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Abstract

In recent years, techniques for the generation of high-order curvilinear mesh have frequently adopted mesh deformation procedures

to project the curvature of the surface onto the mesh, thereby introducing curvature into the interior of the domain and lessening

the occurrence of self-intersecting elements. In this article, we propose an extension of this approach whereby thermal stress terms

are incorporated into the state equation to provide control on the validity and quality of the mesh, thereby adding an extra degree

of robustness which is lacking in current approaches.
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1. Introduction

Mesh deformation techniques change the position of nodes in the mesh without changing the underlying connec-

tivity. They are used, amongst other purposes, to improve the quality of a mesh of linear elements, to incorporate

boundary layer meshes into an existing mesh and to generate curved high-order elements. Some of the most popular

methods are, for instance, Laplacian smoothing [2,8], Winslow smoothing [9,10], elastic mesh deformation [3,10,13]

and mesh optimisation [1,4,6]. The focus here is in the use of elastic mesh deformation techniques for the genera-

tion of boundary-conforming high-order curvilinear meshes. Previous work in this area using either linear [3,14] or

non-linear elasticity [7] lacks mechanisms for controlling the validity and quality of the deformed mesh.

Here we propose a method that incorporates additional terms in the linear elasticity equations that can be interpreted

as thermal stresses and that aim to counteract distortion generated by the imposed displacement at the boundary.

Making the thermal stresses dependent on measures of mesh quality for high-order elements will permit us to control

the validity and quality of the mesh. A precursor to this idea was presented in the work by Palmerio [8] for linear

elements where a pseudo-pressure term was used to ensure the area of the elements in the mesh remained positive

through the smoothing process. The penalty term proposed in [8] can be seen as a particular case of the linear

isotropic thermal stresses in the current formulation. Our formulation is however more general; it provides a physical
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Fig. 1. Mesh deformation driven by boundary displacement.

interpretation of the additional terms that control mesh validity and quality, and it can be generalized to account for

mesh anisotropy.

We begin by describing the governing equations of elasticity, which incorporates body forces and thermal stresses

in section 2, and outline its numerical discretization using spectral/hp elements in section 3. Section 5 proposes

some example forms of the tensor of thermal stresses and illustrates with a practical example that the modifications

to the elasticity equations proposed here permit a higher degree of deformation whilst maintaining the validity of the

underlying high-order elements.

2. Mesh deformation via linear elasticity

We seek to deform a mesh of straight-sided high-order elements to accommodate curved boundaries. To achieve

this, we adopt a linear elasticity formulation in terms of the displacement, u, of points in the domain, Ω ⊂ R
n, caused

by imposing a prescribed displacement, û, at the points in the boundary of the domain, ∂Ω. This is illustrated in Fig.

1.

The elastic formulation starts with the equilibrium of forces represented by the equation

∇ · S + f = 0 in Ω (1)

where S is the stress tensor and f denotes a distributed force. The force will be, in general, a function of the position,

i.e. f(x) with x ∈ Rn.

We further assume that the stress tensor S incorporates both elastic and thermal stresses, so that it can be written as

S = Se + St,

where the subscripts e and t denote the elastic and thermal terms respectively.

We adopt the usual linear form of the elastic stress tensor as

Se = λTr(E) I + μE,

where λ and μ are the Lamé constants, E represents the strain tensor, and I is the identity tensor. For small deforma-

tions, the strain tensor E is given as

E =
1

2

(
∇u + ∇ut

)
. (2)
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The boundary conditions required to close the problem consist of prescribed displacements at the boundary ∂Ω, i.e.

u = û in ∂Ω. (3)

We further express the Lamé constants in terms of the Young’s modulus E and Poisson ratio ν as

λ =
νE

(1 + ν)(1 − 2ν)
, μ =

E
2(1 + ν)

.

Note that the elastic parameters of the problem λ and μ, or equivalently E and ν, might be considered to be functions

of x. This is a strategy used for instance in reference [13] where smaller elements are made stiffer to permit larger

deformations.

The simplest model of thermal stresses is that of a linear isotropic material and the corresponding thermal stress

tensor is of the form

St = β(T − T0)I

where T is the temperature, T0 is the temperature of the stress-free state, and β is a thermal coefficient. We will

consider the temperature to be a function of the position, i.e. T (x).

The main idea of the paper is to use this term to control the validity of the mesh and its quality. If the displacement

of the boundary nodes is causing an element to distort, we could increase or decrease the temperature to locally expand

or contract, respectively, the element so as to prevent the element becoming invalid. We will discuss some potential

forms of the thermal stresses for the purpose of controlling mesh validity and quality in section 5, but we assume that

they do not depend on u.

