
Cohen, J et al 2014 Simplifying the Development, Use and Sustainability of
HPC Software. Journal of Open Research Software, 2(1): e16, pp. 1-6, DOI:
http://dx.doi.org/10.5334/jors.az

1 Introduction
Building scientific software for use on HPC platforms
can be a complex process bringing together the special-
ist domain knowledge of the scientists who are likely
to be the end-users of the resulting software, method
developers, computer scientists and resource providers.
By releasing the tight coupling that often exists between
the different entities in the development of HPC software
and replacing this with a set of less interdependent pro-
cesses, each entity is able to focus on their specific area
of expertise. Our approach uses metadata and software
components combined with functional constructs – coor-
dination forms [1] – for specifying component orchestra-
tion. Within components, software contains wrappers
with clearly defined interfaces and supporting metadata
structures against which external code can be devel-
oped by third parties, reducing the need for the detailed

interactions that can often be required between users and
developers to produce efficient code.

In this paper we set out our views on the challenges of
ensuring ease of access to and sustainability of scientific
HPC software. Our approach is based on work carried out
in the libhpc project [2], which is developing a framework
to provide a richer means of job specification and efficient
execution of complex scientific software on heterogene-
ous infrastructure, and on previous material presented in
[3]. Our motivation, supported through the development
of simplified, application or domain-specific user inter-
faces, is the desire to make it easier for end-users to both
describe the tasks they want to undertake and to make
use of a wider range of computational infrastructure, in a
more streamlined manner. The user interfaces provide a
means for users to leverage the framework in order to run
applications on different types of hardware, without the
need to have detailed knowledge of how this hardware
operates.

We consider that software development can be simpli-
fied by allowing developers to focus on working within
their domain, with fewer cross-domain interactions. This
is supported by the use of software components that aid
encapsulation of software processes with clearly-defined
interfaces. We believe that a flexible model using software
components and high-level functional constructs for com-
ponent orchestration can help to incentivise developers to
extend their code with new features and support for new

* Department of Computing, Imperial College London, London, UK
jeremy.cohen@imperial.ac.uk

† National Heart & Lung Institute, Imperial College London,
London, UK

‡ Software Sustainability Institute, University of Edinburgh,
Edinburgh, UK

§ Department of Aeronautics, Imperial College London,
London, UK

‖ EPCC, University of Edinburgh, Edinburgh, UK
Corresponding author: Jeremy Cohen

ISSUES IN RESEARCH SOFTWARE

Simplifying the Development, Use and Sustainability of
HPC Software
Jeremy Cohen*, Chris Cantwell†, Neil Chue Hong‡, David Moxey§, Malcolm Illingworth‖,
Andrew Turner‖, John Darlington* and Spencer Sherwin§

Keywords: HPC; software deployment; workflows; software components; component metadata

Developing software to undertake complex, compute-intensive scientific processes requires a challenging
combination of both specialist domain knowledge and software development skills to convert this knowl-
edge into efficient code. As computational platforms become increasingly heterogeneous and newer types
of platform such as Infrastructure-as-a-Service (IaaS) cloud computing become more widely accepted for
high-performance computing (HPC), scientists require more support from computer scientists and resource
providers to develop efficient code that offers long-term sustainability and makes optimal use of the
resources available to them. As part of the libhpc stage 1 and 2 projects we are developing a framework
to provide a richer means of job specification and efficient execution of complex scientific software on
heterogeneous infrastructure. In this updated version of our submission to the WSSSPE13 workshop at
SuperComputing 2013 we set out our approach to simplifying access to HPC applications and resources for
end-users through the use of flexible and interchangeable software components and associated high-level
functional-style operations. We believe this approach can support sustainability of scientific software and
help to widen access to it.

Journal of
open research software

http://dx.doi.org/10.5334/jors.az
mailto:jeremy.cohen@imperial.ac.uk

Cohen et al: Simplifying the Development, Use and Sustainability of HPC SoftwareArt. e16, page 2 of 6

hardware platforms. In turn, this should help to support
long-term sustainability of software.

Section 2 provides an overview of related work and
Section 3 then sets out our position on the challenges
of improving scientific software with respect to develop-
ment, user accessibility and flexibility. Section 4 discusses
sustainability of HPC applications and Section 5 looks at
libhpc’s use of abstractions and metadata with conclu-
sions provided in Section 6.

