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Abstract Recently, a new mesh generation technique based on the isoparametric
representation of curvilinear elements has been developed in order to address the
issue of generating high-order meshes with highly stretched elements. Given a valid
coarse mesh comprising of a prismatic boundary layer, this technique uses the shape
functions that define the geometries of the elements to produce a series of subdi-
vided elements of arbitrary height. The purpose of this article is to investigate the
range of conditions under which the resulting meshes are valid, and additionally to
consider the application of this method to different element types. We consider the
subdivision strategies that can be achieved with this technique and apply it to the
generation of meshes suitable for boundary-layer fluid problems.

1 Introduction

In recent years, interest in high-order finite element methods has increased dramat-
ically. Their attractive dispersion properties, exponential convergence of approxi-
mate solutions and computational performance when compared to traditional low-
order methods make high-order methods an attractive prospect for researchers in
both academia and industry across a wide range of application areas. However, one
of the main issues to be overcome before these methods can be widely adopted is the
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development of methods for reliable generation of curvilinear meshes for complex
three-dimensional domains.

A particularly important problem to be solved is the generation of meshes where
highly stretched elements are desired, either as function of the geometry or for rea-
sons of computational cost. In a typical high-order generation process one begins
by generating a linear mesh, and then deforming the elements connected to curved
surfaces by projecting points lying on the surface geometry into the interior of each
face. When the linear elements are highly stretched so that their thickness is small,
then in regionswhere the curvature of the geometry is high, deforming only the ele-
ments connected to the surface can result in self-intersection and thus the mesh be-
comes unsuitable for computations [5]. Whilst techniques exist to deform linearly
refined meshes using linear or non-linear elastic analogies [7, 4] or alternatively
untangle and optimise meshes which have self-intersection [6], they are relatively
expensive and their success has been limited when applied to these problems.

One solution to this problem that has been recently proposed by the authors of
this work is to consider an isoparametric approach to producing highly stretched
meshes [3]. Given an existing valid high-order mesh of prismatic elements, in this
technique one subdivides each prism by using the shape functions defining the ge-
ometry of the original prismatic element. This method is simple, cheap to implement
and leads to the generation of meshes which are guaranteed to be valid so long as the
original mapping is valid. Furthermore, this subdivision technique can be adapted
to address other issues, such as the generation of meshes containing only high-order
simplex elements for solvers which do not support hybrid meshes.

The purpose of this paper is to frame the subdivision technique in the context
of a more general mathematical framework and demonstrate how it can be utilised
to subdivide a broader range of elemental types in both two and three dimensions.
We note that in general, the subdivision of elements in this manner often requires
the enrichment of the polynomial space so that the subdivided elements capture all
curvature of the original element. One of aims of this paper therefore is to establish
the necessary conditions for the validity of the resulting subelements under various
subdivision strategies, and demonstrate through numerical examples the applicabil-
ity of the method to mesh generation and that such conditions are indeed required.

The paper is structured as follows. Section 2 outlines the motivation for the subdi-
vision technique and gives a brief overview of the process through which an element
is subdivided as presented in [3]. The mathematical framework for a generalisation
of the method to other element types is given in section 3. We then demonstrate
some applications of the method in section 4 to problems in aeronautics and biome-
chanics, and the subdivision of elements to produce meshes containing only simplex
elements. Finally we conclude with some remarks on further applications and im-
provements in section 5.
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Fig. 1 Overview of boundary layer refinement technique presented in [3].

2 Motivation

One of the main application areas of high-order methods is the simulation of fluid
flow over aeronautical geometries where, near walls, flow gradients in the direction
normal to the wall are several orders of magnitude larger than those tangential to the
wall. Sufficient resolution in the near-wall boundary layer in order to resolve this
shear is crucial since the vortices which lead to turbulent instabilities develop close
to this region, and so under-resolution will usually lead to unphysical or biased re-
sults. In these simulations therefore, the size of elements in wall-normal directions
must be small so that the steep gradient of the near-wall flow profile is adequately
resolved. In the other directions however, such resolution is not usually required,
leading to the generation of elements with a large stretching ratio. Introducing cur-
vature into elements near the boundary layer will often lead to self-intersection in
regions of high curvature.

The isoparametric subdivision technique proposed in [3] addresses this problem.
Firstly, we assume that a coarse mesh, comprising of a prismatic boundary layer
and tetrahedra elsewhere, has been generated. As part of the usual high-order mesh
generation procedure, we construct a mapping χ which maps coordinates ξ in a
reference element into the Cartesian coordinates of Ω . In order to produce a series
of refined prismatic elements in the physical domain, we instead refine the standard
elemental region, and utilise the mapping χ to map this back into physical space.

