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Abstract

When fluid flows through a channel, pipe or duct, there are two basic forms of motion:
smooth laminar flow and disordered turbulent motion. The transition between these two
states is a fundamental and open problem which has been studied for over 125 years. What
has received far less attention are the intermittent dynamics which possess qualities of
both turbulent and laminar regimes. The purpose of this thesis is therefore to investigate
large-scale intermittent states through extensive numerical simulations in the hopes of further
understanding the transition to turbulence in pipe flow.

We begin by reviewing the spectral-element code Semtex which is used to perform the
simulations. We discuss modifications to this code to impose a constant flowrate to the flow
through a pipe and to improve the computational efficiency on certain multicore architectures.
We then move on to examine the reverse transition from turbulence to laminar flow in a long,
125 diameter periodic pipe, which unlike the forward transition does not depend on finite-
amplitude perturbations to the flow and thus captures the natural dynamics contained within
the transition. The Reynolds number Re is reduced from Re D 2;800 to Re D 2;250 over
a long timescale, and by investigating the resultant spatio-temporal dynamics we discover
that the transition can be characterised by three fundamentally different states separated by
two Reynolds numbers. Below Rec . 2;300, turbulence takes the form of equilibrium puffs
which eventually decay. Above Rei ⇡ 2;600, flow remains uniformly turbulent throughout
the domain. Between these two values, the dynamics are an intermitent mixture of both
turbulent and laminar regimes which take the form of unsteady alternating laminar-turbulent
bands.

Finally, we concentrate on finding a more exact value for Rec , which marks the onset
of sustained turbulence in pipe flow. We examine the process through which isolated
turbulent puffs split and find that, like decay, this process is stochastic and memoryless.
By drawing comparisons with other simple stochastically driven systems – in particular,
directed percolation – we compare the timescales for decay and splitting, and ascertain that
Rec D 2;040˙ 10.
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Chapter 1

Introduction

Fluid flows play an important role in a wide range of problems in science and engineering,

be it in hugely complex atmospheric dynamics with vast numbers of degrees of freedom,

the analysis of blood flowing through veins and capilliaries or using mixing properties

to design efficient heat exchangers. The motion of a fluid is inherently complex, and in

many cases appears random, which makes it both hard to predict and difficult to analyse.

Understanding these dynamics has proven to be one of the most important and exhaustively

studied problems in mathematics, physics and engineering, spanning more than two centuries

of detailed investigation. Of all of the countless scenarios in which we can study fluid flow,

in this thesis we consider one of the simplest, oldest and most puzzling – the flow of a fluid

through a straight, cylindrical pipe.

In general, we may classify a fluid flow into three distinct states. In laminar flows, motion is

smooth and regular, and often has symmetry in simple geometries. In turbulent flows, the

fluid exhibits highly irregular and unpredictable motion which is usually characterised by

the interaction of unsteady vortices over a wide variety of length scales. Figure 1.1 demon-

strates the striking difference between these two states in pipe flow. One of the classical

fluid dynamics problems is to understand precisely how and why turbulence arises from

laminar behaviour. Key to this problem is the third type of flow, usually called intermittent

or transitional, which describes fluids possessing characteristics of both laminar and tur-

bulent regimes. Whilst fully laminar and turbulent flows have a rich research background,

intermittent flows have, for the most part, received far less attention.
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Figure 1.1: Contours of the streamwise velocity through circular cross-sections of a pipe.
The left-hand image depicts a laminar flow in which the fluid is steady and unchanging in
time. This contrasts with the right-hand image, which is a snapshot of a highly fluctutating
turbulent flow at Re D 3;000.

The transitional dynamics of pipe flow were first investigated in the pioneering work of

Reynolds (1883a),b which demonstrated the existence of a relationship between the onset of

turbulence and a dimensionless parameter, known today as the ubiquitous Reynolds number

Re D UD

⌫
:

Here D is the diameter of the pipe, ⌫ is the fluid’s kinematic viscosity and U is the mean

(bulk) velocity of the flow. At low Re, the viscous effects of the fluid outweigh the inertial

forces, causing disturbances to decay and the flow to revert to a laminar state. As Re

increases, the balance of inertial and viscous forces changes so that a perturbation applied to

the fluid grows in strength and eventually gives rise to a turbulent flow. This concept also

translates to a number of other geometries, such as the flow between two solid planes or

over a backwards-facing step, and as such the Reynolds number forms a key concept in fluid

dynamics.

Curiously however, after being investigated for over 125 years, the question of a finding a

critical Re below which turbulence cannot be sustained in a pipe is still an open problem.

The main objective of this thesis then is to further investigate pipe flow in the hopes of

clarifying this elusive critical Re.
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1.1 Existing studies

Pipe flow, and fluid flow in general, has proven to be very resilient to mathematical analysis.

Assuming the fluid is Newtonian and incompressible, the flow is governed by the Navier-

Stokes equations

@u

@t
C .u � r/u D �rp C ⌫r2

u; (1.1)

r � u D 0; (1.2)

where u is the fluid velocity and p is the pressure field. One of the simplest mathematical

tasks is to determine whether, given a smooth initial condition, this partial differential

equation (PDE) has a smooth solution for all times t > 0. The difficulty of this problem

is particularly emphasised by the fact that it remains one of the six unsolved Clay Institute

Millennium challenges, for which a solution commands a one-million dollar reward.

In pipe flow, the simplest analytic solution one may examine is that of laminar flow, seen

in figure 1.1, which may be derived exactly from equation (1.1) (see section 3.1.2). A

common mathematical technique for determining bifurcations in non-linear systems of

PDEs which depend upon a parameter is to consider infinitesimal perturbations of a known

solution and linearise the resulting equations of motion. However, even this relatively

straight-forward approach has yielded few analytic results. Joseph & Carmi (1969) showed

that any disturbance introduced to the fluid for Re < 81:49 decays to the laminar profile.

Most evidence suggests that, in fact, laminar flow is stable to these perturbations at any Re.

Whilst this has not been proven, Meseguer & Trefethen (2003) demonstrated this through

direct numerical simulations (DNS) of the linearised Navier-Stokes equations and observed

stability as high as Re D 107. There are also a number of proofs in cases where restrictions

on the type of perturbation are applied. For example, as stated by Crowder & Dalton (1971),

the hydrodynamic stability of laminar flow subject to axisymmetric perturbations may be

traced back to Sexl (1927), and some sixty years later stability under these conditions at any

Re was proven by Herron (1991).

Despite the mathematical evidence suggesting laminar flow is quite resilient to perturbation,

in the setting of a laboratory controlling the onset of turbulence has proven to be difficult.

Reynolds was originally able to maintain laminar flow up to an impressive Re ⇡ 12;000
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and later Pfenniger (1961) demonstrated laminar flow up to Re D 105. However, the pipe

must be properly isolated from outside vibration and temperature fluctuations to achieve

laminar flow at such high Reynolds numbers. The shape of the inlet must also be very

carefully designed to avoid unnecessary perturbation of the flow. Given a pipe capable of

sustaining laminar flow, the original idea behind Reynolds’ work is the concept of a critical

Reynolds number, Rec , below which perturbations that are deliberately introduced to the

flow eventually decay and turbulence cannot be sustained.

Most studies of turbulence expand on this concept by introducing finite-amplitude pertur-

bations to the fluid, and observing how the flow evolves over time at different values of Re.

Upon introduction of the perturbation, one may observe two outcomes: the flow may either

transition to turbulence, or instantly revert to a laminar state. The regime that is observed

depends on the amplitude of the perturbation, and the critical threshold needed to trigger

transition obeys a power law as a function of Re (Darbyshire & Mullin, 1995, Hof et al.,

2003, Peixinho & Mullin, 2007). However, the amplitude of the perturbation alone does

not govern Rec . Assuming that the perturbation is sufficiently strong, Reynolds’ original

experiments noted that around the transition point one typically observes isolated turbulent

‘flashes’ which grow and split to contaminate the downstream flow, and are separated by

regions of laminar flow. Wygnanski & Champagne (1973) demonstrated that these flashes can

be classified into two separate structures, which they deemed puffs and slugs. Puffs consist

of a small pocket of turbulence which is embedded in the surrounding laminar flow, and are

found close to the suspected transition point at Re ⇡ 2;000. Slugs are the high-Re equivalent

found past Re & 2;700 which rapidly grow to fill the whole pipe and cause turbulence to

spread downstream of the perturbation. Understanding the transition to turbulence then

hinges on observing the dynamics of puffs (and to a lesser degree slugs) and determining the

mechanisms that govern their behaviour.

At lower Reynolds numbers puffs remain stable after the initial perturbation but eventually

dissipate. The key observation of Faisst & Eckhardt (2004) is that the lifetimes of puffs

are not dictated in a deterministic fashion. Instead, they are determined by exponentially

distributed random variables, with their mean lifetime scaling as a function of Re. Therefore,

if there exists some critical Reynolds number above which puffs have an infinite lifetime

then this would represent the onset of sustained turbulence in pipe flow. Precisely how the

mean lifetime scales has been a topic of great attention and has resulted in a wide variety
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Figure 1.2: Visualisations of turbulent and intermittent flow in a cross-section of an L D
25D pipe. Red indicates high values of the vorticity ! D r ⇥ u and blue low values.

of studies (Faisst & Eckhardt, 2004, Peixinho & Mullin, 2006, Hof et al., 2006, Willis &

Kerswell, 2007, Hof et al., 2008, de Lozar & Hof, 2009, Kuik et al., 2010). The most recent

statistical analysis of Avila et al. (2010) however, presents the strongest evidence yet that

puff lifetimes remains finite at any Re, and thus it is impossible to determine the critical

Reynolds number from considering the mean lifetime of puffs alone.

Another line of investigation which may aid in understanding the mechanism behind the onset

of turbulence has been the discovery of unstable coherent structures which are alternative to

that of the laminar profile. The work of Faisst & Eckhardt (2003) and Wedin & Kerswell

(2004) confirmed that travelling waves (TWs) – symmetric structures which move through

the pipe with constant wave speed – exist within the framework of pipe flow, and were

later shown to exist experimentally by Hof et al. (2004). Further studies including those

of Pringle & Kerswell (2007), Willis & Kerswell (2008), Willis & Kerswell (2009) and

Pringle et al. (2009) have greatly expanded the number of known TW solutions. From a

dynamical systems standpoint then, laminar flow is a globally stable solution below Rec , and

the perturbation of the fluid leads to a solution which wanders between the unstable solutions

in phase space before eventually returning to laminarity. Above Rec the flow undergoes a

transition so that laminar flow is only locally stable and turbulent solutions are composed of

a wide variety of TW solutions. However, since turbulent solutions only visit TWs around

10% of the time however (Kerswell & Tutty, 2007), alternative unstable solutions need to be

found in order to reveal more of the phase space dynamics.
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1.2 Spatio-temporal intermittency

The common theme throughout the majority of studies outlined in the previous section is

the forward transition from laminar flow to turbulence, where observations are not only

dependent on Re but on both the type of perturbation used to trigger transition and its

amplitude. However, intermittent states, such as those seen in the experiments of Rotta

(1956), have rich spatio-temporal behaviour which has for the most part not been investigated.

The difference between fully turbulent flow and intermittent states is highlighted in figure

1.2; the top pipe shows a simulation at Re D 3;000, where the flow is uniformly turbulent

and structure lengths are roughly uniform throughout the domain. At lower values of Re

(here 2;300), areas of laminarity begin to appear, with structures growing considerably in

size.

One line of research that is emerging in the investigation of critical Reynolds numbers is

the consideration of alternating turbulent-laminar bands depicted in figure 1.3 which form

within the flow. It has been established that in plane Couette flow (Prigent et al., 2002,

2003, Barkley & Tuckerman, 2005, 2007), counter-rotating Taylor-Couette flow (Prigent

et al., 2002, 2003), and plane Poiseuille flow (Tsukahara et al., 2005), near transition the

system can exhibit a remarkable phenomenon in which turbulent and laminar flow form

persistent alternating patterns on scales very long relative to both wall separation and the

spacing between turbulent streaks. While the origin of these patterns remains a mystery,

they are intimately connected with the lower limit of turbulence in shear flows. Key to the

investigation of these states is the consideration of the spatio-temporal aspects of the flow.

Investigating these states in pipe flow is a more challenging endeavour, mostly due to the

strong advection of fluid down the length of the pipe.

The fundamentally different approach taken in this thesis then is to investigate the intermittent

dynamics found in the reverse transition from turbulent to laminar flow, as opposed to most

previous work which has focused on the forward transition problem. In doing this, we hope

to observe the formation of turbulent-laminar bands, and examine how these bands evolve

over time in order to determine their role in the transition process.

Whilst other experiments, for example Narasimha & Sreenivasan (1979), have investigated

this relaminarisation process, the method used to reduce the Reynolds number usually
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Figure 1.3: Laminar-turbulent bands in experiments of Couette flow at Re D 358, taken
from Prigent et al. (2003).

involves a sharp expansion in the channel or pipe causing the flow to abruptly transition. This

differs significantly from the approach we take here, in which Re is slowly and deliberately

reduced over a long timescale in order to carefully examine the structures which form within

the flow. Indeed, for the most part we are not interested in the full relaminarisation of the

fluid, but in the states just before the transition. To replicate this process in an experimental

setting demands pipes of many thousands of diameters in length, and also the ability to

observe the velocity and pressure fields throughout the length of the pipe.

To overcome these limitations, we shall focus on performing a series of detailed computa-

tional experiments of pipe flow. Eggels et al. (1994) performed the fully-resolved turbulence

computations in a pipe of length L D 5D. Later work by Shan et al. (1999) used a spectral

element code to simulate puffs and slugs and expanded these domains to a much larger

L D 16⇡D; however the computations here suffer from under-resolution in the axial di-

rection, especially in the simulation of slugs at Re D 5;000. Only in the last decade has

computing technology advanced to the point where, for example, puffs and slugs can be

faithfully represented. Faisst & Eckhardt (2004) examined decay in a pipe of length L D 5D
with better resolution, but too short to fully encompass a single puff. More recently however,

Willis & Kerswell (2007), Pringle & Kerswell (2007) and Willis & Kerswell (2008) employed

the use of an efficient hybrid finite-difference–spectral solver in domains of up to length

L D 50D and are the first examples of fully-resolved simulations in domains large enough

to contain puffs. Given that the main focus of this work is on examining the spatio-temporal

properties of the flow, larger domains are required in order to observe the interactions of any

smaller structures (such as puffs) within the pipe. We will therefore employ the use of much

longer pipes of up to L D 125D, and in some shorter simulations up to L D 200D.
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1.3 Outline

In chapter 2 we introduce the numerical techniques which will be used to perform the DNS of

pipe flow. We begin by studying spectral-type methods, which describe a class of algorithms

possessing exponential convergence of approximations to solutions of a PDE. The main goal

of this chapter is to introduce the spectral element method, which combines the geometric

flexibility of a finite element method with spectral-type accuracy. To motivate this, we show

the implementation of the method for the one-dimensional diffusion equation. Finally, a

number of high-order splitting schemes for the evolution of the Navier-Stokes equations are

introduced, along with a discussion of the high-order pressure boundary condition which is

needed to make these methods numerically stable.

Chapter 3 introduces the mathematical framework in which pipe flow is studied and the

laminar equations of motion are derived. Following this, two numerical techniques useful

for the study of pipe flow are outlined. The first is an algorithm which allows the flow

to be driven by specifying a constant volumetric flux. This is particularly applicable in

transitional flow problems as it prevents deviations in the mean flow U and thus fixes Re.

An efficient Green’s function method is derived as a part of the mathematical formulation,

meaning that unlike other methods the flowrate can be imposed exactly at each timestep.

We then introduce Semtex, the code which is used in later chapters to perform pipe flow

simulations, and show how this flux condition can be implemented. Finally, we outline the

second numerical method which provides optimisation for the parallelisation of Semtex in

the case where the underlying system architecture makes use of massively multi-core nodes.