2 Related work
Extensive research has been undertaken to make software
easier to develop and use, particularly as new computing
hardware and infrastructure patterns emerge. There are
research programmes that have focused on linking appli-
cation scientists with computer scientists, funding a range
of projects to assist with optimising specific codes, sup-
porting frameworks or the underlying infrastructure on
which these codes are run.

Software efforts, such as in the area of workflows, aim
to simplify the use of distributed resources to run multi-
ple codes or tools that may previously have been scripted
locally. Environments such as Taverna [4] provide a means
of executing workflows consisting of multiple compo-
nents that may be available locally or as remote Web
Services. In addition to generic workflow systems, many
systems have been developed to assist users in specific
domains. For example, in Bioinformatics, systems such as
Galaxy [5] or VisTrails [6] provide domain-specific features
to improve the user experience.

With the emergence of cloud computing, including
IaaS public cloud platforms such as Amazon EC2 [7]
or RackSpace [8] and private cloud frameworks such as
OpenStack [9], access to large-scale, remote, distributed
infrastructure has become much easier. Other types of
architectures such as GPUs and FPGAs provide many
opportunities for improving code performance but at
the cost of the complexity of porting or building new
code. Heterogeneous hardware can also require learn-
ing different development approaches so frameworks
such as OpenCLTM [10], which provides a C-based lan-
guage for developing cross-platform code, and OpenACC
[11], which uses compiler directives to specify code
that should be executed on alternative hardware, have
emerged to provide a common approach to develop-
ing code that can be executed on different platforms.
Similarly, OP2 [12] is a framework for running unstruc-
tured grid applications on multiple cores of either GPUs
or CPUs. Compile-time auto-tuning and runtime optimi-
sation offer the potential of supporting a much wider
range of developers. Auto-tuning can be applied in the
context of libraries that generate optimised code at build
time to undertake their specific functionality, for exam-
ple, the Optimised Sparse Kernel Interface (OSKI) Library
[13] that optimises code for sparse matrix operations.
Auto-tuning compilers such as Milepost GCC [14] offer
a more general option using advanced functionality to
produce compiled code that is optimised for the plat-
form that they are building on.

3 Improving scientific software
3.1 Overview and Challenges
What constitutes improvement in computer software? For
some individuals it is likely to be better performance, for
others it may be ease of use while others may be interested
in additional features, greater extensibility or options for
customisation. For scientific software, improved accuracy,
more realistic models or more advanced algorithms may
be of importance. What constitutes improvement is also
likely to differ depending on the role of the individual in
question. Figure 1 illustrates the different roles involved
in software development and use that we consider in our
work. The diagram provides an example of the interac-
tions between the entities and their close relationships
when building scientific applications.

An aim of libhpc is to improve the experience for end-
users who want to run scientific codes but may not have
extensive knowledge of high performance computing
platforms or be familiar/comfortable with command-line
interaction with computer systems. At present, it may be
necessary for a new user of an open source HPC application
to build the code from source, install this code on a remote
hardware platform and then run the code via a command
line interface. Users may well need to obtain support
from computer scientists and from the providers of their
selected target resources in order to get code running,
especially when they intend to use external computational
platforms operated by third parties. This can be addressed
using high-level graphical interfaces built on middleware
which abstracts away the complexity of a heterogeneous
fabric of resources from the end-user. An example of this
is provided in the development of Nekkloud [15], a web-
based environment for running finite element jobs using
the Nektar++ [16] finite element framework.

Given the different user profiles shown in Figure 1, this
work demonstrates how a web-based graphical interface

Figure 1: An example of the complex relationships
between the different groups involved in HPC software
development and use.

Cohen et al: Simplifying the Development, Use and Sustainability of HPC Software Art. e16, page 3 of 6

can offer end-users an easier approach to running applica-
tions and a more effective means to target different types
of hardware resource. The complexity of preparing the
hardware and software and packaging this into an easily
accessible format is handled by individuals with expertise
in these tasks and is hidden from the end-user. The mid-
dleware is built by framework developers who work closely
with infrastructure providers and developers to automate
the software deployment process. Users then simply select
their requirements in the web-based interface, provide
their input data and then submit the job. The current tar-
get for this work is scientific applications and the associ-
ated scientists who will have knowledge of a particular
domain and may have experience of using domain-specific
software packages. By providing an abstraction layer above
the computing platforms we aim to ensure that scientists
retain some control and flexibility over how they execute
their software while also gaining the ability to much more
easily target different computational platforms.