An overview of this process can be seen for a representative quadrilateral element
in figure 1, where we assume the bottom edge of the element is attached to the wall,
and therefore require extra resolution in the vertical direction. The top row shows
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how the standard quadrilateral element Ωst is deformed under the mapping χ to
produce a curved element Ω . To refine the element in physical space, we first split
Ωst into a series of smaller elements as shown in bottom left of the figure. Applying
the mapping χ to these subelements of the standard region leads to the production
of curved subelements of the physical element as desired.

What remains to be presented, and indeed is the focus of the rest of this paper,
is an examination of the conditions under which the subdivision process produces
valid elements, not only for the refinement procedure outlined here, but for more
generic transformations of the standard element. In the following section we de-
scribe the mathematical framework in which this problem is defined, and describe
more precisely how a subdivision procedure impacts the polynomial spaces which
define the elements.

3 Mathematical framework

We begin by providing a brief mathematical framework for the method. We begin
by considering a finite element Ω e, which in general belongs to a mesh arising from
the tesselation T (Θ) = {Ω 1, . . . ,Ω Nel} of some domain Θ ⊂ Rn with n = 2,3 of
Nel elements, so that

Θ =
Nel⋃
e=1

Ω
e, Ω

e∩Ω
f = /0 if e 6= f .

In two dimensions, we consider quadrilateral and triangular shaped elements, and in
three dimensions tetrahedral, prismatic and hexahedral elements. In order to intro-
duce curvature into an element Ω (where we drop the superscript e for convenience),
we assume there exists a mapping χ : Ωst→Ω which projects a canonical standard
element Ωst into the Cartesian coordinates defining an element. In this work we
define reference elements to be

Ω
quad
st = {(ξ1,ξ2) | −1≤ ξ1,ξ2 ≤ 1},
Ω

tri
st = {(ξ1,ξ2) | −1≤ ξ1 +ξ2 ≤ 1},

Ω
hex
st = {(ξ1,ξ2,ξ3) | −1≤ ξ1,ξ2,ξ3 ≤ 1},

Ω
pri
st = {(ξ1,ξ2,ξ3) | −1≤ ξ1 +ξ3 ≤ 1,−1≤ ξ2 ≤ 1},

Ω
tet
st = {(ξ1,ξ2,ξ3) | −1≤ ξ1 +ξ2 +ξ3 ≤ 1},

respectively. Inside the standard elements we define a polynomial space in terms
of the reference coordinates ξ = (ξ1,ξ2,ξ3) from which an expansion basis is se-
lected. Assuming that we select a polynomial order P, Q and R for each coordinate
direction, the polynomial spaces take the form



On the generation of curvilinear meshes through subdivision of isoparametric elements 5

P(Ωst) = span{ξ p
1 ξ

q
2 ξ

r
3 | (pqr) ∈I }

where I represents an indexing set, defined for each element as

I quad = {(pqr) | 0≤ p≤ P, 0≤ q≤ Q, r = 0}
I tri = {(pqr) | 0≤ p≤ P, 0≤ p+q≤ Q, r = 0, P≤ Q}

I hex = {(pqr) | 0≤ p≤ P, 0≤ q≤ Q, 0≤ r ≤ R}
I pri = {(pqr) | 0≤ p≤ P, 0≤ q≤ Q, 0≤ p+ r ≤ P, P≤ R}
I tet = {(pqr) | 0≤ p≤ P, 0≤ p+q≤ Q, 0≤ p+q+ r ≤ R, P≤ Q≤ R}

In order to preserve the positivity of discretised spatial operators, we insist that given
the components of χ = (χ1, . . . ,χn) the determinant of the Jacobian matrix

[Jχ(ξ )]i j =
∂ χi(ξ )

∂ξ j
, i, j = 1, . . . ,n

is positive for all ξ ∈ Ωst, so that χ preserves orientation and is invertible. Further-
more we consider an isoparametric representation of χ in terms of a set of shape
functions φpqr, so that

χi(ξ ) = ∑
(pqr)∈I

(χ̂i)pqrφpqr(ξ )

In the numerical demonstrations below we consider an expansion in terms of a ten-
sor product of modified hierarchical modal functions which permits a boundary-
interior decomposition [2]. We note however that in this setting the choice of shape
function is relatively unimportant, so long as they span the polynomial space of the
element. However, as we will demonstrate later, this choice of basis is useful for cer-
tain types of elemental subdivisions as it permits fewer restrictions on the resulting
subelement polynomial spaces.