These numerical techniques are then used extensively throughout chapter 4. The chapter

begins with a resolution study, in which a number of simulations are performed in order to

determine the size of small-scale structures found in turbulent flows, and thus ensure that the

numerical domain is correctly resolved. We then continue with a series of simulations which

focus on studying the reverse transition problem. Initially, a large-scale simulation in both

space and time is performed, and the resulting spatio-temporal intermittency is examined.

After observing the various states in this transition, we then proceed with three further studies,

each of which is designed to highlight the various intermittent aspects of the flow and classify

the various states found during transition.
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Chapter 5 focuses on puffs and the role that they play in the transition process. Whilst the

precise distribution of puff lifetimes has remained a contentious issue for a number of years,

recently it was conclusively shown that the lifetime of a puff remains finite for all Re (Avila

et al., 2010), perhaps suggesting that all turbulence in a pipe is transient. Crucially however,

the decay process neglects much of the spatial complexity found in chapter 4. In chapter 5,

we focus on the opposite process known as puff splitting, in which a new puff is nucleated

downstream of an existing puff. This phenomenon naturally incorporates the complex spatial

interaction seen in the previous chapter and throughout much of the existing literature. We

show that this process is also stochastic, and obeys a similar distribution to that of decay.

Using this knowledge, we are able to draw upon conclusions found in a number of similar

stochastically complex systems such as directed bond percolation, and from this obtain a

critical Re denoting the phase transition from states dominated by decay to those where

splitting becomes more probable.

9



Chapter 2

Computational Techniques

The investigation of many interesting physical systems usually leads to a mathematical repre-

sentation involving a non-linear dynamical system, often in the form of a partial differential

equation. In almost every case, it is impossible to explicitly derive non-trivial solutions to

these systems, and so the development of techniques which allow us to approximate solutions

is of great significance to both mathematicians and others in the physical sciences. Typically,

these approximations involve the use of complex algorithms, and so we turn to computers in

order to implement them through numerical means.

With fluid flows being amongst the most throughly examined non-linear systems, there are a

vast array of numerical methods which can be used to approximate flow fields. Notably, the

emphasis throughout this thesis is on obtaining solutions through direct numerical simulation;

i.e. the direct integration of the partial differential equations governing the flow, at a scale

which accurately reproduces all of the key features contained within it. The goal of this

chapter is to outline a small number of these numerical methods. In the next chapter, we

describe how these methods can be used in the setting of pipe flow.

We begin with a study of the method of weighted residuals, a generic framework which

allows us to employ a wide variety of methods in order to computationally solve problems.

In particular, we focus on spectral methods, which are generally known for their excellent

convergence properties and accurate solutions. We study these methods in two different

contexts: collocation methods rely on a fixed discretisation of the spatial domain, whereas

Galerkin methods transform the PDE into a finite-dimensional functional analysis problem
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without relying on explicit knowledge of the domain.

The bulk of this chapter concentrates on examining finite element methods, which are

typically used to study problems defined in complex geometries. The inspiration behind

this technique is to break the domain up into disjoint elements on which the equation can

be more readily solved, and then recombine the contribution of each to produce the global

solution according to certain constraints on elemental boundaries. In particular, we focus on

the spectral/hp element method, which combines spectral-type accuracy with the geometric

flexibility of finite elements, and is the method comprising the vast majority of the numerical

results in later chapters. To demonstrate this scheme, we introduce the concepts necessary to

formulate a one-dimensional implementation and use this to numerically solve the diffusion

equation.

Finally, having made an overview of the schemes which are generally used in the spatial

discretisation, we introduce a variety of timestepping schemes. Given the high-order spatial

accuracy afforded by the discretisations mentioned above, we discuss the possible algorithms

which can be employed to increase the accuracy of approximate flow fields as the equations

of motion are integrated over time.

2.1 Method of Weighted Residuals

The basis of any spectral method relies heavily on the method of weighted residuals. It is

well known that periodic functions on Œ0; 2⇡ç which belong to the set

L1.Œ0; 2⇡ç/ D
≤
f W Œ0; 2⇡ç! R

ˇ̌
ˇ̌
Z 2⇡

0

jf .x/j dx <1
≥

can be written in terms of summations of infinitely many orthogonal functions – for example,

in Fourier analysis, functions are represented in terms of trigonometric functions. In terms

of numerical analysis, the basis of a spectral method is to use a truncated series containing

finitely many functions in order to obtain an approximation to the function.

Consider a time-dependent linear differential equation over a domain � given by

L.u/ D 0; (2.1)
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and assume that the function can be accurately approximated by a partial expansion uı in

terms of modes �k:

u.x; t / ⇡ uı.x; t / D
N�1X

kD0

Ouk.t/�k.x/: (2.2)

In general, an approximation of u by finitely many modes will not be exact, so we expect to

find some difference between u and uı . Substituting (2.2) into (2.1), we therefore obtain a

non-zero function R known as the residual which is dependent upon uı ,

L.uı/ D R.uı/:

In the approximation (2.2), there is no distinct way of choosing the weights Ouk . However,

by placing restrictions on the form of the residual, we can reduce the problem to solving a

system of ordinary differential equations in terms of Ouk . The choice of restriction we use

leads to a variety of different numerical schemes. First however, we need a definition in

order to define the notion of orthogonality.

Definition 2.1.1 (L2 inner product). The L2 inner product .�; �/L2

for functions f; g W
�! C is defined as

.f; g/L2

D
Z

�

f .x/g.x/ dx

where z denotes the complex conjugate of z 2 C.

One way to restrict the residual is through use of test functions vj .x/ which are orthogonal

to R under .�; �/L2

;

.vj ; R/L2

D 0; j D 0; : : : ; N: (2.3)

Two of the most popular choices for the test functions produce the collocation and Galerkin

methods. Both have different convergence properties, but in general we expect that when

coupled with a spectral-type modal expansion, each will exhibit exponential convergence

of the error. The low errors found in these methods are particularly important in accurately

reproducing the dynamics of systems which are sensitive to small perturbations.
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2.1.1 Collocation Formulation

For the collocation method, we choose the test function to be a Dirac delta function vj .x/ D
ı.x�xj /, where the xj 2 � are a set of points known as the collocation points. Substituting

this into (2.3), we obtain Z

�

R.x/ı.x � xj / dx D 0

and so by definition, R.xj / D 0. The differential equation is therefore satisfied exactly at

each collocation point xj .

Depending on the choice of modal functions, there are various subclasses of collocation

methods. Typically, one chooses amongst common orthogonal bases depending upon the

type of boundary conditions to be applied on the domain. In this thesis, we will concentrate

on using collocation methods with periodic boundary conditions, on the interval � D Œ0; Lç.

Under these conditions, the predominant choice of modal function is formed from trigonomet-

ric basis functions, in which case we obtain the Fourier collocation method. � is discretised

into a uniform grid of N C 1 points xj D jL=N; j 2 π0; : : : ; N º, and modes are taken to

be �k.x/ D eiˇ
k

x where ˇk D 2⇡k=N . These functions form an orthogonal set, since

N�1X

jD0

eiˇ
k

j eiˇ
l

j D Nıkl D
´
0; k ¤ l;
N; k D l:

Assuming N is even, rewriting (2.2) in the form

Uj .t/ WD uı.xj ; t / D
N=2X

kD�N=2C1

Ouk.t/e
iˇ

k

j ;

and using the orthogonality relation, we can determine the weights Ouk via the discrete Fourier

transform (DFT)

Ouk D 1

N

N�1X

jD0

Uj .t/e
iˇ

k

j

The DFT is the obvious analogue of the continuous transform,

Of .k/ D
Z

R
f .x/e�ikx dx
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which itself is useful for solving PDEs analytically, mostly due to the transform of a differen-

tial operator:

bdf
dx
.k/ D

Z

R
f 0.x/eikx dx D ik

Z

R
f .x/e�ikx dx D ik Of .k/

In the discrete case, a similar identity holds:

@uı

@x

ˇ̌
ˇ̌
ˇ
xDx

j

D
�
@

@x

N=2X

kD�N=2C1

Ouk.t/e
ikx

�

xDx
j

D
N=2X

kD�N=2C1

ik Ouk.t/e
iˇ

k

j

so differentiation in spectral space is equivalent to multiplying each mode Ouk by ik. Notice

that the Fourier modes are periodic, since

OukCN D
N�1X

jD0

Uj e
iˇ

kCN

j D
N�1X

jD0

Uj e
iˇ

k

j e2⇡ki D
N�1X

jD0

Uj e
iˇ

k

j D Ouk :

This property therefore requires the approxmiation uı to also be periodic. Also, in the case

where the data points Uj are real, we may exploit additional Hermitian symmetry so that we

need only calculate Ouk for k > 0:

Ouk D
N�1X

jD0

Uj eiˇ
k

j D
N�1X

jD0

Uj eiˇ
k

j D
N�1X

jD0

Uj e
�iˇ

k

j D
N�1X

jD0

Uj e
iˇ�k

j D Ou�k :

2.1.1.1 Non-linear Problems

Whilst the Fourier collocation method is extremely practical for linear problems, it be-

comes far less efficient when dealing with non-linear operators. For example, the spectral

discretisation of the non-linear term

u
@u

@x

results in an N ⇥N matrix in general, and is therefore not practical to use when combined

with an implicit timestepping scheme (see section 2.3) which requires inversion of the

operator. An easy way around this problem is to maintain a physical grid in addition to an

expansion in terms of modes. We then evaluate linear terms spectrally for optimal accuracy,

and then transform the solution to physical space where the non-linear multiplication is
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performed.

Whilst in theory this procedure is more efficient, this process can only be considered if the

transform technique is sufficiently quick to avoid the computational overheads. In addition,

the multiplication in physical space leads to the appearence of aliasing errors in the solution.

However, for a basis of Fourier functions in one dimension, both of these problems are easily

overcome with use of the Fast Fourier Transform (FFT) and the classical 3/2 rule to dealias

solutions (Canuto et al., 1988).

This problem is investigated in further detail in section 3.3, where we consider a joint

discretisation in which a three-dimensional domain is decomposed using the Fourier pseudo-

spectral method in a single dimension and a spectral element scheme used in the remaining

two. For large-scale problems requiring parallelisation, it is relatively easy in terms of

implementation to decompose the domain over the Fourier modes. However, the transform

between spectral and physical space commands large communication overheads, and thus

we examine ways in which the transform can be optimised in the case where the underlying

architecture comprises massively multi-core machines.

2.1.2 Galerkin Formulation

We motivate the study of Galerkin schemes by considering an example of the one-dimensional

Poisson equation on the interval � D Œ0; 1ç, where L D @2
xx C g, giving the equation

@2u

@x2
C g.x/ D 0 (2.4)

In order for this for the problem to be well-posed and thus have a unique solution, we must

impose boundary conditions. We consider both Dirichlet and Neumann boundary conditions

for this problem to show how both types are implemented in a Galerkin setting, so that

u.0/ D gD;
@u

@x
.1/ D gN (2.5)

where gD and gN are constants. With both equations (2.4) and (2.5), the problem is said

to be in strong form. The first step in the Galerkin formulation is to multiply (2.4) by an
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arbitrary test function v.x/ and integrate, giving the integral equation

.v;L.u//L2

D
Z 1

0

v

✓
@2u

@x2
C g

◆
dx D 0: (2.6)

Assuming u and v are sufficiently smooth, we may then integrate by parts to obtain

Z 1

0

@v

@x

@u

@x
dx

„ ƒ‚ …
a.u;v/

D
Z 1

0

vf dx C

v
@u

@x

�1

0

D
Z 1

0

vf dx C v.1/gN

„ ƒ‚ …
f .v/

�v.0/@u
@x
.0/:

We make the further assumption that g.x/ and thus f is well behaved in the sense that f .v/

remains finite. Therefore we restrict the choice of solutions u to those lying in a trial space

X , where

X D πu j u; u0 2 L2.�/; u.0/ D gDº:

The space of possible test functions V is defined similarly, so that

V D πv j v; v0 2 L2.�/; v.0/ D 0º:

With these choices, the problem is now said to be in weak form, and the weak solution to the

original equation translates to the problem of finding u 2 X such that

a.u; v/ D f .v/; 8 v 2 V:

This problem is still infinite dimensional, and therefore not solvable through computational

means. To overcome this, we take finite-dimensional subsets of X and V , denoted by Xı

and V ı respectively. The problem then becomes to find uı 2 Xı such that

a.uı ; vı/ D f .vı/; 8 vı 2 V ı :

Whilst this scheme naturally incorporates the Neumann boundary conditions, it does not

enforce any Dirichlet conditions. To this, we decompse the approximate solution uı into a
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homogeneous part uH 2 V ı and a known component uD 2 Xı so that

uı D uH C uD

where uH .0/ D 0 and uD.0/ D gD . This completes the classical Galerkin formulation,

under which we choose the test space and trial space to be the same. Assuming certain

properties of a, one can now apply the Lax-Milgram theorem (Lax & Milgram, 1954) to

guarantee solutions to the problem.

2.2 Spectral/hp Element Methods

Either of the collocation or Galerkin methods defined above, when coupled with sensible

choices of modes such as the Fourier scheme seen earlier, form extremely accurate numerical

methods. They provide an ideal method for use in simple geometries in which uniform grids

are easily applied. However, expanding this method to more complex domains generally

requires the use of a non-uniform grid, greatly increasing the complexity of implementation

and precluding the use of optimised algorithms such as the Fourier transform. Finite

element methods comprise a class of algorithms which are designed to deal with awkward

geometries by partitioning the domain into elements on which the solution can be more

easily approximated. This partitioning scheme naturally allows us to resolve parts of the

domain in greater detail by making their size smaller (h-refinement).

Finite element methods are in essence no different than the weighted residuals considered

earlier. However, the choice of modal functions is now far more complex. Generally,

when restricted to each element, these functions will be some polynomial of order P ,

which can be increased in order to improve accuracy (p-refinement). Typically a finite

element method uses piecewise linear functions (i.e. P D 1) which greatly simplifies the

mathematical formulation and is efficient to implement. The spectral/hp element method is a

specialisation of the finite element method, and introduces a number of techniques leading

to a more efficient implementation when high-order polynomials are employed. Their aim

is to combine the accuracy found in spectral methods with the geometric flexibility of the

general finite element method. In this section, we present a small selection of material from

Karniadakis & Sherwin (2005), which provides a fully comprehensive guide to implementing
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spectral/hp element methods in the setting of computational fluid mechanics.

2.2.1 Diffusion Equation

To motivate the study of spectral element methods, let us consider the one-dimensional

diffusion equation with Neumann boundary conditions on the interval � D Œa; bç;

@u

@t
D ˛@

2u

@x2
in �

ux.a; t/ D ga; ux.b; t/ D gb on @�

u.x; 0/ D u0.x/ initial condition

The first step in the formulation of this problem is to construct the weak form of the problem,

and as with the Helmholtz equation (2.4), the weak form is used to construct a Galerkin

scheme. Multiplying by a test function v and integrating over the domain, we obtain

Z b

a

v
@u

@t
dx D �˛

Z b

a

@u

@x

@v

@x
dx C ˛


v
@u

@x

�xDb

xDa

(2.7)

D �˛
Z b

a

@u

@x

@v

@x
dx C ˛ Œv.b/gb � v.a/gaç : (2.8)

As before, we take approximations vı and uı to the test function and u respectively. Since

these lie in the same function space, we take series expansions of both with respect to the

same modes, so that

uı.x; t/ D
N�1X

kD0

Ouk.t/ˆk.x/; (2.9)

vı.x/ D
N�1X

kD0

Ovkˆk.x/: (2.10)

In this setting, the modes ˆk.x/ are referred to as the global modes and will be complicated.

Indeed, for the most part they can remain unknown, and we shall see in the following section

that we can instead define modes which are local to each element and can be used to implictly

construct the global modes as a part of the formulation.
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Substituting these approximations into (2.8) we obtain the expression

Z b

a

✓N�1X

iD0

Oviˆi

◆✓N�1X

jD0

d Ouj

dt ĵ

◆
dx D �˛

Z b

a

✓N�1X

iD0

Ovi
dˆi

dx

◆✓N�1X

jD0

Ouj
d ĵ

dx

◆
dx

C ˛ Œ OvN�1ˆN�1.b/gb � Ov0ˆ0.a/gaç : (2.11)

Notice that in this derivation we have assumed that all global modes are zero at each endpoint

of �, apart from ˆ0 which is non-zero at a, and ˆN�1 which is non-zero at b. This

restriction allows us to simplify the problem, and is also useful in the implementation of

Dirichlet boundary conditions, should they arise.