The way that code is built is key in ensuring efficiency,
long-term sustainability and maintainability of software.
Our approach differs from existing component-based
frameworks in the way that we use metadata describing
both software and hardware and the way that this meta-
data is used as part of a mapping process to identify the
most effective hardware to use to run a given compo-
nent-based application on a per-run basis. This approach
also allows management of data across components and
resources ensuring that application data can be handled
according to requirements specified in component meta-
data and through the dynamic orchestration of the execu-
tion process to ensure performance and efficiency.

Challenges in building a framework for efficient deploy-
ment of software include the complexity of many scien-
tific methods and algorithms and the need to maintain
scientists’ and method developers’ understanding of these
to allow selection of suitable computational platforms.
Method developers can produce high-quality code but
their detailed understanding of the science that is mapped
into this code is often lost and can be almost impossible to
recreate. This results in code that can be difficult to main-
tain and extend and that lacks portability. We strongly
believe that by wrapping code in components and aug-
menting these components with metadata that provides
details of how and why code is designed and built in a
particular way, it is possible to provide long-term bene-
fits to both developers and users. Software components
promote code re-use and can simplify the optimisation of
individual elements of complex scientific code. The use of
high-level functional constructs to orchestrate these com-
ponents further supports optimisation and efficient exe-
cution of applications making it easy to dynamically select
optimal components shortly before application run-time.

3.2 Software communities
While frameworks such as libhpc can provide ways to
more easily describe complex computational jobs and
target a range of infrastructure, the code providing the
scientific methods, and the code of the framework itself,

still needs to be maintained. One of the most practical
ways to build a critical mass of interest and support for a
code and, hence, the potential for longevity, is to encour-
age the establishment of communities around particular
codebases or projects. The members of the community
contribute to the development and maintenance of the
software in a distributed, yet coordinated, fashion. Such
an approach distributes knowledge regarding all aspects
of the code, spanning the methods, optimisation and
deployment across the community such that the loss of
any one member is far less likely to hamper the process of
maintaining knowledge and understanding of the code in
the long-term.

Communities can work well where a large number of
people have a vested interest in a particular tool. There
are many such examples amongst open source projects,
hosted on systems such as SourceForge and GitHub,
which rely on communities of developers and users. In the
case of large and high-profile projects, communities can
be very powerful, often taking on extensive project man-
agement and development tasks and providing a means
for discussion spanning all stakeholders. In contrast, com-
munity-building around small-scale scientific projects in
a narrow application domain can be challenging due to
the comparatively small size of the total user community,
meaning it is harder to attain the critical mass of interest
to seed the development of a supporting community. In
niche areas, maintaining the interest and engagement of
the community is key, especially when community mem-
bers can choose to devote their time to another project
without warning.

The complexity of HPC codes means that they often
require more experienced developers and a greater
investment of time. Support of these applications is
often funded through members of related research pro-
jects or users in industry contributing time to a project,
but this means that smaller-scale users are then reliant
on these groups to keep the application up to date and
to fix bugs. In general, the most successful open source
projects tend to be those that appeal to the widest range
of potential users, for example the Mozilla Foundation
[17] projects such as the Firefox web browser. There
are examples of domain-specific scientific open source
tools that have built a community to sustain and extend
them, for example OpenFOAM [18], however, this pro-
cess often relies on the availability of funding to seed
the development process until a supporting community
has been formed.

4 Sustaining HPC applications
Managing the long-term sustainability of software is a
particular challenge in the case of open source software
that is made available to users at no cost. While mod-
els such as paid-for support are already widely used and
can help to provide funding to ensure a core team of
developers maintain an application, this is likely to be
more of a challenge for applications that have a small
user base. Where an application relies on being highly
optimised to specific hardware, there is a further need to

Cohen et al: Simplifying the Development, Use and Sustainability of HPC SoftwareArt. e16, page 4 of 6

ensure reliable, ongoing maintenance programmes exist
in order to take advantage of the latest technology. For
example, GPGPUs provide potential for massively parallel
computation but implementing code for them is chal-
lenging and can be time consuming. This can result in a
situation where specialist applications with the greatest
need for ongoing maintenance are often those that have
the least chance of drawing in the necessary support to
achieve this.