3.1 Subdivision into the same element type

In this section we demonstrate how the isoparametric mapping χ , which we as-
sume has positive Jacobian for all ξ ∈Ωst, can be used to subdivide an element into
smaller elements of the same type. The goal of the subdivision process is to obtain
a mapping ζ : Ωst→ Ω̃ where Ω̃ ⊂Ω and detJζ (ξ )> 0 for all ξ ∈Ωst.

In the isoparametric approach we adopt here, instead of attempting to deter-
mine the exact subdomain Ω̃ of the physical element Ω , we select a subdomain
of the standard region, Ω̃st, and construct an invertible mapping f : Ωst→ Ω̃st with
detJ f (ξ )> 0. Initially, we also assume that the polynomial expansion in each direc-
tion is equal so that P = Q = R. Setting ζ as the composition χ ◦ f we then obtain a
subelement Ω̃ = ζ (Ωst).
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Fig. 2 Construction of the mapping ζ for the subdivision of a quadrilateral element.

The justification for the validity of ζ , and moreover the resulting element Ω̃

under the restriction of equal polynomial order is as follows. Firstly, it is clear that
the determinant of the Jacobian of ζ is positive for any ξ ∈ Ωst, since through an
application of the chain rule we have that

detJζ (ξ ) = detJχ( f (ξ ))detJ f (ξ )> 0. (1)

Let us assume that each component of χ lies in the polynomial space P(Ωst). In
order for ζ to retain the isoparametric representation of the subelements, we note
in turn that each of its components must be defined in a polynomial space P ′(Ωst)
where in the most general case, P(Ωst)⊂P ′(Ωst). A consequence of subdivision
therefore is that the subdivided elements may have a higher polynomial order than
the parent element depending on the choice of f .

Figure 2 shows a simple application of this subdivision strategy for a quadrilat-
eral element. Here we choose for example an affine mapping f (ξ1,ξ2) = (ξ1,cξ2)
for some c ∈ (0,1) so that the standard element is scaled in the ξ2 direction. Ap-
plying the original χ mapping we obtain a new element Ω̃ which is appropriately
scaled, and naturally introduces curvature into the resulting subelement. In this case,
any polynomial term ξ

p
1 ξ

q
2 is mapped under f to the term cqξ

p
1 ξ

q
2 which clearly lies

in P(Ω
quad
st ), and indeed it is clear that by equation 1 that detζ (ξ ) is simply a scalar

multiple of detχ(ξ ). We may therefore choose P ′(Ωst) = P(Ωst) and the order of
the subelements may be the same as the parent element.
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Since the restriction of equal polynomial order is somewhat restrictive, we now
consider the case where the polynomial order in each direction is not equal. Whilst
a similar argument to the previous explanation can be used in this case, more care
must be taken either in the choice of the mapping f or in the order of the resulting
subelements to ensure that the polynomial space is correctly spanned. For example,
consider a quadrilateral element with expansion orders P = 2 and Q = 1 which has
corresponding polynomial space P , and suppose we choose to produce a trivially
subdivided element by applying the transformation f (ξ1,ξ2) = (−ξ2,ξ1). This map
has positive Jacobian determinant and indeed is affine, as in the previous example.
However, since ξ1 and ξ2 are permuted in the composition with f , the expansion
has polynomial terms which lie outside of P leading to unpredictable element gen-
eration.

There are two solutions in this case. Firstly we may choose to obey the general
condition P(Ωst) ⊂P ′(Ωst), and enrich the polynomial order of the subelement
so that P = Q = 2. Alternatively however, we may permute the polynomial orders
of the resulting subelements, so that P = 1 and Q = 2, to form a space Q. We see
in this instance that the resulting subelement is still valid as all of the terms of the
original χ expansion are represented in ζ , but the previous condition is not held
since P 6⊂ Q. We therefore note that P(Ωst) ⊂P ′(Ωst) represents a sufficient,
but not necessary condition on the validity of subelements in this case.

A similar warning also applies to the other element types, and in particular trian-
gles, prisms and tetrahedra since additional conditions are placed on the summation
of mode indices which must be observed. In the next section, we discuss a simi-
lar enrichment strategy to permit the subdivision of elements into different element
types.

3.2 Subdivision into different element types

Another possible strategy one may adopt when subdividing elements is to consider
their division into elements of a different type; for instance, we may subdivide a
quadrilateral into triangles in two dimensions, or alternatively hexahedra into prisms
or prisms into tetrahedra in three dimensions. Such techniques are well understood
for linear finite elements [1] but for curvilinear elements self-intersection may occur.
In this section we demonstrate how the technique introduced in the previous section
can be adapted to introduce curvature into the subelements in such a way as to
prevent them becoming invalid.