The left hand side of (2.11) then simplifies to

Z b

a

N�1X

iD0

N�1X

jD0

Ovi
d Ouj

dt
ˆi .x/ ĵ .x/ dx D

N�1X

iD0

Ovi

2

4
N�1X

jD0

d Ouj

dt

Z b

a

ˆi .x/ ĵ .x/ dx

3

5 : (2.12)

This can be re-written in matrix-vector form by defining an N ⇥N matrix M and vectors

Oug , Ovg by

Mij D
Z b

a

ˆi .x/ ĵ .x/ dx; Oug D . Ou0.t/; : : : ; OuN�1.t//
>; Ovg D . Ov0; : : : ; OvN�1/

>:

The subscript g denotes that these coefficients relate to the global modes. By defining a

matrix L and vector B by

Lij D
Z b

a

dˆi

dx
d ĵ

dx
dx; B D .�ga; 0; : : : ; 0; gb/

>;

and substituting these definitions into equation (2.11) we obtain the system of ordinary

differential equations (ODEs) given by

Ov>g


M
d Oug

dt
D �˛L Oug C ˛B

�
)M

d Oug

dt
D �˛L Oug C ˛B:

A consequence of this is that we never need calculate the coefficients of the unknown test

function. The matrices M and L are extremely common in finite and spectral element

methods and as such are named.
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Definition 2.2.1 (Mass and stiffness matrices). The matrix M is called the mass matrix,

and the matrix L is called the Laplacian or stiffness matrix.

This equation gives us the problem in semi-discrete form, with a continuous derivative in

time. To complete the discretisation, we require the use of a time-stepping scheme. To avoid

constraints on the timestep Åt , we apply the implicit Euler scheme outlined in section 2.3.

As a shorthand notation, let u

n denote the solution field at time tn D nÅt . Then,

M
OunC1

g � Oun
g

Åt
D �˛L OunC1

g C ˛B ) .MC ˛ÅtL/ OunC1
g DM Oun

g C ˛ÅtB

In essence then, this is a difference equation; given the initial condition Oun
g , inverting the

matrix problem will then give us the solution for the global modes at time tnC1, OunC1
g .

However to start this timestepping process, we need to interpolate the initial condition u0.x/

in order to obtain coefficients . Ou0/k such that

u0.x/ ⇡ uı
0.x/ D

N�1X

kD0

. Ou0/kˆk.x/: (2.13)

This can be achieved by several distinct methods; in this setting however, the most intuitive

approach is Galerkin projection, which is performed in a very similar fashion to the original

Galerkin formulation. In an infinite dimensional setting, for each v 2 V , we wish to find

u 2 U such that

.u; v/L2

D .u0; v/L2

()
Z b

a

u.x/v.x/ dx D
Z b

a

u0.x/v.x/ dx:

If we again follow a similar process by taking finite series approximations to u and v and

substituting (2.10) and (2.13) into the above equation, we obtain

M Ou0
g D O

f

where Of i D
R b

a u0.x/ˆi .x/ dx. Inverting this matrix problem then gives us the transformed

modes required to start the timestepping process. This is also one of the most computationally

efficient ways to solve this problem.

Finally we require the inverse of this transformation, so that at the end of the simulation the
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field can be obtained in physical space. Let us assume we desire the field at some final time

T DMÅt . Then

u.x; T / ⇡ uı.x; T / D
N�1X

kD0

Ouk.T /ˆk.x/:

The entire process then, is:

u

0
Galerkin projection������������! Ou0

timestep�����! Ou1 timestep�����! � � � timestep�����! OuM reconstruct������! u

M :

2.2.2 Constructing local modes

Thus far, we have only considered a general Galerkin formulation of the diffusion equation

in terms of global modes ˆk . In an elemental method, it is far more natural to work locally

on each element, and then perform a global assembly. This has the distinct advantage that

the global modes never need to be explicitly constructed. This section describes the process

of decomposing the domain into a mesh and choosing basis functions which are local to each

element. Finally we show how integration can be performed locally, and then assembled to

produce global quantities.

In the general n-dimensional formulation, the first step is to decompose the domain � into

elements; that is, we find sets �e with 1 6 e 6 Nel and interior int� such that they partition

� and only meet along their boundary;

� D
Nel[

eD1

�e and int�i \ int�j D ;; i ¤ j:

Definition 2.2.2 (Mesh). The collection of sets π�eº is referred to as a mesh of �.

In one dimension where � D Œa; bç, the only choice for a mesh is the collection of intervals

�e D Œxe; xeC1ç where a D x0 < x1 < � � � < xNel D b. Given this mesh, we rewrite the

expansion (2.9) in the form

uı.x; t/ D
NelX

eD1

PX

pD0

Oue
p.t/�

e
p.x/

where �e
p W �e ! R is a local mode, and Oue

p is its related local coefficient. Our goal then is
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Ou3

ˆ3.x/

Ou2

ˆ2.x/

Ou1

ˆ1.x/

Ou0

ˆ0.x/

�1 �2 �3x0 x1 x2 x3

Oue
1

�st

Oue
0

�1 1

�1 �2 �3

�0.x/

�1.x/

Figure 2.1: Global and local expansion bases ˆk and �k for a three-element finite element
expansion. �e is the linear projection mapping the standard element �st to �e.

to somehow relate the local coefficients Oue
p to the global coefficients Ouk . Typically there will

be more local coefficients than global, and hence we need additional restrictions in order to

make the problem uniquely solvable.

Before considering this problem however, note that it is unnecessary to define a set of

elemental basis functions �e
p on each element. Whilst technically possible, it introduces

a number of additional computational overheads into the formulation. Instead, we exploit

the simple elemental geometry to define a single set of local modes �p W �st ! R on the

standard element �st D π⇠ j � 1 6 ⇠ 6 1º, and define a bijective mapping �e W �st ! �e

projecting �st onto �e. Local elemental modes can then be defined by the composite

function �e
p D �p ı Œ�eç�1. In the rest of this chapter, ⇠ denotes a location inside the standard

element.

As a demonstration of this local-to-global mapping, let us consider a finite element problem
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in one dimension where the polynomial order P D 1. Let x0 < x1 < x2 < x3 and

� D Œx0; x3ç D S3
eD1�

e with �e D Œxe�1; xeç. The typical global basis functions for a

finite element method with Nel D 3 are shown in figure 2.1, and are given by

ˆ0.x/ D
8
<

:

x � x1

x0 � x1
; x 2 �1

0; x … �1
ˆ1.x/ D

8
ˆ̂̂
<̂

ˆ̂̂
:̂

x � x0

x1 � x0
; x 2 �1

x � x1

x1 � x2
; x 2 �2

0; otherwise

ˆ2.x/ D

8
ˆ̂̂
<̂

ˆ̂̂
:̂

x � x1

x2 � x1
; x 2 �2

x � x2

x2 � x3
; x 2 �3

0; otherwise

ˆ3.x/ D
8
<

:

x � x3

x2 � x3
; x 2 �3

0; x … �1:

Each global mode is taken to be one at a single element boundary xi and decays to zero

linearly across neighbouring elements. In this case then, there are precisely four global

degrees of freedom – that is, N D 4 in (2.9). Locally on each element however, by defining

the local basis functions

�0.⇠/ D 1 � ⇠
2

; �1.⇠/ D 1C ⇠
2

on �st, with associated projection functions

�e.⇠/ D 1 � ⇠
2

xe�1 C 1C ⇠
2

xe;

we see that each global mode can be written in terms of local modes. For example, for ˆ0:

ˆ0.x/ D
´
�0.⇠/ D �0.Œ�

eç�1.x//; x 2 �1;

0; otherwise:

Locally to each element we have two coefficients, leading to a total of six elemental degrees

of freedom. To uniquely determine the local coefficients in terms of the global ones (and

vice-versa), we need to impose further conditions on the local modes. Ultimately this

choice depends on the problem we are modelling, but in general we require that ˆk remains

continuous. The natural condition Ou1
1 D Ou2

0 and Ou2
1 D Ou3

0 ensures that this will always be the

case, and guarantees that global and local coefficients match on a one-to-one basis.
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For the more general one-dimensional problem, we define the two column vectors Oug and Oul

denoting global and local coefficients respectively:

Oug D

˙ Ou0

Ou1
:::

OuN�1

⌥

; Oul D

˙ Ou1

Ou2

:::

OuNel

⌥

where u

e D . Oue
0; : : : ; Oue

P /
> is the list of all local coefficients for element �e. Then Oug and

Oul can be related by the assembly matrix A of size .P C 1/Nel ⇥N so that

Oul D A Oug :

In the finite element setting of figure 2.1, this system becomes
0

BBBBBBB@

Ou1
0

Ou1
1

Ou2
0

Ou2
1

Ou3
0

Ou3
1

1

CCCCCCCA

D

0

BBBBBB@

1 0 0 0

0 1 0 0

0 1 0 0

0 0 1 0

0 0 1 0

0 0 0 1

1

CCCCCCA

0

BB@

Ou0

Ou1

Ou2

Ou3

1

CCA

Notice that the reverse operation of obtaining the global from local coefficients can also be

performed by using the transpose of the assembly matrix, so that

Oug D A> Oul :

The assembly matrix mostly provides a convenient way of performing operations locally on

elements, and combining each elemental contribution in the correct fashion as to produce the

correct result. A key operation in the Galerkin formulation is the use of integration of global

modes in, for example, the construction of the inner product .uı ; ˆk/L2

. The integral for

each global mode can be stored in a vector Ig , so that

�
Ig

�
k
D
Z

�

uı.x/ˆk.x/ dx:

Typically this integral will be evaluated numerically, and the process for this will be outlined
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in the next section. Defining Il to be the vector of local contributions

Il D

˙
I

1

:::

I

Nel

⌥

where I

e D

�Z

�st

uı.�e.⇠//�0.⇠/
d�e

d⇠
d⇠

:::Z

�st

uı.�e.⇠//�P .⇠/
d�e

d⇠
d⇠

�

we can therefore relate local and global integrals by the simple relation

Ig D A>Il :

To calculate the global integral over each mode, we may calculate the contributions locally of

each element and combine their results according to the local-to-global mapping. By using

�e to project each element onto �st, we are able to use the elemental basis functions �p and

hence never need to construct the complex global modes.

Similarly, the mass and Laplacian matrices can be constructed in an elemental fashion. First

we define the local matrices Me and Le 2 R.PC1/⇥.PC1/ by

Me
ij D

Z

�e

�e
i .x/�

e
j .x/ dx D

Z

�st

�i .⇠/�j .⇠/
d�e

d⇠
.⇠/ d⇠;

Le
ij D

Z

�e

d�e
i

dx
.x/

d�e
j

dx
.x/ dx D

Z

�st

d�i

d⇠
.⇠/

d�j

d⇠
.⇠/

d�e

d⇠
.⇠/ d⇠:

From these formulae it is also clear that it is only necessary to generate a single elemental

mass matrix, since the derivative of each of the projection function �e is the constant

d�e

d⇠
D xe � xe�1

2

and can therefore be brought outside of the integral above. This enables us to take advantage

of a significant computational optimisation when constructing the global counterparts M and

L. We first assemble matrices Ml and Ll 2 R.PC1/Nel⇥.PC1/Nel , so that each Me or Le lies

on the appropriate position along the diagonal. Then

M D A>MlA:

Finally, note that A is generally a very sparse matrix whose only entries are 1, 0 and -1 in

25



a multi-dimensional formulation. For this reason it is usually undesirable to construct A

explicitly, and instead a common sparse-matrix technique such as a mapping array is used to

perform these scatter-gather operations.

2.2.3 Common choices for the expansion basis

The choice of local expansion basis functions �i is of great importance as it has a large effect

on the potential efficiency and numerical accuracy of the code in two regards. Firstly, the

computational cost of constructing the matrices initially is important, as they will require

numerical integration, which is an expensive operation. Secondly, and more importantly in

the context of this project given the large domains that need to be represented, is the resulting

structure of matrices derived from the basis functions. Indeed, in large computational

problems, the dimensions of the mass matrix may preclude it from being stored in computer

memory, so the ability to exploit any structure of the matrices is essential.

Basis functions are classified into two general groups known as modal or nodal functions.

To distinguish between these types, consider the following examples for 0 6 p 6 P :

�A
p .x/ D xp; (2.14)

�B
p .x/ D p̀.x/ D

PY

i;jD0;i¤j

x � xi

xj � xi
(2.15)

�B
p is a basis using the Lagrange polynomials p̀.x/. It is an example of a nodal basis, since

we first need to define a set of points πxi j 0 6 i 6 P º from which p̀.x/ can be defined. �A
p

is commonly called the moment basis, and is an example of a modal basis, where no such

requirement is needed.

There are two computational costs we must consider. First, let us calculate the cost of

constructing the elemental mass matrix Me. Each entry of the matrix may be obtained

through

Me
ij D

Z

�st

xixj dx D
"
xiCjC1

i C j C 1

#1

�1

D
8
<

:

2

i C j C 1; if p C q is even;

0; if p C q is odd:

So in constructing this matrix we can ignore half of the entries. Similarly, if we assume
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�1.0 �0:5 0.0 0.5 1.0
⇠

�1.⇠/ �2.⇠/
�3.⇠/

�4.⇠/

(a) Interior modes of the standard modal expansion basis
 p.⇠/, normalised so that �1 6  p.⇠/ 6 1.

�1.0 �0:5 0.0 0.5 1.0
⇠

�0.⇠/ �1.⇠/ �2.⇠/ �3.⇠/ �4.⇠/ �5.⇠/

(b) Standard nodal basis using Lagrange polynomials p̀.⇠/,
with nodal points located using the GLL quadrature points.

Figure 2.2: Typical modal and nodal expansion bases defined inside the standard element
�st.

that the modal points xi are equally spaced in �st, then the mass matrix produced by using

�B
p .x/ is full, with no non-zero entries in general. Thus, it is relatively expensive to construct

the mass matrix using the functions defined thus far.

Typically these matrices will only need to be constructed once in a time-dependent problem

such as the heat or Navier-Stokes equations, and as such the more important problem is that

of inversion. The key to quick numerical inversion of matrices is to exploit any structure of

the matrix. The only structure of note that either of these matrices are guaranteed to possess

is that they are symmetric, since clearly

Me
ij D .�i ;�j /L2

D .�j ;�i /L2

DMe
j i :
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Unfortunately, this structure is not generally useful for optimising inversion, although it

allows for use of common methods such as LU decomposition and Cholesky factorisation.

Another key factor which must be considered is the numerical error incurred in the inversion

process. It is well-known that the condition number of a matrix A,

.A/ D kAk � kA�1k

provides a good indicator of the error that can be expected when a A is numerically inverted.

k � k is a suitably chosen norm; for example, the L2 matrix norm. The larger  becomes, the

larger the round-off error incurred in the process of inverting the matrix. For both choices of

basis shown so far,  becomes extremely large for even moderate values of P .

Finally, we must also consider the combination with the h-type refinement seen earlier;

for example in figure 2.1. The condition on the local coefficients Oue
p seen there would not

necessarily guarantee that the global modes remained in C 0. Instead, we would need a

condition like
PX

pD0

Oue
p�

e
p.1/ D

PX

pD0

OueC1
p �eC1

p .�1/;

which is tricky to implement, and breaks the symmetry of global matrices. This problem

may be easily solved if we separate boundary modes from interior modes, which is enforced

by the condition

�p.�1/ D
´
1; p D 0;
0; p ¤ 0; �p.1/ D

´
1; p D 0;
0; p ¤ 0;

then just as in figure 2.1, we can prescribe the condition

Oue
P D OueC1

0

for adjacent elements. In summary, we require modes which:

✏ are orthogonal, or close to orthogonal, under theL2 inner-product and have exploitable

structure;

✏ produce matrices which have low condition number ;

✏ implement the interior-boundary separation.
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One possible choice of mode which accomplishes most of these goals may be derived from a

family of functions known as Jacobi polynomials.

