs:restriction>
<xs:simpleType>

Validation of data entered into a template tree can then be
carried out based on the types used in the template schema to
ensure that provided data fits within a required range or set of
values.

XML Schema allows for the inclusion of one schema doc-
ument within another provided the documents are within the
same namespace, therefore it is possible to build, for example,
a common GROMACS schema which defines a core set of
parameters used in several different components. This common
schema can then be included by specific component template
schemas which can compose both the common parameters
and any locally-defined component-specific parameters into
template tree definitions, as required. An example of a type
from a Nektar++ solver template which makes use of the
positiveDouble type shown above and is annotated with
documentation and units is:

<xs:complexType name="Monodomain">
<xs:sequence>
<xs:element name="Chi" type="positiveDouble">
<xs:annotation>
<xs:appinfo>
<libhpc:documentation>
Membrane surface to volume ratio

</libhpc:documentation>
<libhpc:units>
mm&lt;sup&gt;-1&lt;/sup&gt;

</libhpc:units>
</xs:appinfo>

</xs:annotation>
</xs:element>
<...>

Specifying templates in XML Schema enables instantiations
of these templates as profiles to be represented using XML
documents which may then be validated against the template
schema on which they are based in order to ensure that they
have a correct structure.

C. Transforms

Templates provide a means of specifying an application’s
configuration and input parameters, and allow profiles to be
built for different application use cases. However, for these
profiles to be useful they have to be translated into the
input format of the application itself. Thus transformations
are required to convert between a profile and the means of
job input and configuration used by the target application. The
obvious choice for this is XSLT [5]. An XSLT transformation
enables XML profiles to easily be transformed into any format
required by the target application. For instance in the case of
Nektar++ where the software uses an XML input file format,
the transformation input is the XML profile and the output
is a Nektar++ XML input file. The use of transforms means
that a profile can define a different, user-focused, structure to
the input file for a target application. This structure may even
include different parameters that are converted into application-
supported parameters as part of the transform. The resulting
application input file(s) may be in a very different format to
the structure used in the profile. An example of a small section
of an XSLT transform relating to the Chi parameter used in
the Nektar++ cardiac electrophysiology solver is shown below:

<xsl:template match="Physics" mode="CardiacParameters">
<xsl:if test="Model/Monodomain">
<P>
Chi = <xsl:value-of select="Model/Monodomain/Chi"/>

</P>
</xsl:if>

</xsl:template>

This example shows how the transform is structured to
allow the XSLT processor to match profile elements as it
moves through the profile document. When the Monodomain
parameter that is a subset of Model within the Physics
block is found, the processor outputs the specified string, in
this case a <P> XML tag containing Chi = followed by the
value of Chi that is stored in the profile. It then closes the tag
by outputting </P>.

In contrast, for GROMACS, profiles are converted into a
simple text format defining a series of command line parame-
ters that can be used as the command line input to GROMACS
components.



A further use of XSLT within TemPSS is the conversion
of template schema documents to HTML. This is done by
an embedded XSLT transform that reads template schema
documents and converts them into the HTML tree structure
that can be seen in Figures 5-8. The TemPSS API can be
used by third parties to obtain this HTML tree structure from
a template such that it can be used within third-party user
interfaces that make use of the TemPSS service.

V. THE TEMPSS SERVICE

The TemPSS service is a web service that integrates the
functionality described in the earlier sections of this paper
into an open source tool that can be built and run locally
or deployed on a remote server for shared access. Code for
the service [4] is available on GitHub. TemPSS provides a
combination of server-side functionality, made available to
developers via a REST API, and a client-side JavaScript library
for working with templates and profiles and designed to assist
with integrating TemPSS into another service or application.
End-users can access the system through a web-based profile
manager interface provided with the service. Alternatively,
third-party developers may choose to build their own user
interfaces that build on top of the service’s REST interface and
client-side JavaScript libraries. TemPSS’s functionality covers
three key areas:

• Template specification and use

• Profile generation and management

• Application input file generation

In this section we describe the structure, functionality and
use of the TemPSS service. We look, in turn, at service
architecture and implementation, configuration, the REST API,
the client-side JavaScript library and the web-based profile
manager and editor.