We must adapt the previous argument above since now f : Ω ′st → Ω̃ where
Ω ′st ( Ωst and so the polynomial spaces which span these standard elements obey
the relation P(Ω ′st)(P(Ωst). In the same way that the technique needs an enrich-
ment of the polynomial space if direction-dependent polynomial orders are used, if
we naively apply the method then the polynomial expansion χ can contain terms
which are not contained inside P(Ω ′st), and so the resulting mapping ζ may not
produce valid elements.
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χ

f ζ = χ ◦ f

Ω
quad
st Ω

Ω tri
st

Ω̃st Ω̃

Fig. 3 Construction of the map ζ in the case of a quadrilateral being split into two triangles.

To demonstrate this point, we first examine the problem of figure 3, which depicts
an example where a quadrilateral is split along a diagonal edge in order to obtain
two triangles. We may again utilise an affine mapping f (ξ ) = −ξ in order to map
Ω tri

st onto a subdomain Ω̃st of Ω
quad
st . From our previous argument we see that each

component of ζ = χ ◦ f has degree 2P in general if the original quadrilateral is of
order P.

Since ζ ∈ [P(Ω tri
st )]

2 we must select a sufficiently large polynomial order for the
triangular space so that all terms of the expansion are represented in the resulting
expansion. To guarantee this for a general quadrilateral-to-triangle split, given a
quadrilateral of order P we must generate triangles of order 2P. Then the space
P(Ω

quad
st )⊂P(Ω tri

st ) and thus ζ captures all curvature of the original mapping. For
a visual illustration of this, we may represent the polynomial spaces of the triangular
and quadrilateral elements in the form of a Pascal’s triangle as shown in figure 4.

Figure 5 illustrates the problem of using triangular elements which are not suf-
ficiently enriched. On the left, a second-order (P2) quadrilateral is split into two
second-order triangles. Splitting the quadrilateral into two P2 triangles leads to the
generation of degenerate elements. In this case, the symmetry of the deformed ele-
ment coupled with the quadratic order of the triangles means that the diagonal edge
which bisects the quadrilateral is forced to remain straight and thus causes a self-
intersection. We note that in this example, the interior quadrilateral mode ξ 2

1 ξ 2
2 is not
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Fig. 4 Pascal’s triangle representing the polynomial spaces of P2 quadrilateral (shaded grey) and
P4 triangular (black outline) elements. The triangle shows that in order to split a general P2 quadri-
lateral we require P4 triangles so that all terms can be represented in the resulting mapping.

Fig. 5 Qualitative example of the necessary condition for subdivision. A P2 quadrilateral is split
into P2 (left) and P3 (right) triangles. Since a P2 triangular expansion does not capture some of the
terms of the original mapping, an additional order is required to produce valid elements.

energised since curvature is only introduced in one coordinate direction. We addi-
tionally note that this can be very intuitively achieved by the choice of a boundary-
interior hierarchical expansion in which edge and vertex degrees of freedom are
decoupled from the interior. Other basis types, such as a nodal Lagrange scheme,
will not in general have this property, although the use of the classical Gordon-Hall
blending does have this property.

Consulting the Pascal triangle of polynomial spaces we therefore see that only
a P3 expansion is required for the triangular elements. Using this insight, from a
qualitative perspective we can predict how the diagonal edge will be deformed un-
der this mapping, since if we consider a parametrisation r(t) = (t,−t) for t ∈ [−1,1]
then the composition χ(r(t)) should be a cubic polynomial in t. The resulting sub-
division, shown on the right-hand side of figure 5, confirms this observation and
consequently we obtain two valid triangular elements.
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We note that the same logic can be used in the splitting of prismatic and hexahe-
dra elements into tetrahedra. In general an order P prismatic or hexahedral element
also requires enrichment so that the resulting tetrahedra have order 2P and 3P tetra-
hedra. However by applying the logic above, if curvature is introduced only into the
triangular faces of the prisms, then it is only necessary to produce order P+1 tetra-
hedra. Since visualisation of the Pascal’s triangle structure is more difficult in three
dimensions, this can alternatively be seen from a brief analysis of the prismatic and
tetrahedral spaces. If a linear expansion is used in the homogeneous direction of the
prismatic element (i.e. Q = 1) and P = R then the resulting polynomial space is

Ppri(Ωst) = {ξ p
1 ξ

q
2 ξ

r
3 | 0≤ p+ r ≤ P, q = 0,1}.