Definition 2.2.3 (Jacobi polynomials). The solution to the one-dimensional ordinary dif-

ferential equation:

d
dx


.1 � x/1C˛.1C x/1Cˇ d

dx
up.x/

�
D �p.1 � x/˛.1C x/ˇup.x/

where �1 < x < 1 and

�p D �p.˛ C ˇ C p C 1/:

is defined to be the Jacobi polynomial J ˛;ˇ
p .x/ WD up.x/.

Jacobi polynomials, under the correct weighting function, are orthogonal, since

Z

�st

.1 � x/˛.1C x/ˇP ˛;ˇ
p .x/P ˛;ˇ

q .x/ dx D C ˛;ˇ
p ıpq (2.16)

where ıpq is the standard Kronecker delta, and

C ˛;ˇ
p D 2˛CˇC1

2p C ˛ C ˇ C 1 �
Ä.p C ˛ C 1/Ä.p C ˇ C 1/
pä Ä.p C ˛ C ˇ C 1/ :

Combining this result with the properties desired above, we construct the modes  p.⇠/

visualised in figure 2.2(a):

�p.⇠/ D  p.⇠/ D

8
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂:

1 � ⇠
2

; p D 0;
.1 � ⇠/.1C ⇠/

4
J 1;1

p�1.⇠/; 0 < p < P;

1 � ⇠
2

; p D P:

When p D 0 and p D P , the modes are linear and identical to those seen in figure 2.1

and represent the boundary modes. The weighting functions shown in the orthogonality

relationship are incorporated into the choice of the interior modes to decouple them as much

as possible.

The results of applying this basis to Me is shown in figure 2.3(a). Although Me is still not

completely banded as the boundary modes are not orthogonal to the interior modes, the
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(a) Me D

3

777777775

2

666666664

Le D

3

777777775

2

666666664

(b) Me D

3

777777775

2

666666664

Figure 2.3: Elemental mass matrix Me and Laplacian matrix Le for different choices of
elemental modes �p at polynomial order P D 20. Dots indicate non-zero entries. (a) The
most common choice for a modal expansion �p D  p . (b) The result of changing the interior
modes seen in (a) to J 3;3

p�1.⇠/.

degree of coupling is quite weak, and the resultant matrix has structure which is easy to

exploit. This is emphasised even more in the Laplacian matrix Le which is almost diagonal.

These matrices are much sparser and can be stored in a very condensed format, avoiding one

of the key issues of size.

Figure 2.3(b) shows a choice of basis similar to  p.⇠/ in that it uses the same boundary

modes, but with Jacobi function J 3;3
p�1.⇠/. The resultant mass matrix is mostly full, and

emphasises that  p represents a good choice of modal basis for this application.

2.2.4 Elemental Operations

The final challenge in implementing the one-dimensional spectral-element method is in-

tegration and differention of the modal functions, which forms a key part in the Galerkin

formulation of the problem (e.g. in constructing Me and Le). In this simple example of the

diffusion equation it is technically possible to create analytic formulae to calculate integrals

such as Z

�st

�i .⇠/�j .⇠/ d⇠:
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However, the process is both tedious and prone to error. In addition, an increase of the

polynomial order inside an element requires us to have pre-computed the formulae by hand.

Instead, we focus on evaluating these quantities numerically so that the process can be fully

automated. The concept of numerical integration of functions is relatively simple. One picks

a set of points π⇠i 2 �st j 1 6 i 6 Qº and a set of weights πwi 2 �st j 1 6 i 6 Qº and

approximates
Z

�st

f .⇠/ d⇠ ⇡
QX

iD1

wif .⇠i /: (2.17)

Typically the nodes are placed in an equidistant fashion, which leads to classical expansions

such as the trapezoidal rule. In general however, given that we have a choice of Q nodes and

weights, giving 2Q unknowns, it should be possible to obtain exact values for (2.17) if f is a

polynomial of order 2Q� 1. This remarkable and somewhat counter-intuitive discovery was

made by Gauss and is very well documented as an extremely accurate method for integration.

To derive these weights and nodal positions exactly, we may solve the system of equations

QX

iD1

wi⇠
j
i D

Z

�st

⇠j d⇠; 0 6 j 6 2Q � 1:

Unfortunately, this is a somewhat difficult system to solve and a much better method relies on

sets of orthogonal polynomials – in this case, a subfamily of the family of Jacobi polynomials.

Definition 2.2.4 (Legendre polynomials). The polynomials Lp.⇠/ D J 0;0
p .⇠/ are called

Legendre polynomials.

Legendre polynomials satisfy many interesting properties. They are clearly orthogonal

in Œ�1; 1ç by equation (2.16). More importantly, the set πLp.⇠/ j p 2 N [ π0ºº forms

a complete set of functions on Œ�1; 1ç. Using this property, we can prove the following

theorem:

Theorem 2.2.5 (Gaussian Quadrature). Let ⇠˛;ˇ
i;Q be the zeros of the Jacobi polynomial

J
˛;ˇ
Q .⇠/ of order Q so that

J
˛;ˇ
Q .⇠

˛;ˇ
i;Q / D 0; 1 6 i < Q:
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Then (2.17) is an exact relation if f is a polynomial with degf < 2Q if

⇠i D ⇠0;0
i;Q; wi D 2

1 � ⇠2
i

"
d

d⇠
.LQ.⇠//

ˇ̌
ˇ̌
⇠D⇠

i

#�2

:

In a spectral element formulation, we do not use these classical Gaussian quadrature points,

but instead a slightly modified set known as Gauss-Lobatto-Legendre (GLL) points which

incorporate nodal points at the boundary. These are defined by

⇠i D

8
<̂

:̂

�1; i D 1;
⇠1;1

i;Q�2; 1 < i < Q;

1; i D Q;
wi D 2

Q.Q � 1/ŒP 0;0
Q .⇠i /ç2

:

In this case, (2.17) is only exact if degf 6 2Q�3. By using this choice of nodal points with a

nodal basis such as the Lagrange polynomials p̀.⇠/ as depicted in figure 2.2(b), the elemental

mass matrix becomes diagonal, improving the efficiency of the code. (Unfortunately this

is not the case for the Laplacian matrix). The Laplacian matrix requires knowledge of

the derivatives of the modal functions �p at the collocation points. This can either be

accomplished analytically, or through numerical means using a similar scheme and is

detailed fully in Karniadakis & Sherwin (2005).

Finally then, we can draw some conclusions on the number of quadrature points needed

in the setting of the diffusion equation. For the construction of the mass matrix, which is

simply the product of two polynomials of order P , the minimum number of points required

to integrate this exactly (up to machine precision) is Qmin > P C 3
2

; hence P C 2 points is

enough. Since the diffusion equation is linear, we do not expect that any of the terms involved

will require more points than this. However in the case of the Navier-Stokes equations, the

convective term .u � r/u will in general be represented by a polynomial of order 3P , and

thus will require Qmin > 3
2
.P C 1/ – i.e. a minimum of 3P=2C 2 terms.

2.2.5 Implementation

The culmination of the previous sections then is the implementation of the one-dimensional

spectral-element method for the diffusion equation. To test the validity of the method, we
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Figure 2.4: Solution to the diffusion equation using the parameters outlined in section 2.2.5
with the initial condition u.x/ D x.1 � x/ for .x; t/ 2 � ⇥ Œ0; 1ç. The distribution of
Gauss-Lobatto-Legendre (GLL) points inside each element can be seen along the x-axis.

pick the following parameters:

✏ � D Œ0; 1ç;

✏ Homogeneous Neumann boundary conditions: g0 D g1 D 0;

✏ Standard modal basis functions  .⇠/ inside each element;

✏ Initial condition u0.x/ D x.1 � x/;

✏ Åt D 10�3 and diffusion coefficient ˛ D 1, with the final time T D 1.

The program runs in the following order:

1. Initial set-up: allocate memory for arrays; define element boundaries; create mapping

array used to represent the assembly matrix A; generate quadrature points and weights.

2. Generate elemental mass and Laplacian matrices Me and Le.

3. Assemble the global matrices M and L, and use these to construct the LHS matrix

.MC ˛ÅtL/. Calculate the LU decomposition of this matrix.

4. Inside each element, construct the initial condition u

0
e and apply Galerkin projection

to obtain the initial global coefficients Ou0
g .
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5. Enter the timestepping loop:

✏ Construct the global RHS: �M Oun
g C ˛ÅtB.

✏ Invert the global problem to obtain OunC1
g .

6. Once the desired number of iterations has been reached, use A to reconstruct the

solution inside each element.

The resultant solution field can be seen in figure 2.4. We first check to see that the approximate

solution converges to the correct constant function. Recall that the exact solution to the

diffusion equation with homogeneous Neumann boundary conditions is well known:

u.x; t/ D a0 C
1X

nD1

ane
�n2⇡2t cos.n⇡x/

where

a0 D
Z 1

0

u0.x/ dx and an D 2
Z 1

0

u0.x/ cos.n⇡x/ dx:

Hence for u0.x/ D x.1 � x/ we calculate

a0 D 1

6
and an D

8
<

:
� 4

n2⇡2
; n even;

0; n odd

which gives the solution

u.x; t/ D 1

6
�
1X

nD1

1

n2⇡2
e�4n2⇡2t cos.2n⇡x/:

We also have that limt!1 u.x; t/ D 1
6
⇡ 0:168 for each x 2 � since

ˇ̌
ˇ̌
ˇ

1X

nD1

1

n2⇡2
e�4n2⇡2t cos.2n⇡x/

ˇ̌
ˇ̌
ˇ 6 e�4⇡2t

⇡2

1X

nD1

1

n2
D 1

6
e�4⇡2t t!1����! 0:

This clearly corresponds to the results seen in figure 2.4.
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2.2.6 Convergence Properties

In order to test the convergence properties of the spectral element method, we use the same

parameters of the previous section, but choose a different initial condition u0.x/ D cos.2⇡x/,

since the function x.1 � x/ does not satisfy the Neumann boundary conditions. This has the

additional bonus of greatly simplifying the exact solution, since now

an D
´

1
2
; n D 2;
0; n ¤ 2

by orthogonality of the cosine function. Hence the new exact solution is

u.x; t/ D e�4⇡2t cos.2⇡x/:

To minimise the O.Åt / timestepping error inherent to the implicit Euler timestepping

scheme, we also set Åt D 10�8 and change the final time to T D 10�6.

One of the simplest methods for obtaining convergence statistics is through the error term

Ef D kuı.�; T / � u.�; T /k, where the norm k � k is problem-specific. Typically choices

include the discrete L1 or L2 norms. However, since this problem utilises a Galerkin

scheme, a more appropriate norm can be defined which provides an estimate for the average

error.

Definition 2.2.6 (Energy Norm). Let a.u; v/ be a symmetric bilinear form. Then we define

the energy norm k � kE by

kukE D
p
a.u; u/:

For the Galerkin scheme considered for the diffusion equation,

a.u; v/ D
Z

�

@u

@x

@v

@x
dx) kukE D

Z

�

✓
@u

@x

◆2

dx:

To test each refinement method, two sets of simulations were run:

✏ p-type: Set Nel D 3 and vary 1 6 P 6 200.

✏ h-type: Set P D 1 and vary 1 6 Nel 6 200.
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Figure 2.5: Logarithmic plot of the error Ef measured using the energy norm for h- and
p-type convergence (top and bottom lines respectively).

Figure 2.5 collates the data from the above simulations on a logarithmic scale, and shows

some of the excellent convergence properties of the spectral-element method. h-type conver-

gence is linear; that is, the error scales asO.Nel/. This is to be expected, since each additional

element only increases the number of global modes by P D 1. p-type convergence on the

other hand is exponential – as the polynomial order is increased linearly, the error decreases

exponentially. This exponential convergence greatly improves the quality of approximate

solutions, and shows why the spectral-element method is well-suited to problems requiring

extremely fine spatial resolution.

2.3 Temporal Discretisations for Navier-Stokes

So far, we have introduced a highly accurate spectral element scheme. However, the use of

such schemes is generally preserved for spatial co-ordinates in which a great deal of accuracy

is required. The discretisation of many non-linear systems often leads to a Courant-Friedrichs-

Lewy (CFL) condition dictating the stability of solutions, which enforces restrictions on

the timestep Åt and thus rendering it very small. We do not therefore require exponential

convergence of solutions temporally; for even the most detailed turbulence simulations,
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O.Åt3/ convergence is sufficient.

These high-order schemes are common throughout the numerical analysis of PDEs. However,

the unique pressure coupling inherent in Navier-Stokes makes the development of high-

order timestepping techniques difficult. In this section, we introduce some basic high-order

timestepping routines and show how they can be used in the discretisation of Navier-Stokes.

2.3.1 Classical high-order schemes

We begin by considering the problem of discretising the temporal domain for the PDE

@u

@t
D F.u.x/;x; t /

for t 2 Œ0; T ç. Virtually all of the time-stepping schemes proceed with the assumption that

the discretisation of the domain is equally spaced, so that we approximate the solution at

times tn D nÅt , where Åt is commonly referred to as the time-step.

There are a vast array of time-stepping schemes which take the solution field at time tn,

u

n WD u.x; tn/ to u

nC1. They can be generally classified into two groups. Explicit schemes

only rely on knowledge of u

n and are cheap to implement. On the other hand, implicit

schemes require solving an equation which is dependent upon both u

n and u

nC1. One of the

most popular schemes is the ✓-method, which uses a mixture of both implicit and explicit

terms.

Definition 2.3.1 (✓-method). Let F

n D F.un;x; tn/. Then the ✓-method time-stepping

scheme for obtaining u

nC1 solves the (implicit) equation

u

nC1 � u

n

Åt
D .1 � ✓/F n C ✓F

nC1:

In particular, there are three special choices for ✓ :

✓ D

8
<̂

:̂

0; explicit Euler;
1
2
; Crank-Nicolson;
1; implicit Euler:

It can be shown that both Euler methods incur errors of O.Åt / in the approximation. The

37



benefit of implicit schemes is their improved stability, with fewer restrictions on the timestep

Åt and hence they are often preferred over explicit schemes. For example, when applied to

the diffusion equation, the explicit Euler scheme only remains stable if the CFL condition

Åt

Åx2
6 1

2

is satisfied. Of particular significance is Crank-Nicholson time-stepping, which only incurs a

high-order O.Åt2/ temporal error. Due to its relative simplicity and high-order accuracy, it

is highly popular.

Sometimes however, we require even higher-order methods. In this case, we generally employ

the use of multi-step methods, which approximate the time derivative through use of previous

time iterations. Two of the most widely used multi-step methods involve approximations of

the form
u

nC1 � u

n

Åt
D

J�1X

qD0

ˇqF

nC1�q:

The choice of ˇq determines both whether the scheme is explicit or implicit. If ˇ0 D 0 then

the scheme is explicit and is known as the Adams-Bashforth method; otherwise the scheme

becomes implicit and is known as the Adams-Moulton method. The scheme can in theory be

extended to arbitrary order by increasing the integration order J at the expense of storing

past timesteps in memory.

2.3.2 Splitting Schemes

None of the schemes above are directly applicable to the Navier-Stokes equations

@u

@t
C .u � r/u D �rp C ⌫r2

u; (2.18)

r � u D 0; (2.19)

due to the coupling of the velocity field u with the pressure field p in equation (2.18).

Additionally, the problem of enforcing the incompressibility condition (2.19) is not addressed.

A key aspect of any numerical scheme for Navier-Stokes is the ability to calculate u without

knowing the pressure field p.
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One of the approaches for creating algorithms for time-stepping Navier-Stokes is the splitting

scheme. We introduce the concept by examining the simple one dimensional problem

@u

@t
D �.L1 C L2/u;

u.x; 0/ D u0.x/;

where each Li is a (potentially non-linear) differential operator. We may obtain an approxi-

mate solution by solving the two equations:

@ Ou
@t
C L1 Ou D 0 in .tn; tnC1/

@ OOu
@t
C L2 OOu D 0 in .tn; tnC1/

where we set Ou.tn/ D un and OOu.tn/ D OunC1. The estimated solution at time tnC1 is

unC1 D OOu.tnC1/. This simple method, introduced by Yanenko (1971), incurs a splitting

error of O.Åt /.