A. Service Implementation

TemPSS is a Java web application and makes use of a
number of third-party libraries. The code is compiled and pack-
aged using the Apache Maven project build tool that handles
obtaining all the necessary dependencies and packaging the
application for deployment onto a web application server. The
service has been developed and tested with the Apache Tomcat
application server. Figure 3 shows the system architecture.
The application configuration specifies three Java servlets. One
provides the original HTTP POST interface to the service that
has been retained for use by any clients that prefer this means
of accessing the service over the REST API. The other two
servlets are the SpringMVC dispatcher servlet that handles
requests to the application’s web interface and the Apache
Jersey servlet that handles REST API requests.

Apache Jersey is the reference implementation of the Java
API for RESTful Services (JAX-RS) specification. It receives
incoming HTTP requests and directs them to the relevant Java
function within the service implementation based on various
request properties including the request type, the content
type of any provided data and the accepted response type(s)
specified by the client. XSLT processing is handled by Java’s
API for XML Processing (JAXP) which is bundled with the
Java Standard Edition library.
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Fig. 3. The architecture of the TemPSS application.

The Spring Framework is used to provide dependency
injection and the MVC element of Spring is used to support the
web interface. Spring’s data access support is used, via JDBC,
to interface with a SQLite3 database that stores profiles. We
inject a reference to the data access layer into the REST classes
so Apache Jersey needs to be aware of, and integrate with,
Spring for which we use the jersey-spring3 library. Web pages
are built as templates using the Pebble template engine [27]
which also provides a support library for integration with
Spring. Specifically, Pebble provides a Spring view resolver
that allows Spring MVC to hand view requests over to Pebble
for resolution. The interactive tree display, which can be seen
in Figures 5-8 and is used for our template editor, is based on
a bootstrap tree widget [28]. On to this tree design, we have
overlaid the validation symbols that are used to show if a value
entered into the tree is valid or invalid.

B. Service configuration

At service startup, TemPSS looks for template configu-
ration information which defines the templates that will be
available to service users. Section IV has detailed the low-
level specification of template structures using XML Schema
and the development of XSLT transforms to convert profiles for
a particular template into valid and complete application input
files for the target application. Once a developer has prepared
this material, they need to register their template(s) with the
TemPSS service. This is done by writing a property file which
must have a .properties extension and be structured as
follows:

component.id=<comp_id>
<comp_id>.name="Component name"
<comp_id>.schema=<schema file name>
<comp_id>.transform=<XSLT transform file>

At service startup, TemPSS looks for all the property
files in its template directory. The <comp_id> value in the
sample above must be replaced with an identifier that is an



alphanumeric string with no spaces. This identifier is then
used to read the component’s name property – a longer or
more detailed name than the identifier – and the schema and
transform filename properties. The schema and transform files
are, in turn, read in from the service’s schema and transform
directories. Setting up the property files and placing them and
the schema and transform files into the relevant directories
in the software distribution is the only required configuration
task. The service can then be re-packaged using the Apache
Maven tool and deployed to a web application server.

A property file may contain details of multiple components.
This is achieved by providing a single component.id
property, the value of which is a comma-separated list of com-
ponent IDs. Separate name, schema and transform properties
are then provided for each component ID.

C. REST Interface

TemPSS’s REST interface allows direct programmatic ac-
cess to the service’s functionality and is also used by the
web-based profile manager interface. The REST interface
provides access to a series of template and profile-related
operations. The service’s full REST API documentation is
available online [29] and an overview of the API functionality
is now provided:

• Template metadata: Provides access to template
metadata for the templates that have been registered
with the system. The available data consists of tem-
plate ID and name and the filenames for the schema
and transform files. Data can be retrieved in a plaintext
format or as JSON objects.

• Template names and IDs: Provides access to a list
of either template names or template IDs as plaintext
or in JSON format.

• HTML template: Obtain an HTML representation of
a template. This is generated by passing the template’s
schema file through the service’s built-in schema-to-
HTML XSLT transform to generate an HTML tree
version of the template that can be visualised in a
user’s browser.

• Profile metadata: Provides access to the names of
stored profiles based on the identifier of the template
that they correspond to. This information may be
retrieved as plaintext or in JSON format.

• Profile access, storage and removal: Save, load or
delete a profile that has been built in the web-based
profile editor. Profiles are represented using XML data
that is stored in a SQLite3 database embedded within
the application.

• Convert profile to input file: Convert a provided
XML profile document into an input file for the target
application. This uses the XSLT transform registered
for the application/component in the TemPSS configu-
ration data to convert the profile into input data format-
ted in an application-specific manner. This transform
process may also be used to generate command line
input parameters.