A tetrahedron with equal polynomial order P in each direction has the restriction
on a triple (pqr) that 0 ≤ p+ q+ r ≤ P. If q = 1 then we obtain the restriction
0 ≤ p + r ≤ P− 1, and so the tetrahedral space at order P does not contain the
prismatic space, leading to possible invalid elements. In order to guarantee validity
of elements we therefore require tetrahedra of order P+1.

In the following section, we give a demonstration of this prism-to-tetrahedron
splitting and also highlight the application of the refinement method in boundary-
layer problems.

4 Applications

This section demonstrates the usefulness of the subdivision method by showing how
it can be used to generate three-dimensional meshes for challenging applications.
Firstly we consider the subdivision of a coarse prismatic boundary-layer mesh into
a series of progressively thinner elements as the distance to the wall decreases. We
then show how the prismatic elements can be subdivided to obtain a boundary-
layer mesh comprising only tetrahedra for use by solvers supporting only simplex
elements.

4.1 Boundary layer mesh generation

Figure 6 shows how the subdivision technique can be used to generate a boundary
layer mesh for an intercostal pair of a rabbit aorta. In these simulations one wishes
to simulate the flow of blood through the aortic arch. From this, one may simulate
an advection-diffusion equation in order to measure the concentration of particles
which are transported by the flow of blood. Whilst in this case, the Reynolds number
of the flow is not particularly large, the diffusion coefficient is inversely proportional
to the Peclet number, which in turn is inversely proportional to the size of particle
being advected. At high Peclet numbers, in a similar fashion to if the Reynolds
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Fig. 6 Boundary layer refinement for an intercostal pair of a rabbit aorta (pictured right). The
upper left image shows the high curvature of one smaller vessel, and below the resulting boundary
layer mesh is visualised.

number were high, one must use a thin boundary layer in order to resolve the steep
gradient of the scalar variable representing concentration.

In order to generate a sequence of N subelements which gradually become more
slender towards the surface of the domain, we define a spacing distribution ∆k for
1 ≤ k ≤ N which defines the height of each prismatic subelement inside Ω

prism
st . In

this case, we choose ∆k to be a geometric progression so that

∆k = ark, a =
2(1− r)
1− rN+1

where r denotes a ratio dictating the relative height of each element. Under the
framework of section 3 then, we define a straightforward affine scaling function
similar to that used in figure 2 which obeys the necessary conditions in order to
generate valid subelements. We additionally note that as long as the same spacing
distribution is used for all prismatic elements, the resulting mesh is conformal. One
of the major advantages of this method for the generation of boundary layer meshes
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Fig. 7 The result of a tetrahedralisation of the intercostal pair mesh of figure 6. The left-hand figure
shows a prism to tetrahedron split of the original mesh; on the right we apply the splitting after the
boundary layer refinement has been performed.

is that the resulting subelements are guaranteed to be valid, as shown in section 3,
and thus we are able to produce boundary layers of arbitrary thickness.

4.2 Generating meshes of simplex elements

Certain solvers only have support for meshes which are composed only of simplex
elements. For problems where boundary layers are required, this poses an additional
problem for mesh generation software. In figure 7, we show how the same method
can be used to split the prismatic elements of figure 6 into three tetrahedra. Firstly
we note that in order for the resulting mesh to be conformal, we must employ a
strategy so that the quadrilateral faces which connect prismatic elements are split in
a consistent fashion, such as the one outlined by Dompierre et al. [1].

Once this strategy is applied, we may utilise the subdivision strategy to split the
standard prismatic element into three tetrahedra by using an affine transformation
similar to that used in figure 3. We note that in the specific case of figure 7, since the
curvature of the original prisms is only imposed on the triangular surface, we may
obtain valid tetrahedra by enriching the polynomial space by one order.

An important point to note is that whilst the validity of the resulting tetrahedra is
guaranteed through our previous arguments, this method may lead to the production
of tetrahedra which have suboptimal quality in terms of interior angles, depend-
ing on the curvature of the original prismatic elements. However, when tetrahedral
boundary layers are required this is often unavoidable since the elements are re-
quired to possess a large stretching ratio. In the very worst cases, the use of these
meshes as a starting point for a mesh deformation procedure may lead to better qual-
ity elements. We suggest that the validity of the meshes produced here may lead to
improved convergence speeds in such methods.
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5 Conclusions

In this paper we have derived the mathematical conditions that are necessary for
the subdivision of high-order isoparametric elements, and show how this technique
can be applied to tackle challenges in high-order mesh generation. We posit that the
simplicity of the method outlined here will prove to be a valuable tool in improv-
ing both the efficiency and robustness of curvilinear mesh generation software, and
particularly for the generation of meshes for high Reynolds number computational
fluid dynamics problems or high Peclet number advection-diffusion problems.
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