To each of these equations we apply a timestepping scheme in order to solve the overall

system. Since the error incurred through splitting is O.Åt /, we use implicit Euler which

maintains the same level of accuracy, giving

Ou � un

Åt
C L1 Ou D 0;

unC1 � Ou
Åt

C L2u
nC1 D 0:

To ensure the problem is well-posed, boundary conditions must be properly applied to each

sub-step of the problem. The nature of these conditions is problem-specific, and can often

be regarded as artificial in the sense that whilst they are often derived from the original

equations, they are not mathematically required to solve the overall system.

2.3.3 First-order splitting schemes for Navier-Stokes

The splitting scheme outlined above provides a method for solving the Navier-Stokes equa-

tions by omitting the pressure term rp in the first substep, an idea first introduced by Temam

(1969). Initially, we ignore the incompressibility constraint and solve for an intermediate
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velocity field Ou given the initial condition u

n. The second sub-step then imposes a pressure

correction which projects Ou onto a divergence-free space. The scheme then is

Ou � u

n

Åt
C . Ou � r/ Ou D ⌫r2 Ou (2.20a)

u

nC1 � Ou
Åt

D �rpnC1 (2.20b)

where (2.20a) is subject to the no-slip boundary condition

Ou.@�/ D 0

and (2.20b) satisfies

r � unC1 D 0 (2.21a)

u

nC1 � n D 0: (2.21b)

where n is the normal unit vector to @�. It is important to note that the field p is not the

exact pressure field p. In order to obtain an explicit equation for the pressure, we take the

divergence of (2.20b) to give the Poisson equation

r2pnC1 D r �
✓ Ou
Åt

◆
: (2.22)

The choice of pressure boundary condition here is critical. For this first order scheme, we

consider the projection of (2.20b) in the normal direction to obtain the equation

@pnC1

@n
D 0 on @�: (2.23)

However, by applying the divergence operator to (2.18), we see that the exact pressure p will

in fact satisfy the equations

r2p D �r � Œ.u � r/uç in �;

@p

@n
D n � ⌫r2

u on @�:

It is clear that these equations differ from one another, and hence pnC1 can only be an ap-

proximation to p. However, Temam (1979) showed that this does not affect the convergence
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of the scheme. Error analysis shows that the velocity field is subject to an error of O.Åt /,

whereas the pressure has error O.
p
Åt /, although with modifications it can be corrected to

give O.Åt / accuracy.

The choice of boundary condition on the pressure-correction substep is critical in obtaining

a scheme which is numerically accurate. In the next section we will extend this splitting

method to implement a higher-order timestepping scheme.

2.3.4 High-order schemes

There have been many attempts to introduce high-order splitting schemes to Navier-Stokes.

Classically, we re-write (3.1a) as

@u

@t
D �rp C ⌫L.u/C N.u/ (2.24)

where L and N represent the viscous dissipation and non-linear advection operators of

Navier-Stokes respectively. Upon integrating (2.24) between tn and tnC1 we obtain the

equation

u

nC1 � u

n D �
Z t

nC1

t
n

rp dt C ⌫
Z t

nC1

t
n

L.u/ dt C
Z t

nC1

t
n

N.u/ dt:

We then re-write these three integrals as

Z t
nC1

t
n

rp dt D ÅtrpnC1; (2.25a)

Z t
nC1

t
n

N.u/ dt D Åt
J

e

�1X

qD0

ˇqN.un�q/; (2.25b)

Z t
nC1

t
n

L.u/ dt D Åt
J

i

�1X

qD0

�qL.unC1�q/: (2.25c)

In these equations, pnC1 is the pressure field ensuring that the final velocity is incompressible

at time tnC1, and ˇq and �q are the coefficients giving Adams-Bashforth/Adams-Moulton

schemes of order Je and Ji respectively. From these equations, we obtain the three-step
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splitting scheme

Ou � u

n

Åt
D

J
e

�1X

qD0

ˇqN.un�q/; (2.26a)

OOu � Ou
Åt

D �rpnC1; (2.26b)

u

nC1 � OOu
Åt

D ⌫
J

i

�1X

qD0

�qL.unC1�q/: (2.26c)

Following the classical high-order approach, a timestep is performed as follows. First, we

calculate Ou from (2.26a). Then, assuming that r � OOu D 0, we take the divergence of (2.26b)

to obtain the Poisson equation

r �
✓ Ou
Åt

◆
D r2pnC1: (2.27)

Using this pressure field to calculate OOu, we then solve (2.26c) for the solution u

nC1.

2.3.5 Pressure boundary condition

In practice, to solve these equations we require boundary conditions for equations (2.27)

and (2.26c). The latter may be easily derived by imposing the desired Dirchlet boundary

condition u

nC1 D u0 on @�. However, the more artificial pressure boundary condition must

be derived. In the classical scheme, we assume that OOu � n D u0 � n, leading to the boundary

condition
@pnC1

@n
D �u0 � n � Ou � n

Åt

on @�. However, whilst this choice of boundary condition is very efficient, it leads to large

splitting errors, as shown by Marcus (1984) in a study of Taylor-Couette flow using this

scheme. The exact pressure boundary condition may be derived from the semi-discrete form

of (2.24);

@pnC1

@n
D n �

2

4
J

e

�1X

qD0

ˇqN.un�q/C ⌫
J

i

�1X

qD0

�qL.unC1�q/

3

5 : (2.28)

Unfortunately, this equation is coupled due to the implicit linear term at the .nC 1/-th time

level. Approximating this term by an explicit expansion also leads to numerical inaccuracies.
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One of the most critical observations in the high-order scheme is the identification of a

pressure boundary condition which gives low splitting errors. Orszag et al. (1986) finally

derived such a condition by rewriting the viscous operator L in (2.28) as the summation of a

rotational and irrotational part rQ estimated by explicit and implicit schemes respectively.

This then gives

@pnC1

@n
D n �

2

66664

J
e

�1X

qD0

ˇqN.un�q/C ⌫
J

i

�1X

qD0

�qrQnC1�q

„ ƒ‚ …
irrotational

� ⌫
J

e

�1X

qD0

ˇqŒr ⇥ .r ⇥ u/çn�q

„ ƒ‚ …
rotational

3

77775
:

A straightforward analysis shows that the numerical errors which occur in the previous

choices are not present with this condition. Since we require that QnC1 D 0 to satisfy the

incompressibility condition, we can therefore take �0 D 0, and this then removes the implicit

coupling of the boundary condition.

2.3.6 Stiffly stable schemes

Whilst the classical high-order splitting scheme coupled with the high-order pressure bound-

ary condition produce a time-stepping scheme capable of producing very accurate results,

the use of Adams-Bashforth and Adams-Moulton leads to large restrictions in Åt in order to

avoid numerical instability, especially at higher orders. The stability diagram for this method

can be found in Karniadakis & Sherwin (2005). To address this, Karniadakis et al. (1991)

adapted the classical scheme to incorporate a stiffly stable multi-step method.

Stiffy stable schemes, detailed thoroughly in Gear (1971), are used in the study of equations

which contain solutions which grow at widely differing rates. For example, consider the

system of ODEs

y0.t/ D 998y.t/C 1998z.t/;
z0.t/ D�1000y.t/� 1999z.t/;

43



which, under the initial conditions y.0/ D 1 and z.0/ D 0, have solutions

y.t/ D 2e�t � e�1000t ;

z.t/ D�e�t C e�1000t :

Standard explicit methods will impose severe restrictions on the choice of timestep due to the

very quickly decaying e�1000t term. In the large-time limit however, this term is extremely

close to 0 and can be safely ignored. Whilst classical implicit methods give an obvious way

to circumvent this problem in this simple system, in more complex non-linear systems they

cannot easily be applied without encountering stability problems. Stiffly stable schemes are

designed to provide high-order methods capable of handling these systems.

In Karniadakis et al. (1991), the stiffly stable scheme is applied to Navier-Stokes by integrat-

ing equation (2.24) from time level n � Ji to nC 1, resulting in the discretisation

�0u

nC1 �PJ
i

�1
qD0 ˛qu

n�q

Åt
D �rpnC1 C

J
e

�1X

qD0

ˇqN.un�q/C ⌫L.unC1/:

˛q and �0 DPJ
i

�1
iD0 ˛i denote the standard stiffly-stable coefficients of Gear (1971); however

ˇq are not the same explicit coefficients as used in earlier splitting schemes. All of these are

readily available in Table IV of Karniadakis et al. (1991) and Karniadakis & Sherwin (2005)

up to third order.

As before, we may then use operator splitting to obtain the three-step scheme

Ou �PJ
i

�1
qD0 ˛qu

n�q

Åt
D �

J
e

�1X

qD0

ˇqN.un�q/;

OOu � Ou
Åt

D �rpnC1;

�0u

nC1 � OOu
Åt

D ⌫L.unC1/:

Coupled with the high order pressure boundary condition, this scheme gives a highly accurate

and stable scheme for timestepping Navier-Stokes.
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2.4 Summary

In this chapter, we have introduced the fundamental tools required to construct spectral

schemes and the spectral/hp element scheme, along with a high-order timestepping scheme

for the Navier-Stokes equations. In the next chapter, we study these schemes in the context

of pipe flow, and introduce Semtex, the joint spectral element–Fourier pseudospectral solver

which will be used to perform pipe flow simulations throughout the rest of this thesis. We

study how a volumetric flux condition can be used to drive flow through a pipe, and introduce

a computational technique for reducing communication time required for parallelising the

discrete Fourier transform.
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Chapter 3

Numerical Methods for Pipe Flow

In the previous chapter, the spectral/hp element method was introduced along with a high-

order timestepping scheme for Navier-Stokes. The focus in this chapter is to demonstrate

how these schemes are implemented in the Semtex spectral element code, which will be

used throughout the rest of this thesis to perform a wide variety of pipe flow simulations.

Additionally, a number of modifications to the underlying code are introduced in order to

specialise the code for studying pipe flow problems.

Firstly, we define the mathematical framework under which we will study fluid flows, and

examine the Navier-Stokes equations which determine the evolution of a fluid. In order to

make the problem well-posed, we also consider the boundary conditions which are required to

drive the flow. Using these conditions, and some elementary simplifications to the underlying

equations, we derive the exact equations of motion for a laminar flow.

Many numerical implementations, including Semtex, assume that periodic boundary condi-

tions are used in the axial direction, necessitating the use of a constant body force in order

to drive the flow. However, as will be explained in the following sections, this is often not

preferred for transitional experiments. The second section of this chapter therefore introduces

an alternative method which requires that the flow had constant volumetric flux, and explains

how it can be efficiently integrated into a timestepping scheme, either through an exact

condition or through a Green’s function correction technique. We then introduce Semtex

and demonstrate how this method is integrated into the underlying code.
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In the final section of this chapter, we consider the parallelisation of the discrete Fourier

transform used by Semtex to decompose a domain over multiple nodes. This is an expensive

process due to the all-to-all communication required in constructing each Fourier mode.

Whilst this heavy communication cannot be avoided, any features of the underlying network

topology should be exploited to enable maximum throughput of data. In particular, we

introduce a method which provides significant scaling improvements for clusters utilising a

network of massively multi-core nodes.

3.1 Mathematical Framework

Whilst there are many variants of the pipe flow problem, the classical one which is both

the simplest and most studied assumes that the pipe is smooth and the flow through it

incompressible and viscous, so that the velocity field is a solution to the incompressible

Navier-Stokes equations. In this section, we outline these non-linear equations along with

their linear counterpart, the Stokes equations, in both the cylindrical and Cartesian co-ordinate

systems. The motivation for these choices of co-ordinates (in particular the Cartesian system)

will be discussed at greater length in chapter 4. We then move on to derive the exact equations

of motion for a laminar flow.

Definition 3.1.1 (Navier-Stokes equations). The incompressible Navier-Stokes equations

are defined on a domain � ✓ Rn by the non-linear system of partial differential equations

@u

@t
C .u � r/u D �1

⇢
rp C ⌫r2

uC f ; (3.1a)

r � u D 0; (3.1b)

where u is the velocity field, p is the scalar pressure field, f is a (potentially time-dependent)

forcing term, ⇢ is the fluid density and ⌫ is the kinematic viscosity of the fluid. Equation

(3.1a) is known as the momentum equation and (3.1b) as the incompressibility condition or

continuity equation.

Definition 3.1.2 (Stokes equations). Neglecting the non-linear advective term .u�r/u from
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equation (3.1a) yields the linear system

@u

@t
D �1

⇢
rp C ⌫r2

uC f ; (3.2a)

r � u D 0; (3.2b)

known as the Stokes equations.

We begin with an elemental simplification of (3.1a). The incompressibility condition (3.1b)

implies that the fluid density ⇢ remains constant, and since we are not concerned with its

value in this work, we define ⇢ D 1 without loss of generality.

Throughout this work, we will consider a cylindrical pipe of length L and radius R and

diameter D D 2R. The domain � ⇢ R3 is therefore

� D π.x; y; z/ j 0 6 x 6 L; y2 C z2 6 R2º ✓ R3:

In this Cartesian framework, y and z describe the transverse directions (i.e. those lying

in circular cross-sections) and x aligns with the streamwise or axial direction. The three-

dimensional velocity field u is written as

u.x; y; z; t/ D u.x; t / D .u.x; t /; v.x; t /; w.x; t //

where again u represents the axial component of velocity and v;w align with y; z respec-

tively.

For analytical purposes it is useful to consider the equations in the far more natural set-

ting of the cylindrical polar co-ordinate system. This is defined in the usual way by the

transformation

x D x; y D r cos ✓; z D r sin ✓; (3.3)

for r > 0 and ✓ 2 Œ0; 2⇡/. The domain thus becomes

� D π.x; r; ✓/ j x 2 Œ0; Lç; r 2 Œ0; Rç; ✓ 2 Œ0; 2⇡/º:

Under this co-ordinate system, we refer to the axial component of velocity by ux , and

the transverse components by ur and u✓ respectively. Applying (3.3) to (3.1) gives the
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transformed system of equations:

@ux

@t
C .u � r/ux D �@p

@x
C ⌫r2ux;

@ur

@t
C .u � r/ur D �@p

@r
C ⌫

✓
r2ur � ur

r
� 2

r2

@u✓

@✓

◆
;

@u✓

@t
C .u � r/u✓ C uru✓

r
D �@p

@✓
C ⌫

✓
r2u✓ � 2

r2

@ur

@✓
� u✓

r2

◆
;

@ux

@x
C 1

r

@

@r
.rur/C 1

r

@u✓

@✓
D 0;

where, in this co-ordinate system,

u � r D ur
@

@r
C u✓

r

@

@✓
C ux

@

@x
;

r2 D 1

r

@

@r

✓
r
@

@r

◆
C 1

r2

@2

@✓2
C @2

@x2
:

3.1.1 Boundary conditions

In addition to the incompressibility condition, it is necessary to prescribe boundary conditions

so that the problem is well-defined. In this section we outline the basic conditions that are

typically used for pipe flow.

Definition 3.1.3 (No-slip condition). A fluid satisfies the no-slip condition at a wall W ⇢
� if for every t > 0,

u.W / D π0º: (3.4)

The no-slip condition essentially stipulates that, where the fluid comes into a contact with a

wall, friction dictates that it remain motionless. In the setting of pipe flow, this condition is

applied on the surface

W D π.x; y; z/ j y2 C z2 D R2º ⇢ �:

If the pipe is of finite length (L ¤1), we also need two more conditions on each end of the

pipe; the inflow at x D 0 condition specifies the velocity profile of fluid entering the pipe,

and the outflow condition specifies how fluid leaves the pipe at x D L.
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If the mathematical model is strictly intended to duplicate physical experiments, then one

typically chooses a parabolic inflow condition, chosen to represent laminar flow (see section

3.1.2) and a homogeneous Neumann boundary condition

@u

@x

ˇ̌
ˇ̌
xDL

D 0; (3.5)

for the outflow. Another possibility for these boundary conditions is a periodic condition;

u.0; y; z; t/ D u.L; y; z; t/ 8 t > 0:

Under this regime, any fluid particles leaving the pipe at x D L re-enter the pipe at x D 0.