3. Implementation within Nektar++

To obtain a spectral/hp element discretisation of this problem, we select a mesh of the domain Ω =
⋃Nel

e=1
Ωe and

sets of trial and test spaces of continuous functions

X = {v ∈ C0(Ω) | v|Ωe ∈ [PN(Ωe)]n, v|∂Ω = û},
V = {v ∈ C0(Ω) | v|Ωe ∈ [PN(Ωe)]n, v|∂Ω = 0},

where PN(Ωe) is the space of all polynomials of degree up to N. Multiplying (1) by a test function v ∈ V, taking an

approximate solution uh ∈ X and integrating by parts, we obtain the weak formulation: find uh ∈ X such that

∫
Ω

∇v : S(uh) dx = −
∫
Ω

f v dx (4)

for all v ∈ V. The discretisation of this system is performed using the spectral/hp element framework described in [5]

and implemented in the open-source code Nektar++ [11], which supports elements such as triangles and tetrahedra

as well as quadrilateral, prismatic, pyramidal and hexahedral elements, and the various hybrid meshes which can be

obtained by connecting them, through the use of a set of hierarchical C0 tensor product modal basis functions.

To facilitate the use of numerical integration required for the calculation of the integrals in the discrete system (4),

a high-order element, denoted byΩe, is represented as the image of a standard or reference element, Ωst, by a mapping

M. This is depicted in Fig. 2 for a high-order triangular element.

The mapping plays an important role in the quality of the mesh and the conditioning of the system of equations (4).

The Jacobian matrix of the mapping J, its determinant J (hereafter referred to as the Jacobian) and the metric tensor,

G = JtJ provide measures of distortion of the physical element, with respect to the reference element, that can be used

to determine the validity of the element and used to assess its quality. For instance, the Jacobian locally relates areas

in the reference and physical elements and a value J ≤ 0 indicates that the element is inverted with negative or zero

area and thus it is invalid for computation unless specific measures are taken to account for this, as outlined in e.g.

[12]. On the other hand, the metric tensor contains directional information that allows us to account for anisotropy in

elemental distortion.
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Fig. 2. Representation of a triangular high-order element as a mapping, M : Ωe
st → Ωe, where Ωe

st is a reference element and Ωe is the physical

element. Other elemental shapes are represented in a similar fashion.

In this discretisation, the thermal stress terms are not a function of u and so can be omitted from the stiffness matrix

arising from the elastic stress tensor Se. For small problems, the matrix system described by the left hand side of (4)

is globally assembled across all elements, and the solution found with a direct Cholesky decomposition. For larger

problems, particularly in three dimensions, we construct a matrix representation of Se on each element and utilise a

Jacobi-preconditioned conjugate gradient method within Nektar++ to invert the system across multiple processors.

Optionally, a statically condensed system on which we solve for only the degrees of freedom lying on the boundary of

each element can be constructed, which gives significant efficiency improvements at high polynomial orders. To give

an indication of performance, each step (including matrix generation and linear solve) for a 1000 element triangular

mesh at polynomial order P = 6 requires around 1.5 seconds of runtime on a single core of a Intel Xeon E5-2690

processor. It should be noted however that no particular efforts have been made to optimise these routines (especially

in regards to matrix generation).

4. Application to mesh generation

In figure 3 we demonstrate the general methodology of the linear elastic analogy used in the coming results when

applied to a mesh generation problem. The starting point is a small boundary layer grid of 72 triangular elements,

on which we intend to apply a large sinusoidal deformation to the bottom edge. Since the linear elastic equations are

only valid when small deformations are considered, we choose to adopt a sub-stepping approach, whereby the large

deformation at the boundary is split into a number of smaller steps in order to allow the generation of a valid mesh.

At the end of each step, we apply the deformation to the mesh, reconstruct the matrix system on the grid to account

for the updated geometric factors and then solve the linear system to obtain the next solution field. In the example of

figure 3 we have used 100 steps to achieve the deformation of the boundary.

Here, and in all the examples that follow, we have assumed f = 0 and constant values of the elastic parameters E
and ν. In the absence of a source term, the value of Young’s modulus, E, is not important since it is just a multiplicative

factor in the expression of the stresses. On the other hand, the Poisson ratio, ν, is a measure of the compressibility

of the material and it is chosen as the maximum value in its allowable range, 0 < ν < 1
2
, that would permit to

accommodate the area changes induced by the displacement of the boundary. We have used ν = 0.3 in the present

case.

5. Effect of thermal stresses

To illustrate the effect of the additional thermal stresses in the validity and quality of the mesh we use a simple

geometry that consists of a square plate [−1, 1]2 with circular hole of radius r = 0.1 which is depicted in Fig. 4. The

points in the boundary of the circular hole are rotated about its center by an angle θ and are kept stationary at the

boundary of the square. Our objective is to determine the maximum value θmax of the angle that we can impose before

the appearance of the first invalid element, i.e. one with a zero or negative Jacobian. Given that we are solving the
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(a) (b)

(c) (d)

Fig. 3. Application of the mesh deformation analogy to a prototype boundary layer mesh. The high order elements are highlighted with dark lines,

and interior quadrature points with light lines. (a) Original linear grid; (b) deformation after 10 steps; (c) 50 steps; (d) final deformed grid at 100

steps.

linear elasticity equations which are only valid for small deformations, the rotation is applied in small angular steps

Δθ = 1◦.
We consider two formulations to control mesh quality through the thermal stresses: an isotropic one based on the

Jacobian of the elemental mapping and an anisotropic one that utilises the eigenvalues of the metric tensor of the

mapping to account for anisotropy in the deformation of the mesh.