As new computational models, such as IaaS clouds, and
novel hardware, such as FPGAs, become more widely used,
we believe that there is an increasingly urgent need for
more advanced approaches to managing and maintaining
software to ensure sustainability. Many of the aims and
approaches described in this paper for improving access
to scientific HPC software and for simplifying the use
of heterogenous hardware are brought together in the
libhpc framework [2].

Unlike systems such as OP2 [12] or FEn-iCS [19], the
libhpc approach does not seek to generate optimised code
for applications. Instead it still relies on platform-specific
code being built by experienced developers. However,
middleware is used to intelligently determine the most
suitable resources in a heterogeneous environment to
be used for running a user’s job and then select the most
appropriate code implementation to ensure efficient job
execution. Libhpc therefore takes a higher-level approach
than that used by code generation systems and these sys-
tems may still be used to help develop the underlying
code used by libhpc. We do not claim that our approach
reduces the amount of work that developers need to carry
out but it is considered that the de-coupling of entities in
the development chain imposes fewer dependencies on
the development process for individual developers. This
allows them to concentrate on their core areas of exper-
tise and should, ultimately, make the overall process of
developing optimised elements of an application more
straightforward.

The efficient targeting of code to resources and increas-
ing availability of remote infrastructure cloud platforms
provides users with much greater flexibility than if they
were restricted to their own local resources. This in turn
incentivises users to work with software that supports
the middleware and should further motivate developers
to extend code to target new platforms because there is
a much greater chance of user uptake of the latest code
implementations.

5 Abstractions and Metadata
The libhpc framework is designed to use metadata and
abstract software components to enable the specification
of applications without the requirement for defining a spe-
cific, concrete, code implementation at the time of applica-
tion definition. Abstract software components define the
capabilities of a component without providing a specific
code implementation. Specialisations of the abstract com-
ponent may exist for different hardware platforms con-
taining a code implementation optimised to the specific
platform.

Component metadata is stored within a component
repository. In the current approach, component meta-
data has a pointer to a Python wrapper which is used to
execute the component’s underlying code which may
itself be Python code or be provided within a library or
executable that has been written in some other language
(see Figure 2). This allows developers to produce new
implementations of the functionality of a given compo-
nent that may be optimised to a different type of hard-
ware platform. The new implementations can then be
registered with the component repository along with a
specialisation of the original component containing meta-
data specific to the new implementation. Components
form trees with a separate tree for each component type.
The more abstract instances of a component are higher
up the tree with the lower components in the tree hav-
ing more detailed functionality specified by their meta-
data. Leaf nodes in the component tree contain a specific
code implementation or a pointer to the code. While it is
accepted that the provision of metadata and code wrap-
pers imposes additional requirements on developers, we
consider that the cost of these additional requirements is
acceptable in the context of the end-user benefits and the
flexibility provided by the framework.

For example, the storage of metadata and specialisa-
tion information for components provides a derivation
history that lets us understand how components have
been extended and where functionality has been added
or changed. This is particularly important in recording the
developer knowledge that is invested in the code devel-
opment process. As discussed in [3], maintaining this
information is important in ensuring the long-term sus-
tainability of software.

Co-ordination forms, the functional constructs used
to specify component orchestration, can also have mul-
tiple implementations. The ability to select between a
set of alternative implementations for both software
components, and the control structures that combine
them, offers significant flexibility in how applications are
built, maintained and extended. The selection of these

Figure 2: Structure of a libhpc component.

Cohen et al: Simplifying the Development, Use and Sustainability of HPC Software Art. e16, page 5 of 6

alternatives is handled by an intelligent mapper that can
identify the most suitable software implementation(s) to
address a user’s requirements. This provides users with the
ability to undertake computations that may previously
not have been possible without extensive communication
with developers and resource providers.

6 Conclusions
We have described an approach for improving the usability
and sustainability of scientific software for a range of dif-
ferent stakeholders based on our experiences in the libhpc
project and related work. The focus has been on manag-
ing sustainability through decoupling the dependencies
that exist between entities in the traditional development
lifecycle for scientific HPC applications. By capturing as
much metadata as possible about a user’s requirements
and the capabilities of hardware and software, advanced
middleware can be provided to compose components and
identify suitable target hardware platforms for running
code. This provides end-users with much more flexibility
in the types of hardware that are accessible to them and
the overall experience that they have in developing code
themselves.

We summarise our position and the key points and les-
sons learned from our work as follows:

•	 Complexity in HPC codes often stems from a dis-
tributed development process and the interactions
between different entities.