When using an inflow–outflow condition for turbulence experiments, we must choose a

domain which is large enough to allow the flow to transition from laminar to turbulent flow

upon a perturbation at the pipe wall. Therefore in a numerical experiment where increasing

L necessitates more computational overheads, this condition is not preferred. The periodic

boundary condition gives us an alternative method to simulate turbulent flow in a much more

computationally-friendly manner, and using the methods of the previous section, allows us

to form an efficient and highly accurate scheme for integrating Navier-Stokes.

One topic yet to be discussed is the force required to drive the flow through the pipe. The

Neumann outflow condition above, when coupled with an appropriate inflow condition,

causes a pressure gradient Åp to form between the start and end of the pipe, and thus we

may neglect the forcing term f from the equations. For a periodic flow however, we must

supply an external force f , since otherwise the flow will either remain at rest indefinitely

or monotonically decay to zero. Since the value of Re depends on the mean flow, and thus

f , we must derive a relationship between f and Re in order to perform a simulation at

any desired Reynolds number before the start of a simulation. This topic will be further

addressed in section 3.2.

3.1.2 Hagen-Poiseuille Flow

Almost all of the complexity of the Navier-Stokes equations can be traced back to the non-

linear term .u � r/u, which not only strongly couples the systems of equations together, but
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umax D 2 umax ⇡ 1:4

Figure 3.1: Average velocity profiles for laminar (left) and turbulent (right) flows through
the cylindrical pipe, where averaging is performed over the axial and azimuthal directions.
These profiles are normalised so that in each case the flowrates

R
C u � dS are equal.

also adds quadratic-order non-linearity to each component of the vector field. However, by

making some simple experimental observations, we can make assumptions about the types

of flow that we expect to see, and therefore simplify the system in some way in order to find

analytic solutions.

The independent investigations of Hagen (1839) and Poiseuille (1840) represent the first

attempt at finding exact flow fields in pipes. In these works, the primary motivation was the

study of blood flow through capillaries. On these scales, average velocities are typically slow

and thus turbulence is not usually observed. In this laminar setting, the problem becomes far

easier to model. In this section, we briefly provide a modern derivation of the equations of

motion they discovered. We begin with two simplifications. Firstly, we assume the flow is

steady;

Definition 3.1.4 (Steady flow). A flow u satisfying (3.1) is said to be steady if @tu D 0 at

all times t > 0.

Secondly, we assume that the flow is confined to the axial direction, and is axisymmetric so

that

u.x; r; ✓; t / D .u.r/; 0; 0/:

This is an example of a shear flow; a flow which is driven using some forcing term in a single

direction and otherwise remains steady. Substituting these conditions into (3.1a), we obtain
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the simplified system

@p

@r
D @p

@✓
D 0

1

r

@

@r

✓
r
@u

@r

◆
D �Åp

⌫
C u@u

@x

where we assume that Åp D �@zp is the constant pressure gradient driving the flow.

Additionally, from the continuity equation (3.1b) we have that @xu D 0 and hence we must

solve
1

r

@

@r

✓
r
@u

@r

◆
D �Åp

⌫
:

Integrating twice, we obtain the general solution in terms of two constants of integration, C1

and C2

u.r/ D �Åpr
2

4⌫
C C1 log r C C2

Since we insist that our solution is well-defined at r D 0, it is clear that C1 D 0, and thus by

applying the no-slip boundary condition (3.4) at r D R we obtain the solution

u.r/ D Åp

4⌫
.R2 � r2/:

This simple parabolic velocity profile is shown on the left in figure 3.1. Hagen-Poiseuille

flow is known as laminar – that is, the flow is separated into parallel layers which do not

interact with one another. The right hand side of figure 3.1 demonstrates how the profile

alters for a turbulent flow, which is distinctly more plug-shaped.

3.2 Forcing with Volumetric Flux

In physical systems there are two commonly adopted methods used to drive flow through a

pipe. The most obvious and intuitive approach is to place a header tank at the inflow of the

pipe in which the level of water is kept constant, and leave the outflow of the pipe unplugged

as depicted in figure 3.2(a). This forces a pressure gradient to be formed between the start

and the end of the pipe, and by keeping a constant water level in the tank, this gradient

remains unchanged. Figure 3.2(b) shows an alternative arrangement whereby a piston is

placed at one end of the pipe. When the piston is moved to the right, fluid is drawn through
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h

flow

(a) Flow driven using a constant pressure gradient. The water level h is
kept constant so that the pressure gradient Åp remains constant.

flow

(b) Flow driven using a constant volumetric flux. The piston is moved
to the right at a constant speed U , resulting in constant flow rate through
cross-sections of the pipe.

Figure 3.2: Schematic diagrams depicting flow being driven using (a) constant pressure
gradient and (b) constant volumetric flux.

the pipe in a similar fashion to a syringe. If the piston is moved at a constant speed then,

given that the fluid is incompressible, we implicitly impose a constant flux condition through

circular cross-sections of the pipe.

In the following sections, we demonstrate how both of these methods can be implemented

numerically in a pipe of radius R and length L, so that the fluid velocity is governed by the

incompressible Navier-Stokes equations (3.1) under a cylindrical polar co-ordinate system. In

this form, the fluid velocity u is represented as .ux; ur ; u✓ /, and requires periodic boundary

conditions in both axial and azimuthal directions. Additionally, we require numerical

boundary conditions at the pipe axis. For the analysis which follows, the only condition

of significance is that of the radial velocity, for which we insist that ur.r D 0/ D 0. A

discussion of the high-order boundary conditions required in this formulation is given in

Blackburn & Sherwin (2004).
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3.2.1 Constant body forcing

We begin by examining the pressure gradient method, which is perhaps the easiest method

to implement in both a physical and numerical setting. Computationally, we make use of a

constant body force f D .fx; 0; 0/ which is appended to the momentum equation. However,

determining the correct value of f for any desired Re requires careful examination.

It is well-known that the pressure drop Åp in fluid of density ⇢ flowing through a pipe of

length L and diameterD at mean speed U may be expressed in terms of the Darcy-Weisback

relation:

Åp D �⇢LU
2

2D

where �, the friction factor, is the dimensionless constant relating the friction at the pipe wall

to the loss in pressure. The axial body force, or alternatively pressure drop per unit length, is

therefore fx D Åp=L.

Determining the friction factor is not a straightforward task, as it depends on the regime

of the flow (laminar, fully developed turbulence or transitional) as well as the Reynolds

number. By examining the solution to Navier-Stokes in the case of a laminar flow, � may be

exactly derived as 64=Re. However, the value of � for a turbulent flow differs substantially

and must be derived using knowledge of the various layers typically found in a turbulent

flow. Assuming the mean turbulent flow resembles a one-seventh power law, Blasius (1913)

derived the simple relationship � D 0:3164Re�1=4, which is widely regarded to be the most

accurate for 2 ⇥ 103 6 Re . 105 but is inaccurate beyond this. For higher Re, several

alternative formulae are available. The most widely used may be attributed to Prandtl. More

recently McKeon et al. (2005) derived the implicit formula

1p
�
D 1:920 log.Re

p
�/ � 0:475 � 7:04

⇣
Re
p
�
⌘0:55

:

Using the Blasius rule for simplicity and assuming U D D D ⇢ D 1, we obtain the relation

fx D �

2
D 0:1582

Re1=4
;

which can be used to drive turbulent flow at a prescribed Reynolds number.
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Figure 3.3: Friction factor � for fully developed pipe flow at a variety of Re. Dashed line
indicates the laminar Hagen-Poiseuille friction law � D 64=Re and the solid line the Blasius
law � D 0:3164Re�1=4. Data points are taken from the experimental results of McKeon
et al. (2004) and show the transition between the two laws.

3.2.2 Forcing for transition experiments

For the study of transitional flows, the use of a constant pressure gradient is not preferred.

Recall that Re is defined using the bulk velocity

U D 1

�.C /

Z

C

huix � dS ;

where C is the disc π.r; ✓/ j r 6 Rº, �.C / D ⇡R2 denotes its area and h�ix denotes

hgix D 1

L

Z L

0

g.x; r; ✓/ dx:

If f remains fixed, simulations involving turbulence will lead to fluctuations in U , allowing

the Reynolds number to vary with time. This variation is usually unimportant for high-Re

simulations, but at transition it is necessary to maintain a fixed Re.

Another somewhat more serious issue however is the lack of a relationship between � and

Re in the transitional regime, making it difficult to prescribe f prior to starting a simulation.
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Figure 3.3 shows the laminar Hagen-Poiseuille friction law and the Blasius friction law over

a wide range of Re, along with experimental data which bridges the gap between the two.

At Re ⇡ 2;000, � abruptly changes as the flow becomes turbulent. Whilst it is possible to

estimate � from this graph or others like it, Re would need to be manually determined at the

end of any simulation.

One possible solution to this is given by the piston driving approach described earlier. Since

the fluid is incompressible, the volumetric flux Q.u/ defined by the functional

Q.u/ D 1

⇡R2

Z

C

huix � dS D 1

⇡R2

“

C

n � huix dS D 1

⇡R2

“

C

rhuxix dr d✓;

is required to be fixed at a prescribed value Q. This ensures that U remains constant, and

hence the Reynolds number does not change.

Enforcing this computationally is most obviously achieved by making f time-dependent,

measuring the flux and increasing or decreasing it by small amounts at each timestep.

However, determining the amount to increase it by is non-trivial. In the following two

sections, we derive an exact condition analytically, and also introduce a Green’s function

style technique which allows this method to be efficiently integrated into a numerical code.

3.2.3 Direct flux condition

It is possible to derive an exact value for the correct value of fx which enforces the constant

flux condition. Orlandi & Fatica (1997) state that this value can be obtained by applying the

transformation vr D rur ; v✓ D ru✓ ; vx D ux , thus re-writing the axial component of the

Navier-Stokes equations as

(i)‚…„ƒ
@vx

@t
C

(ii)‚ …„ ƒ
1

r

@

@r
.vrvx/C

(iii)‚ …„ ƒ
1

r2

@

@✓
.v✓vx/C

(iv)‚…„ƒ
@v2

x

@x„ ƒ‚ …
.v�r/v

x

D

(v)‚…„ƒ
�@p
@x
C 1

Re


(vi)‚ …„ ƒ

1

r

@

@r

✓
r
@vx

@r

◆
C

(vii)‚ …„ ƒ
1

r2

@2vx

@✓2
C @2vx

@x2

�

„ ƒ‚ …
r2v

x

C
(viii)‚…„ƒ
fx :
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We then follow the approach of Kim (2002), whereby we divide this equation by the volume

of the domain (⇡R2L) and integrate both sides. First, let h�ix;✓ denote the averaging operation

hgix;✓ D 1

2⇡L

Z 2⇡

0

Z L

0

g.x; r; ✓/ dx d✓:

Then, we evaluate each term:

(i)
1

⇡R2L

Z 2⇡

0

Z R

0

Z L

0

@vx

@t
r dx dr d✓ D 1

⇡R2

@

@t

 Z 2⇡

0

Z R

0

hvxixr dr d✓

!
D @Q

@t
.

(ii)
Z R

0

1

r

@

@r
.vrvx/r dr D

h
vrv✓

iR

0
D 0 due to the no-slip and axis boundary conditions

on ur .

(iii) This term immediately evaluates to
h
v✓vx

i2⇡

0
D 0 since v✓ .✓ D 0/ D v✓ .✓ D 2⇡/.

(iv) By a similar argument, this term is also zero since vx is periodic.

(v) Since we assume that p.x D 0/ D p.x D L/ by the use of a forcing term, this term

trivially integrates to zero.

(vi) We re-write this term as:

1

Re
� 1

⇡R2L

Z R

0

Z 2⇡

0

Z L

0

1

r

@

@r

✓
r
@vx

@r

◆
r dx d✓ dr D 2

R2 � Re

Z R

0

@

@r

✓
r
@hvix;✓

@r

◆
dr

D 2

R � Re
@hvxix;✓

@r

ˇ̌
ˇ̌
rDR

(vii) By applying periodic boundary conditions, we again find both these terms evaluate to

zero.

(viii) This term remains unchanged under integration since fx remains constant in space.

If we require the flux remain unchanged then @tQ D 0, and so the condition

fx D � 2

R � Re
@hvxix;✓

@r

ˇ̌
ˇ̌
rDR

as stated (but not derived) by Veenman (2004), imposes this condition. This method is readily

implemented in the case of pipe flow. The last term in this equation is more commonly

known as the wall-shear stress:
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Definition 3.2.1 (Wall-shear stress). The wall shear stress ⌧w is defined by the relation

⌧w D ⌫ @huix;✓

@r

ˇ̌
ˇ̌
rDR

where u denotes the velocity of the fluid in the direction of flow.

However, in more complex geometries, the calculation of the wall-shear stress can be

expensive, and moreover the derivation above will need to be changed on a case-by-case

basis depending on the boundary conditions.

3.2.4 Green’s function flux forcing

A more generalised approach to enforcing volumetric flux is very briefly outlined in Chu

et al. (1992), which makes use of an efficient Green’s function method in order to impose the

flux condition. Whilst this method will be expanded upon here in the context of pipe flow in

a domain of length L, it is trivially extended to other fluid problems. For example, in the

next section we demonstrate how it can be implemented in the context of a spectral element

code.

We begin by taking the incompressible Navier-Stokes equations written in the form of

equation (2.24), so that u is a solution of

@u

@t
D �rp C ⌫L.u/C N.u/; (3.6)

u.x; 0/ D u

n.x/: (3.7)

One timestep of this system therefore gives the solution obtained at time tnC1 D .nC 1/Åt .
In addition, let us assume periodic boundary conditions

u.x D 0; r; ✓; t / D u.x D L; r; ✓; t /; 8 r 2 Œ0; Rç; ✓ 2 Œ0; 2⇡/; t > 0

and impose a no-slip boundary condition on the pipe wall. Under this formulation, in order

to uniquely determine p we necessarily assume that the initial condition u

0 monotonically

decays to the trivial zero solution since no external forcing term is added to the system.

An alternative approach to imposing the volumetric flux is through the use of a correction
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Qu.r; ✓; x; t/, so that u WD uC Qu with associated pressure field p is a solution of (3.6) and

has flux Q.u/ fixed at some desired value Q. In many cases this approach is hindered by

the nonlinear operator N.u/. However the use of a splitting scheme, such as the three-step

high-order splitting scheme in section 2.3.6, offers a solution to this problem.

Let us consider a general two-step splitting scheme in a continuous setting, so that the

equations to solve are:

8
<̂

:̂

@u

@t
D N.u/

u.x; 0/ D u

n.x/

Ou.x;Åt /�����������!

8
<̂

:̂

@u

@t
D �rp C ⌫L.u/

u.x; 0/ D Ou.x;Åt /

where the solution of the first equation is the intermediate solution Ou and of the second is the

desired field u

nC1. In this setting, the first set of equations performs the non-linear advection,

and the second provides the pressure correction and linear dissipation. This second set of

equations is in fact the definition of the linear Stokes problem, and so we may append any

other solution of these equations without penalty (up to roundoff error), therefore bypassing

the nonlinearity of the original equations. Consider then a correction field Qu which satisfies

the forced Stokes equations

@ Qu
@t
D �r Qp C ⌫L. Qu/C ˛n Ox

and is subject to the usual incompressibility condition and identical boundary conditions

to the original equation. ˛n represents a (yet undetermined) body forcing term which is

calculated at each time level n. In order to satisfy (3.7), Qu necessarily has initial condition

Qu.x; 0/ D 0.