5.1. Isotropic case

Here we consider an isotropic tensor of thermal stresses of the form

St = βJI (5)

where J is the Jacobian of the elemental mapping of the element, β is a scaling factor and I is the identity tensor.
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θ

(a) (b)

Fig. 4. Test case used to illustrate the effect of thermal stresses: (a) The computational domain is a square plate with circular holes and the points

in the circle are rotated about its center by an angle θ; (b) Initial mesh consisting of 1031 high-order triangles (thicker outline) with interior points

shown (thin outline).

In the test case we rotate the circular hole by small angular steps to reach an angle θ and determine the maximum

angle θmax than can be reached before an element becomes invalid with J ≤ 0. The value of θmax as a function of β is

shown in Fig. 5(a). We also consider three polynomial orders P = 3, 6, 9 to demonstrate how thermal stresses affect

both high- and low-order element types.

The value β = 0 corresponds to the absence of thermal terms for which θmax ≈ 80◦ almost independently of

the polynomial order. The inclusion of thermal stresses clearly improves the performance of the mesh deformation

algorithm. It allows higher values of θmax for β > 0 and the best values for θmax are obtained in the approximate

range 20 ≤ β ≤ 25 with corresponding best values of maximum angle in the range 120◦ ≤ βmax ≤ 130◦ which is a

significant improvement with respect to the non-heated case. The deformed mesh and iso-contours of temperature for

θmax = 130◦ in the case where P = 6 are shown in Fig. 5(b).

To measure the effect of the isotropic temperature terms on the solution field, for each element we calculate the

scaled Jacobian

Js =
min J(ξ)

max J(ξ)
,

a straightforward measure of quality which is one for all straight sided elements. Whilst this measure of quality is

not necessarily ideal in all circumstances, for this application we note that values of Js which differ significantly from

one indicate badly conditioned elements. We measure the distribution of the scaled Jacobians in the mesh at a fixed

rotation angle of 75◦. Figure 6 shows the difference in distributions when no thermal stresses are used and when the

isotropic thermal stress is applied with β = 25 at P = 6. We clearly see that the thermal stress has a positive impact on

the quality of the elements, with the entire distribution shifting to the right and the lowest value of the scaled Jacobian

significantly increased, demonstrating a notable improvement in the quality of the elements at this rotation angle.

5.2. Anisotropic case

The thermal stress term proposed in this section is based on an eigenvalue decomposition of the metric tensor, G, of

the elemental mappingM. It is represented by a n× n matrix with n being the spatial dimension and can be expressed

as

G = VDV−1 (6)
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Fig. 5. Isotropic thermal stresses: (a) The maximum rotation angle θmax as a function of the scaling coefficient β for polynomial orders P = 3, 6, 9;

(b) Enlargement near the circular hole of the mesh and iso-contours of thermal stresses at θmax for P = 6.
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Fig. 6. Histograms showing the number of elements N with scaled Jacobian Js after a rotation of 75◦ at polynomial order P = 6 and β = 25. (a)

No temperature term; (b) with isotropic thermal stresses.

where V is the matrix of the eigenvectors of G and D is a diagonal matrix whose entries are the corresponding

eigenvalues. The eigenvalues of the metric tensor give a measure of distortion in the direction of its eigenvectors. We

take advantage of this property to construct the anisotropic thermal as

St = βJVD̂V−1 (7)

where D̂ is a diagonal matrix. Its entries are obtained by suitably scaling the eigenvalues of D to counteract the

elemental distortion generated by the displacement of the boundary.

Fig. 7 shows the maximum angle obtained for our test case for various values of β. The maximum angle is always

higher than in the non-thermal case (β = 0) and there is an optimal value of β ≈ 250 for all the polynomial orders
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(P = 3, 6, 8) leading to a best value θmax = 115◦. The value of θmax is more sensitive to the polynomial order than in

the isotropic case. The best value of θmax is slightly smaller than the one obtained in the previous case but leads to

smaller values of the gradient of thermal stresses as shown in Fig. 8.
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Fig. 7. The maximum rotation angle θmax shown as a function of the scaling coefficient β for the case of anisotropic thermal stresses and polynomial

orders P = 3, 6, 8.
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Fig. 8. Mesh and iso-contours of T = ∇ · S = (Tx, Ty) for the case of anisotropic thermal stresses corresponding to maximum allowable distortion

at θmax and P = 6: (a) Tx ; (b) Ty.

6. Conclusions

We have shown that incorporating thermal stresses which depend on quantities representative of the distortion of

the element, such as the Jacobian and the metric tensor of the mapping, permits controlling the quality of high-order
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meshes generated by deforming a linear mesh through the displacement of its boundary nodes. A simple example of

a rotating circular hole on a square plate has illustrated that the proposed methodology allows for higher distortions

than the one based on elastic stresses only. This work is a two-dimensional proof-of-concept that is amenable to

straightforward extension to three-dimensional problems. Further control on the mesh quality can be achieved by the

implementation of more sophisticated measures of high-order mesh quality that are less sensitive to the shape of the

reference element.
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