The REST API is used by the TemPSS web-based profile
manager interface to access the service’s functionality but it is
also designed to be used by third-party developers who want
to integrate the application parameter template and job profile
model into their applications.

D. Client-side Library

TemPSS’s client-side JavaScript library provides functions
to support common template and profile related operations
that may be undertaken in client-side code. The library
is used in the template manager interface but is also de-
signed to be used by third-party developers when integrating
functionality from TemPSS into their own applications. To
make use of the library, developers must load two JavaScript
files in their code – libhpc-parameter-tree.js and
tempss-manager.js. These files, in turn, have dependen-
cies on three additional third-party libraries and full details are
provided in the TemPSS documentation. The first JavaScript
file includes only client-side functionality specific to parameter
trees and working with them in a web interface. This includes
collapseTree to collapse a partially expanded tree so that
only the root node is shown and expandTree to expand a
tree to show all accessible nodes. It also provides a function
getProfileXML to generate an XML profile from a fully
or partially configured template tree. This XML can then be
stored, for example to a database. An XML profile document
can subsequently be loaded back into an empty template tree
of the same type using the loadLibhpcProfile func-
tion. Some additional functions, including validation-related
functions used to check the validity of values entered into
a template against the template schema, are intended to be
used internally within TemPSS but may also be of use to third
party developers building on TemPSS. The second JavaScript
file, tempss-manager.js provides functions related to
template access and the management of profiles, both of
which require interaction with an instance of the TemPSS web
service. This part of the library provides the ability to get a
list of template metadata from a TemPSS service instance and
to get an HTML tree representation of a template from the
service. It also provides the ability to save, load and delete
profiles stored within a remote TemPSS service instance and
to reload and reset a tree displayed on the client side to remove
any values that have been entered into it.

E. TemPSS Web-based Interface

TemPSS’s web-based profile manager interface is designed
to provide an example of the service’s functionality and
to demonstrate to developers how this functionality can be
accessed and used. It is also designed to be used by end-users
for building, saving and editing profiles. Figure 4 shows the
page that is displayed when first visiting the profile manager
interface.

When the web page is opened, the interface loads the list
of registered templates from the TemPSS service and a user
can then select a template which is loaded into the profile
editor pane. The template is shown as a clickable tree where
nodes can be expanded by clicking on them. Nodes that require
a selection from a small set of fixed options display a drop-
down list while nodes that require the user to enter information
display a text entry box. Figure 5 shows the interface with



Fig. 4. The TemPSS profile manager interface screen.

a template for the Nektar++ cardiac electrophysiology solver
loaded. Part of the Physics branch of the tree is expanded
showing examples of choice nodes where selections can be
made from a drop-down list and a text input node. The profile
list on the left-hand pane is populated via the REST API when
the user selects a template from the Available templates list in
the top pane and shows only the profiles that relate to the
currently selected template. The Save as profile and Clear
template content buttons become active once a template is
displayed in the profile editor but the Generate app input file
button remains inactive until the root node of the tree in the
profile editor becomes valid. The TemPSS JavaScript library
generates events on nodes when they change state between
valid and invalid and, in addition to being used by the TemPSS
library, these events may also be of use to third-parties when
integrating TemPSS and profile editing functionality into their
own applications.

Fig. 5. The profile editor panel of the profile manager displaying a template
for the Nektar++ cardiac electrophysiology solver.

As described in Section IV, documentation and validation
parameters can be assigned to template nodes. When a user
places their mouse pointer over a node that provides docu-

mentation, this information appears as a tooltip to guide the
user on how to complete that element of the tree. After data is
entered for a text input node that allows entry of numeric or
string values, the entered data is checked against any validation
constraints provided with the template. A visual cue, a green
tick, is added to the node if the data entered is valid. Figure 6
shows a section of the web-based interface with documentation
displayed and icons to identify nodes as being valid. When all
the nodes in a particular branch of a template tree are valid,
the parent node of that branch also becomes valid.

Fig. 6. Section of the TemPSS web interface showing documentation
displayed for a node and a group of valid nodes.

When invalid data is entered into a field, a red ’x’ is
displayed to the left of the field containing invalid data and
and an icon appears to the right of the field. Placing the mouse
over this icon displays a tooltip explaining the problem with
the entered data. Figure 7 shows how validation errors are
displayed along with information for the user to rectify the
problem.

Fig. 7. Section of a template showing display of validation errors and the
information shown to the user explaining the error.