The dependence of Qu on ˛n must be removed for the scheme to be computationally useful,

since otherwise the Stokes solution must be computed at each timestep. Assuming that the

flow is always driven (and hence ˛n ¤ 0), define v D Qu=˛n so that v solves the equations

@v

@t
D �r Op C ⌫L.v/C Ox; (3.8)

v.x; 0/ D 0I (3.9)

i.e. the Stokes equations with unit forcing. To correct the velocity field and impose the flux
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singular point

�p �bfs

Figure 3.4: Geometry of the backwards facing step, for which the Stokes field possesses a
singular point at the step edge.

condition, we then calculate u

n D u

n C Qun D u

n C ˛n
v

1, and so we may compute v

1

before the start of the simulation. Finally, in order to determine ˛n, taking the flux of both

sides of the previous equation yields

Q.un/ D Q.un/C ˛nQ.v1/) ˛n D Q �Q.un/

Q.v1/
: (3.10)

The procedure then is to initially solve (3.8) to obtain v

1.x/ D v.x;Åt / and its flux Q.v1/

before the main simulation occurs. Given a solution u

nC1 which solves (3.6) and (3.7) and

is obtained through a splitting scheme, we calculate ˛nC1 by

˛nC1 D Q �Q.unC1/

Q.v1/
:

The corrected velocity field u

nC1 D u

nC1 C ˛nC1
v

1 then has has flowrate exactly equal to

Q. We then use u

nC2 instead of u

nC1 as the initial condition in (3.7) at timestep nC 1 to

obtain a solution with desired flowrate at timestep nC2, and so on. This method is extremely

efficient; both v

1 and Q.v1/ can be pre-computed, and so all that is needed at each timestep

is to calculate Q.unC1/ and perform a simple vector addition operation.

In certain domains which possess sharp corners, a solution to the Stokes equation cannot

be guaranteed to exist even if the Navier-Stokes equations have a solution, and thus this

flowrate correction technique cannot be used. The simplest example of this is the backwards

facing step, depicted in figure 3.4, for which the Stokes solution has a singularity at the step

edge. One possible solution, proposed by Lund et al. (1998) and demonstrated in Kopera

(2011) is the use of a so-called copy boundary condition. The domain is partitioned into two
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pieces; the regular backwards facing step geometry �bfs and an extended inlet �p. �p is a

self-contained periodic channel, with fluid exiting at E2 re-entering at E1. The flow in �p

is driven using the constant flowrate condition. The velocity field at E2 is then ‘copied’ to

form the inlet condition of �bfs. This is particularly useful for simulations which require a

turbulent inflow condition, since a turbulent initial field in the inlet channel is easily obtained.

Care must be taken, however, to ensure that the channel is sufficiently long so that any

periodic features of the flow dissipate before entering the main domain. The implementation

of this boundary condition in Semtex is discussed in Cantwell (2009).

3.2.5 The Semtex Spectral Element Solver

Spectral-element solvers are rarely used in three dimensional problems with ‘simple’ geome-

tries such as cylindrical pipes. There are several major reasons for this; most prevelant is

possibly the complexity of implementation and length of time required to develop a suitable

code. Large-scale and high dimensional computational problems (such as a sufficiently

resolved integration of Navier-Stokes) also prove difficult to parallelise under a spectral

element regime due to the underlying formulation.

The solution to both of these problems is to use a joint discretisation. Such schemes typically

use one of the spectral-type methods outlined earlier which exploit any homogeneous

properties of the domain, and a spectral element discretistation in dimensions where the

geometry is more complex. Typically this leads to both a simplification in implementation

and additionally speeds up execution time.

Semtex is a spectral/hp element solver code using the classical nodal basis functions seen

in figure 2.2(b) which is designed under this paradigm. It is written in C++ and, whilst the

focus throughout the code is the direct integration of Navier-Stokes, the framework is general

enough to implement solvers for other PDEs. To this end, it comes in several distinct parts:

✏ Veclib: a general linear algebra library responsible for performing a variety of

common operations on matrices and vectors.

✏ Femlib: another library which performs many standard operations required for the

spectral-element method; generating quadrature points and weights, constructing

projection functions �e, managing message handling for parallelisation, etc.
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✏ A number of C++ classes which represent the key parts of the elemental scheme (i.e.

the mesh, elements and fields for storage) which rely on both of these libraries.

✏ Drivers for solving various PDEs; in particular a DNS application which implements

the stiffly-stable timestepping scheme of section 2.3 to enable high-order timestepping

of up to O.Åt3/.

✏ A variety of utilities which manipulate the data output from the driver applications,

for example, to compute vorticity fields and extract data from particular points of the

domain.

The code is only suited to problems which are two- and three-dimensional. In two dimensions,

Semtex uses a spectral element mesh which is composed entirely of quadrilateral elements.

In the third dimension, the Fourier pseudo-spectral method outlined in section 2.1.1 is used.

In addition, either a Cartesian or cylindrical polar co-ordinate system can be used, with

periodic boundary conditions in the homogenenous direction. In the Cartesian formulation

the Fourier discretisation in a domain of length Lx is therefore given by

u.x; t / D
N=2X

kD�N=2C1

Ouk.y; z; t/e
2⇡ ikx=L

x ; (3.11)

and equivalently in polar form,

u.x; r; ✓; t / D
N=2X

kD�N=2C1

Ouk.x; r; t/e
ik✓ : (3.12)

3.2.6 Implementation of volumetric flux forcing

The implementation of the volumetric flux forcing outlined in section 3.2 is relatively

simple. Before the start of the main timestepping loop, the unit-forcing Stokes solution v

1 is

calculated. In Semtex, this is done automatically by using the same high-order scheme that

solves the Navier-Stokes, and in principle other codes may adopt this approach. Alternatively,

a user-specified field may be supplied in place of v

1. To complete the implementation, we

must calculate the fluxQ.v1/ and, more generally, at each timestepQ.un/. There are several

different cases depending upon the dimension of the domain, direction of flow and the choice

of co-ordinate system.
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In a three dimensional setting, the data are mainly stored in their Fourier transformed state

throughout the simulation for efficiency, since most spectral-element operations can be done

using this data, and transforms are only required in the pseudo-spectral construction of N.u/.

Since the transform requires the use of expensive inter-processor communication in order to

calculate derivatives in the direction of the Fourier co-efficients, it is highly desirable to find

a method for calculating the flux using the Fourier transformed data.

For a Cartesian co-ordinate system, the flow may traverse in the direction of the Fourier

modes, which is the applicable case for pipe flow simulations. The zero-th Fourier mode

contains the two-dimensional mean velocity field. Since the flow is incompressible, the flux

of this Fourier mode can therefore be used to calculate the flux of the velocity field through

any cross-section C . Hence, to determine the flux of any given field, we calculate the area

�.C / of the cross-section C and integrate over the zero-th mode. Of course, integration

on the GLL mesh is an essential operation for the implementation of any spectral element

method, and so we use the in-built Semtex routines. If the simulation is being run in parallel

across multiple machines, then due to the way the data are stored in memory (detailed further

in section 3.3), the root process holds the zero-th Fourier mode and will therefore calculate

the forcing constant ˛n. It then communicates this to the remaining processes, which then

perform the necessary velocity field correction.

For the purposes of completeness, we also present a formulation for flows which propogate

in the non-Fourier direction, since many other interesting geometries (such as the backwards-

facing step of figure 3.4 or a pipe with a stenosis) can be simulated using this method. For

the two dimensional case, we accept as input a line defined by E DSn
eD1E

e
i ⇢ � where

Ee
i denotes the i-th edge of element �e. We proceed under the assumption that the choice

of E is ‘sensible’; that is, it spans the domain, is perpendicular to the flow direction and is

continuous. The flux may then be calculated using the in-built Semtex functions and a small

amount of mathematical manipulation depending on the co-ordinate system in use.

In a three-dimensional setting, the line E is combined with the homogeneous Fourier

direction so that we measure the flux through a cross-section C D Œ0; Lxç ⇥E. This implies

that the unit normal to E is of the form n D .n1; n2; 0/. Given the Fourier transformed

fields defined in (3.11) we can still calculate the flux of the physical field u using the zero-th
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Fourier mode:

�.C /Q.u/ D
Z

C

u � dS D
N=2X

kD�N=2C1

Z

C

Ouk.y; z; t/e
2⇡ ikx=L

x � n dS

D
N=2X

kD�N=2C1

Z L
x

0

Z

E

. Ouk.y; z; t/n1 C Ovk.y; z; t/n2/e
2⇡ ikx=L

x dy dz dx

D
N=2X

kD�N=2C1

 Z L
x

0

e2⇡ ikx=L
x dx

!✓Z

E

Ouk.y; z; t/n1 C Ovk.y; z; t/n2 dy dz
◆

D Lx

Z

E

Ou0.y; z; t/n1 C Ov0.y; z; t/n2 dy dz

since Z L
x

0

e2⇡ ikx=L
x dx D

´
Lx; k D 0;
0; otherwise:

The last integral over E is readily calculated using standard Semtex routines. Similarly, in a

cylindrical geometry, C D π.x; r; ✓/ j .x; r/ 2 E; ✓ 2 Œ0; 2⇡çº and we find that

ˆ.u/ D 2⇡

�.C /

Z

E

. Ou0.x; r; t/n1 C Ov0.x; r; t/n2/ r dx dr

where u D ur and w D ux .

In summary then, the implementation runs as follows:

✏ Before running the simulation, solve the Stokes problem with unit forcing at a given

viscosity ⌫ for a single timestep giving a field v

1.

✏ The root processor calculates ˆ.v1/ and communicates this to all other processors.

Each processor also calculates �.C /.

✏ At the end of each timestep, the root processor calculates ˛.tnC1/ and scatters this to

the other processors. Each processor then performs the correction u

nC1 D u

nC1 C
˛nC1

v

1 on each processor.
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3.3 Multicore optimisations for parallel Fourier transforms

Fourier transforms form a key part of many spectral schemes. They are particularly important

in the pseudo-spectral scheme, since non-linear terms need to be multiplied in physical space,

involving the use of two (or more) transforms per field per timestep. An efficient discrete

Fourier transform (DFT) algorithm is therefore essential for most spectral codes. The Fast

Fourier Transform (FFT), an adaptation of the DFT for data sets of n D 2m points, typically

requires O.n log2 n/ operations. This is significantly faster than a naive DFT of complexity

O.n2/, and is essentially the key algorithm which makes quick spectrally-accurate codes

cheap enough to implement.

However, in large domains (especially those which are three-dimensional) with high resolu-

tion requirements, the spatial discretisation often proves too large to fit in memory. More

importantly, the number of operations required to perform the Fourier transforms means the

use of more than a single processor is essential. To this end, the domain must be split over

several processors, each storing a smaller piece of the domain.

As an example of how this impacts computational efficiency, consider a one-dimensional

problem on the domain Œ0; 1ç, so that the discrete Fourier transform of a function f W Œ0; 1ç!
R is given by

Ofk D
N�1X

nD0

f .xn/e
2⇡ ikx; �N=2C 1 6 k < N=2;

where xn D n=N . Now suppose that N is very large, and the domain Œ0; 1ç is split evenly

over 1 6 p 6 P processors of equal capability. Furthermore, assume that P divides N , so

that the p-th processor holds all spatial points π.p�1/N=P; : : : ; pN=P�1º. In this topology,

each processor holds N=2P complex Fourier modes so that the memory requirements are

the same on each.

Unfortuantely, in order to calculate the Fourier modes local to any processor p, the value

of f is required at all of the spatial points in Œ0; 1ç. In other words, every processor must

communicate with every other processor. Obviously this scenario is the worst possible in

terms of communication.

In the higher-dimensional joint discretisation setting of Semtex, we incur this overhead

because the direction of Fourier data is the easiest to parallelise. The purpose of this section
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is to investigate ways in which the transformation process can be made more efficient. In the

first part, the general procedure used in Semtex is outlined. Next, an improvement of the

algorithm in the case of multi-core nodes is introduced and its implementation explained in

the context of Semtex. Finally, some benchmarks are provided to show the possible scalings

of this algorithm for problems which are heavily Fourier bound.

3.3.1 Semtex implementation

The use of the hybrid Fourier–spectral element method used in Semtex makes it readily

parallelisable in a similar fashion to the one-dimensional case described above. As is standard

with scientific codes, Semtex uses the Message Passing Interface (MPI) library to parallelise

the code, which is both efficient and abstracts many of the technical aspects of implementing

codes which involve multi-processor programming.

Firstly, we describe the global ordering of the data. Given a polynomial order Q and Nel

elements, each two-dimensional spectral-element plane of the discretised system can be

stored usingQN 2
el double-precision numbers. GivenNx points in the homogeneous direction,

we can then order these planes so that, for points xj D jÅx with 0 6 j < Nx , the j -th

plane is stored at memory location j ⇥QN 2
el .

The parallelisation procedure is precisely the same as above. Given P processors, processor

p holds planes π.p�1/Nx=P; : : : ; pNx=P �1º, where we assume that P dividesNx . Given

this topology, one reasonably efficient method for performing the Fourier transform is to

perform a parallel block-transpose of the data, which reduces the number of messages that

need to be passed between processes, although the total message size remains unchanged.

We now describe how this process works.

Let Np D QN 2
el denote the number of points per plane, and suppose further that P divides

Np. (If it does not, we may zero-pad the data so that it does.) Then, we divide each plane

into P blocks containing Nb D Np=P data points. The aim of the transpose is to re-order

the data across processors so that each processor holds blocks πB0;p; : : : ; BN
x

�1;pº where

Bk;b denotes the b-th block on the k-plane.

Figure 3.5 shows this process for a simple case where Q D 2 and each processor has three

planes (so that Nx D 6). Overall, the process is reasonably straightforward, although quite
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B0;0 B0;1

B1;0 B1;1

B2;0 B2;1

B3;0 B3;1

B4;0 B4;1

B5;0 B5;1
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B0;1 B1;1 B2;1

B3;0 B4;0 B5;0
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B5;0

B0;1

B1;1

B2;1

B3;1

B4;1

B5;1

internal transpose

exchange rows

Figure 3.5: Exchange procedure for Q D 2 processors over Nx D 6 planes.

memory intensive. At the start, each processor contains a Nx=P ⇥ P block matrix which is

stored in row-major order, so that memory is traversed fastest by increasing the plane index.

The first step is for each processor to perform a block transpose of the local plane data. With

the data in the correct ordering, an all-to-all exchanged is performed. In this way, row p

of the transposed data is sent to processor q for all 1 6 q; p 6 P with q ¤ p. After this

process is performed, each processor contains all of the data for block p in ascending plane

order. Finally, the P ⇥Nx=P matrix can be represented as a block column vector since the

blocks are stored contiguously in memory.

After the exchange is performed, multiple one-dimensional Fourier transforms are performed

on the data. This is most efficiently done using a Fortran routine, since the resultant matrix

in column-major form is traversed slowest by plane number. Whilst Semtex ships with many

FFT routines capable of performing this task, experimentation has shown that the algorithms

presented by Temperton (1992) are both the fastest and conveniently allow for domains

utilising Nx D 2p3q5r points. Once the Fourier transformed data has been (presumably)

modified and the inverse transform taken, the final step is to perform an inverse exchange so

that the data are ordered correctly. This procedure is precisely the same but reversed, so that

the inter-processor exchange is done first, followed by the intra-processor exchange.
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3.3.2 Multi-core systems

Modern architectures are rapidly progressing towards the multi-core paradigm, where a

typical computer will possess one or more CPUs, each of which is composed of two or more

cores. All of the CPUs also have access to the same shared memory space. A collection

of these computers (from here-on referred to as nodes), combined with a fast interconnect,

provide an affordable and extremely powerful super-computer. This trend is set to continue,

at least for the foreseeable future.

Unfortunately, this paradigm has serious repercussions for the algorithm of the previous

section. Firstly, in MPI codes each process runs independently. Since all processes local

to a common node access the same memory, the internal transpose step proves extremely

bus-intensive. In addition, whilst MPI has optimisations for communication between pro-

cesses that reside on the same node, message passing will still be inefficient and somewhat

unnecessary. Finally, since each process indepedently sends information to other nodes over

the interconnect, this increases delays due to latency.

This problem is especially apparent on HECToR, the UK national supercomputer. Their

latest machine is composed of 1,856 24-core nodes. Each node possesses two 12-core

AMD Opterons CPUs, and each of these is actually two 6-core CPUs cast onto a single die.