•	 Logically separating the tasks undertaken by the dif-
ferent entities can reduce complexity and allow a more
structured and sustainable development process.

•	 Scientific code is generally an unsustainable way to
provide long-term preservation of the clearly struc-
tured processes and concepts it is used to represent.

•	 Well-defined, higher-level representations of scien-
tific processes should be stored as metadata alongside
code in order to simplify software maintenance and
extension.

•	 Domain-specific user interfaces enhance the usability
of scientific software and can be developed to pro-
vide transparent access to a range of computational
platforms.

As we continue our work in the libhpc stage 2 project we
are implementing more of the framework and developing
demonstrators to show how the approaches discussed here
can be realised in different scientific domains. It is hoped
that this work will serve to support users in a range of fields
who are part of the project and to provide us with valuable
feedback to assist in optimising our approaches to improv-
ing scientific software for those who build and use it.

7 Acknowledgements
The authors would like to thank the UK Engineering and
Physical Sciences Research Council (EPSRC) for funding
the libhpc: Intelligent Component-based Development of
HPC Applications stage 1 (EP/I030239/1) and stage 2 (EP/
K038788/1) projects.

References
1. Darlington, J, Guo, Y, To, H W and Yang, J 1995

Functional Skeletons for Parallel Coordination. In:
EURO-PAR’95 Parallel Processing. Springer-Verlag, pp.
55– 69. DOI: http://dx.doi.org/10.1007/BFb0020455

2. libhpc: Intelligent Component-based Development
of HPC Applications. Available at: http://www.impe-
rial.ac.uk/lesc/projects/libhpc [Last accessed 03
April 2014].

3. Cohen, J, Darlington, J, Fuchs, B, Moxey, D,
Cantwell, C, Burovskiy, P, et al 2012 libHPC: Soft-
ware sustainability and reuse through metadata pres-
ervation. In: First Workshop on Maintainable Software
Practices in e-Science. Chicago, IL, USA. Available at:
http://www.software.ac.uk/sites/default/files/soft-
warepractice2012_submission_8.pdf

4. Wolstencroft, K, et al. 2013 The Taverna workflow
suite: designing and executing workflows of Web Ser-
vices on the desktop, web or in the cloud. Nucleic Acids
Research, 41(W1): W557-W561. DOI: http://dx.doi.
org/10.1093/nar/gkt328

5. Giardine, B, et al 2005 Galaxy: a platform for inter-
active large-scale genome analysis. Genome Research,
15(10): 1451–1455. DOI: http://dx.doi.org/10.1101/
gr.4086505

6. Callahan, S P, Freire, J, Santos, E, Scheidegger, C
E, Silva, C T and Vo, H T 2006 VisTrails: visualiza-
tion meets data management. In: Proceedings of
the 2006 ACM SIGMOD International Conference
on Management of Data. SIGMOD ’06. New York,
NY, USA: ACM, pp. 745–747. DOI: http://doi.acm.
org/10.1145/1142473.1142574.

7. Amazon Web Services, Inc 2013 Amazon Elastic Com-
pute Cloud (Amazon EC2). Available at: http://aws.
amazon.com/ec2 [Last accessed 01 September 2013].

8. Rackspace Limited 2013 Cloud Overview — Rack-
space Hosting. Available at: http://www.rackspace.
co.uk/cloud/ [Last accessed 01 September 2013].

9. OpenStack Open Source Cloud Computing Soft-
ware 2013. Available at: http://www.openstack.org/
[Last accessed 01 September 2013].

10. Khronos Group 2013 OpenCLTM– The open standard
for parallel programming of heterogeneous systems.
Available at: http://www.khronos.org/opencl/ [Last
accessed 01 September 2013].

11. OpenACC Home 2013 Available at: http://www.
openacc-standard.org/ [Last accessed 01 September
2013].

12. Mudalige, G R, Giles, M B, Reguly, I, Bertolli, C and
Kelly, P H J 2012 OP2: An active library framework
for solving unstructured mesh-based applications on
multi-core and many-core architectures. In: Innova-
tive Parallel Computing (InPar), San Jose, CA on 13-14
May 2012, pp. 1–12. DOI: http://dx.doi.org/10.1109/
InPar.2012.6339594.