Content that has been entered into a template can be saved
as a profile for which the user is prompted to enter a name.
When a template is selected, all stored profiles for that template
are shown in the profile panel of the interface. Each profile
listed in this panel provides icons to delete the profile or load
it into the template, permitting subsequent extension of the
profile and saving, either under a new name or under the
original name. Once the top level node of a profile is shown
as valid, the profile may be used to generate an application
input file. This can be done by clicking the “Generate app
input file” button below the template tree. The generated
input file is then downloaded to the user’s browser for use in
the target application (see Figure 8). As demonstrated in the
Nekkloud [7] web-based environment for the Nektar++ finite
element software, when TemPSS is integrated into another
application, the generated input file may be used to directly
execute the application without returning the file to the user
to run the application manually.



Fig. 8. The profile manager interface showing a completed profile that has
been submitted and an overlay showing part of the job input file returned by
the TemPSS service.

VI. CONCLUSION

In this paper, we have presented TemPSS, a web-based ser-
vice designed to simplify the process of building and managing
application configuration data for scientific applications. One
of the primary goals of TemPSS is to address the challenge
of increasingly complex choices in scientific software, partic-
ularly as hardware platforms evolve and become more hetero-
geneous. We believe that the concepts of software parameter
templates and job profiles go a considerable way towards
achieving this goal. Templates represent the application con-
figuration parameters in a semantically focused tree structure,
which gives end-users a clear overview of the range of possible
choices, clear, context-specific documentation for these options
and a way to validate their inputs before they submit their
job. On the other hand, profiles are designed to encourage
collaborative development of input parameters. Experienced
users and developers can design partially completed profiles
that, for example, choose optimal performance settings for
a range of hardware architectures whilst leaving parameters
specifying the simulation-specific settings incomplete.

This two-pronged approach to input configuration has
several advantages for both developers and users of scientific
software, as well as for the maintainers of infrastructure.
From the developer’s perspective, providing support for their
software can be made substantially easier, both through pro-
viding incomplete profiles which clearly delineate advanced
options from standard simulation parameters and by supplying
a documented set of available parameter choices. Furthermore,
the modular nature of TemPSS and its use of widely-supported
technologies such as XML schemas means that it is relatively
straightforward to extend the service to support new appli-
cations. For end-users, the interactive, web-based interface is

easy-to-use and clearer than the traditional text-based input
files. The purpose of each parameter is made clear from the
supplied documentation, and validation takes place in real-time
so that users can immediately correct any mistakes made when
entering values, as opposed to waiting for the simulation to
start (after potentially many hours in a queue) before realis-
ing there is an error. When building on incomplete profiles,
users should be able to achieve better performance with their
simulations without necessarily concerning themselves with
advanced performance-related parameters which have been
previously set by the developers. This therefore has an impact
on maintainers of the underlying HPC infrastructure, who with
increased efficiency should see more throughput of jobs and
thus better overall usage of their hardware.

Our planned future work on TemPSS involves develop-
ments at the conceptual level and enhancements to the imple-
mentation. The issue that we consider may offer the greatest
potential for enhanced user interaction is a modification to
the tree-based structure that is presently being used to rep-
resent templates. The tree approach provides structures that
are straightforward to visualise, understand and work with
for users but does not, directly, support the representation of
cross-tree dependencies in parameter choices, although such
information could be represented in higher-level metadata. An
alternative means of representing the template structure would
be a graph. For visualisation, the choice of a tree structure
was made over a graph due to its straightforward presentation
of available choices to the end user. However, we anticipate
that the need to handle cross-tree dependencies may arise
in a wider range of applications than those considered here.
While maintaining the visual tree, the additional flexibility
of an underlying graph structure would assist in representing
and handling dependencies between nodes. We consider that
replacement of the underlying template structure with a graph,
which is subsequently presented to the user as a dynamically-
updated tree, could offer users greater flexibility. From a
technical aspect, XSLT provides a powerful way to perform
the transform from XML Schema to application input file, but
it can be somewhat difficult for developers to use. We are
considering options to either automate, to some extent, the
generation of transforms, or to provide a suitable alternative
means to generate job input files from the tree structure.
Finally, we aim to enhance our support for extremely large
files, particularly input files. For example, in our Nektar++
exemplar application, very large meshes can produce input
XML files in excess of 100MB that are difficult and expensive
to parse. We aim to solve this issue by producing client-side
utilities to extract only the necessary portions of input data,
which can subsequently be passed to the TemPSS service.
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