13. Vuduc, R, Demmel, J W and Yelick K A 2005 OSKI: A
library of automatically tuned sparse matrix kernels. Jour-
nal of Physics: Conference Series, 16(1): 521–530. Avail-
able at: http://stacks.iop.org/1742-6596/16/i=1/a=071

http://dx.doi.org/10.1007/BFb0020455
http://www.imperial.ac.uk/lesc/projects/libhpc
http://www.imperial.ac.uk/lesc/projects/libhpc
http://www.software.ac.uk/sites/default/files/softwarepractice2012_submission_8.pdf
http://www.software.ac.uk/sites/default/files/softwarepractice2012_submission_8.pdf
http://dx.doi.org/10.1093/nar/gkt328
http://dx.doi.org/10.1093/nar/gkt328
http://dx.doi.org/10.1101/gr.4086505
http://dx.doi.org/10.1101/gr.4086505
http://doi.acm.org/10.1145/1142473.1142574
http://doi.acm.org/10.1145/1142473.1142574
http://aws.amazon.com/ec2
http://aws.amazon.com/ec2
http://www.rackspace.co.uk/cloud/
http://www.rackspace.co.uk/cloud/
http://www.openstack.org/
http://www.khronos.org/opencl/
http://www.openacc-standard.org/
http://www.openacc-standard.org/
http://dx.doi.org/10.1109/InPar.2012.6339594
http://dx.doi.org/10.1109/InPar.2012.6339594
http://stacks.iop.org/1742-6596/16/i=1/a=071

Cohen et al: Simplifying the Development, Use and Sustainability of HPC SoftwareArt. e16, page 6 of 6

14. Fursin, G, et al 2011 Milepost GCC: Machine Learning
Enabled Self-tuning Compiler. International Journal of
Parallel Programming, 39(3): 296–327. DOI: http://
dx.doi.org/10.1007/s10766-010-0161-2

15. Cohen, J, Moxey, D, Cantwell, C, Burovskiy, P, Dar-
lington, J and Sherwin, S J 2013 Nekkloud: A software
environment for high-order finite element analysis on
clusters and clouds. In: IEEE International Conference
on Cluster Computing, IEEE'13. DOI: http://dx.doi.
org/10.1109/CLUSTER.2013.6702616.

16. Nektar++ 2013 Nektar++: An efficient h to p finite
element framework. Available at: http://www.nektar.
info/ [Last accessed 07 April 2014].

17. Home of the Mozilla Project 2014 Available at:
http://www.mozilla.org/ [Last accessed 03 April
2014].

18. OpenFOAM®Foundation 2014 The OpenFOAM
Foundation. Available at: http://www.openfoam.org/
[Last accessed 03 April 2014].

19. Logg, A, Mardal, K A and Wells, G N 2012 Finite
Element Assembly. In: Logg, A, Mardal, K A and
Wells, G N (eds.) Automated Solution of Differen-
tial Equations by the Finite Element Method. Lecture
Notes in Computational Science and Engineering,
vol. 84 Springer. pp. 141–146. DOI: http://dx.doi.
org/10.1007/978-3-642-23099-8_6.

How to cite this article: Cohen, J, Cantwell, C, Chue Hong, N, Moxey, D, Illingworth, M, Turner, A, Darlington, J and Sherwin,
S 2014 Simplifying the Development, Use and Sustainability of HPC Software. Journal of Open Research Software, 2(1): e16,
pp. 1-6, DOI: http://dx.doi.org/10.5334/jors.az

Published: 9 July 2014

Copyright: © 2014 The Author(s). This is an open-access article distributed under the terms of the Creative Commons
Attribution 3.0 Unported License (CC-BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited. See http://creativecommons.org/licenses/by/3.0/.

 OPEN ACCESS Journal of Open Research Software is a peer-reviewed open access journal published by
Ubiquity Press.

http://dx.doi.org/10.1007/s10766-010-0161-2
http://dx.doi.org/10.1007/s10766-010-0161-2
http://dx.doi.org/10.1109/CLUSTER.2013.6702616
http://dx.doi.org/10.1109/CLUSTER.2013.6702616
http://www.nektar.info/
http://www.nektar.info/
http://www.mozilla.org/
http://www.openfoam.org/
http://dx.doi.org/10.1007/978-3-642-23099-8_6
http://dx.doi.org/10.1007/978-3-642-23099-8_6
http://dx.doi.org/10.5334/jors.az
http://creativecommons.org/licenses/by/3.0/