Currently, only one of these 6-core processors is connected to the interconnect1, leading to

disastrous scalings for codes involving all-to-all process communication.

One technique that has proved reasonably successful in countering this problem is the use of

System V shared memory, whereby a large chunk of memory is allocated to accommodate the

data for all processes which share a common node. One process per node is then responsible

for handling communications for all local processes. Hence, whilst the size of the message is

the same, the number of messages that are sent are reduced substantially for large multi-core

systems. This improves communication time, since far less latency is incurred.

Figure 3.6 shows schematically how the algorithm of the previous section can be adapted to

this shared-memory technique for a problem with two nodes and two processes local to each

node. Conceptually the idea is the same as the previous section; however care must be taken

to place the data in the correct ordering so that each process has the correct information when
1As of 2011, after this work was performed, this is no longer the case as the machine has been upgraded with

the Gemini interconnect.
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the exchange is complete.

We make the assumption that each node has the same number of cores. Let us assume there

are N nodes each containing M cores (so that P DMN ), and let pi
j denote the i -th core on

the j -th node. As before, each plane is split into blocks Bk;b . Process p0
j is (without loss of

generality) assigned to be node j ’s representative and handles all inter-node communication.

Initially, a chunk of shared memory is allocated of size NxM=P ⇥ P , which is large enough

to contain the planar data on each process local to that node. Each local process then block-

transposes its data; however, this time, the transpose is done with chunks consisting of M

blocks. In figure 3.6 for example, process p0
0 performs

B0;0 B0;1 B0;2 B0;3

B1;0 B1;1 B1;2 B1;3

B0;0 B0;1 B1;0 B1;1

B0;2 B0;3 B1;2 B1;3

Process pj
i writes row k of this matrix into row kNx=P C i , so that the rows of the local

processes’ data are interleaved with one another. Note that it is entirely unnecessary to trans-

pose the matrix in-place and then copy it into shared memory, as this can be accomplished in

a single step.

The data is now in the correct order so that when the representatives of each node perform

an all-to-all inter-node transpose, the resulting block matrix has columns containing the

appropriate data for each local process. Each process then copies the appropriate column

from the matrix ready to Fourier transform as before. The inverse exchange works in the

same way, but in reverse.

3.3.3 Testing and results

The first step in implementation was to verify the validity of the new exchange algorithm.

Testing was performed on phase2b of the HECToR facility, which uses the 24-core nodes

described in the previous section. A small test program was written to perform exchanges

using both the existing and multi-core algorithm for a variety of different Nx , P and Nb . In

every case, arrays obtained through the new exchange were verified to be identical to the

original exchange algorithm.

In order to measure timings and examine the scaling properties of the new algorithm as the
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Figure 3.7: Execution time in milliseconds as a function of the number of processors P for
the original Semtex exchange (blue) and new multi-core exchange (red).

number of processors varies, a further series of simulations were performed using this test

code. In particular, we focused on investigating how the algorithm scales for Fourier-bound

problems which require large communications overheads. Three simulations were performed

using Nx D 1;344; 1;920 and 2;688 planes, and the size of data blocks were chosen so

that the amount of data transferred over the interconnect was roughly equivalent to the

fully-resolved pipe flow simulations of the following chapter. For each value of Nx , 200

exchanges were performed and from this we obtain the mean execution time for a single

exchange. This was repeated for a large number of processors so that the number of nodes

used varied from one (P D 24) to eight (P D 192).

The results for Nx D 1;344 can be seen in figure 3.7. Initially, execution time of the multi-

core exchange is worse than the normal MPI exchange. This can be attributed to the final

stage of the new exchange algorithm, since to fit within the existing framework of Semtex,

we must copy data back from the shared memory buffer to each processes’ individual

memory region. Initially the cost of this expensive operation outweighs the reduced number

of messages. However, as P is increased, the difference between the old and new exchanges

becomes apparent, so that for 8 nodes the exchange is completed nearly 8 times quicker than

the existing exchange. Similar scalings are observed for Nx D 1;920 and 2;688.
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However, the most important aspect of this algorithm is that it makes simulations possible

on this architecture that require large numbers of Fourier collocation points, such as those

in long domains or at very high Re. With the existing exchange algorithm, communication

time can be kept low by choosing a small number of processors. However, the number of

planes per processor is then large and this then becomes the bottleneck. More processors

solves this problem, but then the exchange algorithm dominates simulation times. Whilst the

new multi-core algorithm still requires substantial amounts of time, it does at least offer a

much better improvement in scaling.

There is however substantial room for improvement in optimising this algorithm. The most

obvious modification is to use shared memory regions throughout the program instead of

solely in the exchange algorithm, which then substantially reduces the amount of data which

must be transferred over the memory bus of each node. However, such a task is a difficult

undertaking in the context of Semtex, and would require substantial code modification to the

core routines. Ultimately though, the proof-of-concept code produced here demonstrates how

aspects of the multi-core paradigm can be exploited to improve program performance for

spectral codes, and is a technique that can be readily employed in many other applications.

3.4 Summary

In this chapter, we have introduced the mathematical framework for performing numerical

simulations of pipe flow and the Semtex code which will be used to evaluate them. In

particular, we have summarised the common methods used to drive the flow by imposing a

volumetric flux condition. To impose an exact flow rate, we have introduced a highly efficient

Green’s function approach which allows the condition to be implemented as a natural part

of the formulation. Finally, we have outlined a method for optimising the parallelisation of

the Fast Fourier Transform in the case where the underlying network topology consists of

massively multi-core nodes. The focus of the rest of this thesis is to apply these numerical

methods to simulations of pipe flow. In the next chapter, we aim to determine a mesh which

is capable of sufficiently resolving the small-scale structures in turbulent flow. We then move

to performing simulations of the reverse transition from turbulence to laminarity in order to

observe and classify the resultant states.

72



Chapter 4

Transitional Dynamics of Pipe Flow

The previous two chapters have introduced the spectral/hp element method and a high-order

timestepping scheme for the Navier-Stokes equations which, when combined, provide a

highly accurate and efficient scheme for the numerical investigation of a number of fluid

problems. In this chapter, we will focus on applying these computational methods to studying

various aspects of the transition to turbulence in pipe flow.

The first section of this chapter investigates a number of potential meshes for use in pipe

flow simulations. Ensuring that the spatial domain is correctly resolved is a key aspect of any

numerical study, but is particularly important in turbulent pipe flow simulations (amongst

other fluid problems) because even minor under-resolution can lead to significant errors

in the resulting velocity and pressure fields. We therefore study a classical Chebyshev-

Fourier collocation mesh and demonstrate how the structure can be duplicated in a spectral

element mesh. We then perform a detailed numerical study in order to determine the

minimum resolution requirements for later numerical studies in order to reduce unnecessary

computational overheads.

The rest of this chapter is dedicated to computational investigations of pipe flow. Initially

we present the results of a large-scale, long-time simulation in a L D 125D pipe which

unlike the vast majority of existing studies, aims to examine the reverse transition as flow

relaminarises from a turbulent initial condition. Unlike the forward transition problem, which

depends on a finite-amplitude perturbation of a laminar flow, the reverse transition reveals

states which form naturally within the transition. We then move on to investigate and classify
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the intermittent states found within this transition.

4.1 Resolution requirements

One of the key requirements for an accurate turbulence simulation is adequate resolution

of the domain under consideration. The precise conditions are difficult to derive explicitly

and are not reproduced here; however, they are derived in detail in Grötzbach (1983) for the

Raleigh-Bernard convection problem and are further adapted for pipe flow in Eggels et al.

(1994). Summarising these works, to perform a fully-resolved simulation we must:

(i) have a large enough domain to contain large-scale vortices and structures;

(ii) correctly reproduce the steep gradient of the solution field found at no-slip boundaries;

(iii) ensure a small enough mean grid width to reproduce small-scale structures.

The first of these criteria is easily satisfied by using existing experimental knowledge of

large-scale structures found in pipe flow. However, it is important to note that the presence

of these structures will severely impact on the amount of computer time needed to perform

the simulation.

Determining precise conditions to satisfy the second criterion involves examining in finer de-

tail the velocity field near the pipe wall. To do this, one defines an appropriate dimensionless

scaling which represents the size of structures that can be found around the boundary of the

pipe.

Definition 4.1.1 (Wall unit). Let y denote the distance from the wall. Then a wall unit y+

is defined as

y+ D u⌧y

⌫
:

Here u⌧ is the friction velocity,

u⌧ D
r
⌧w

⇢

and ⌧w is the wall-shear stress as defined in the previous chapter.
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In a similar fashion, we can use the friction velocity to transform the axial flow field near the

wall by writing

u+ D u

u⌧
:

In these units, fully developed turbulence can be described in a universal fashion. The

boundary layer itself can be decomposed into various sublayers which scale according to a

variety of laws.

Of particular importance is the viscous sublayer, which has a width of around five wall

units. Eggels et al. (1994) states that a mesh will be sufficiently refined if at least three

nodal points are placed inside this sublayer. In addition, if the mean grid spacing Å satisfies

Å 6 ⇡⌘, where ⌘ is the Kolmogorov length scale (the scale of the smallest structures that

must be resolved), then the third criterion will be satisfied. An alternative computational

investigation of pipe flow performed by McIver et al. (2000) using a spectral element

formulation additionally states that the first non-boundary collocation point should be placed

such that y+ < 1.

There is little or no documentation about the resolution that is required for transitional or

intermittent dynamics. Mostly it is assumed that if the domain is resolved correctly for

isotropic turbulence then this is sufficient for transitional simulations. To that end, this is the

approach adopted here, although it is not apparent whether this is the correct approach to

take.

In the following sections, we will attempt to identify a suitably resolved spectral element

mesh. We begin by introducing the Chebyshev collocation scheme which is often used in

spectral discretisations of pipe flow in the radial direction. We then move on to discuss two

different mesh constructions which emulate the placement of the Chebyshev nodal positions.

With the use of fully-developed turbulence simulations, we attempt to identify a suitable

candidate mesh for further use.

4.1.1 Chebyshev-based meshes

Due to the simple geometry of a cylinder, spectral collocation schemes are especially useful

for simulating pipe flows due to their excellent convergence properties. However, we must

choose basis functions which correctly enforce the various boundary conditions. In chapter 2
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it was shown that Fourier trigonometric functions make an efficient choice of modal functions

in problems requiring the use of periodic boundary conditions. In the context of pipe flow

then, we may naturally apply these modes in both the azimuthal and axial directions. At the

pipe wall however, we must impose a no-slip condition, which requires the use of a Dirichlet

boundary condition, and so alternative modes must be used.

Definition 4.1.2 (Chebyshev polynomials). The Chebyshev polynomials Tk W Œ�1; 1ç !
R are defined by

Tk.x/ D cos.k cos�1 x/; k > 0;

and form an orthogonal set of functions under the L2 inner product with the weighting

.1 � x2/�1=2.

Chebyshev polynomials are widely used in spectral collocation schemes. Whilst differentia-

tion is not as readily performed as in the Fourier case, they do allow for Dirichlet boundary

conditions to be easily implemented. Additionally, by selecting the nodal points

xj D cos
✓
j⇡

Nr

◆
;

we obtain the computationally useful equality

Tk.xj / D cos
✓
⇡jk

Nr

◆

and so the fast Fourier transform can be used to efficiently convert to and from spectral space,

making tasks such as differentiation both easy and highly accurate.

In the context of pipe flow, a typical choice Nr D 40 radial points and N✓ D 48 azimuthal

points can be seen in figure 4.1(a), which allows computations to be well-resolved up to

Re ⇡ 3000. As well as being computationally efficient, the density of nodal points increases

towards the pipe wall which assists in the extra resolution required in the boundary layer.

4.1.2 Spectral-element discretisation

Whilst the use of an elemental method seems somewhat of an odd choice to use in the setting

of pipe flow, their non-uniform properties allow us to increase resolution in specific parts
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(a) Chebyshev-Fourier mesh with
Nr D 40 and N✓ D 48.
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(b) Spectral-element mesh using Nel D
64 and two-fold reflective symmetry.

�0.4 �0.2 0.0 0.2 0.4

�0.4

�0.2

0.0

0.2

0.4

(c) Spectral-element mesh using Nel D
44 and rotational construction.

Figure 4.1: Examples of different types of mesh construction for the two-dimensional
circular cross-section of the pipe. Spectral-element meshes use polynomial order P D 12.
Elements which are filled in indicate the placement of GLL nodal points.

of the domain. By constructing a mesh for the two-dimensional circular cross-section of

the pipe, we may place smaller elements around the boundary layer, where finer resolution

is required, and larger elements towards the centre of the pipe where typically the scales

of structures are much larger. To a certain extent, this mitigates the problem highlighted in

figure 4.1(a), where the azimuthal discretisation leads to a build-up of nodal points at the

centre of the pipe.

Another significant advantage is the ability to use a Cartesian co-ordinate system. Under a

cylindrical polar discretisation, we must employ the use of purely computational boundary

conditions along the pipe axis, such as those derived in Blackburn & Sherwin (2004). Unless

carefully implemented, this boundary condition may lead to additional computational errors
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not found under a Cartesian formulation. This is particularly highlighted in McIver et al.

(2000) which investigates the errors found in Cartesian and cylindrical formulations in

domains of comparable resolution.

Elements can generally be any convex polygon. Here however, we will consider the quadri-

lateral elements used in Semtex. In particular, meshes used in Semtex and other elemental

codes are often required to be conformal; that is, any two intersecting elements must possess

a common edge. A strategy must therefore be employed to reduce the number of elements

found towards the centre of the pipe. There are three problems we must overcome:

✏ accurately representing the outer curve of the disk;

✏ partitioning the disk using quadrilateral elements to form a conformal mesh;

✏ using as few nodal points as possible to resolve the domain accurately.

An easy solution to the first point is to use many elements to approximate the curve of the

circle. However, this is computationally inefficient and is not easily adapted to be conformal.

Instead, it is desirable to curve the edges of elements, which provides a better fit to the pipe

wall. This may be accomplished by altering the bijection �e which maps the standard region

�st to the e-th element �e. This process requires careful thought so that the structure of

the resulting mass and Laplacian matrices remains relatively undisturbed, and therefore it is

not reproduced here. Karniadakis & Sherwin (2005) investigate this problem in far greater

detail.

Figures 4.1(b) and 4.1(c) show two different styles of construction that can be employed,

both of which have been used to perform the simulations throughout this thesis. Whilst both

have forms of reflective and rotational symmetry, we define figure 4.1(b) to be an example

of a ‘reflective’ mesh since the circle is split into four identical quarters. On the other hand,

the mesh of figure 4.1(c) is designed to emulate the placement of the Chebyshev collocation

points but remove the large build-up of points around the origin. In addition it curves internal

elements to reduce the mean grid spacing and hence is deemed a ‘rotational’ mesh.

In the following section, we will demonstate that the rotational mesh style has many advan-

tages over the reflective mesh. The most obvious of these is that the number of elements

Nel is nearly half that of the reflective mesh. Additionally, the rotational mesh has far fewer

elements containing obtuse angles which cause numerical errors to become larger under the
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spectral element formulation. Finally, it is easier to generalise the mesh depending on the

level of resolution required. We define figure 4.1(c) to be a K8;5 mesh, where in general,

K✓;r denotes a mesh with ✓ elements placed azimuthally and r rings (excluding the four

central elements) placed radially. Obviously this notation is not well-defined in the sense

that the placement of elements is not unique, but provides a useful shorthand to refer to each

mesh.

4.1.3 Resolution testing

In order to satisfy the third requirement of the previous section, a number of short experiments

have been performed to determine suitable choices for the polynomial order P and element

mesh K✓;r . Suitable in this sense means that the parameters are chosen which are small

enough to minimise computational effort, whilst providing a sufficiently resolved domain up

to Re ⇡ 3;000 and hence provide the ability to simulate fully-turbulent flows.

In these simulations, the domain length and axial resolution are fixed at L D 10D and

Nx D 386 respectively, providing a domain capable of generating data over long timescales

in short periods of execution time, and also allowing Å to remain sufficiently small. Periodic

boundary conditions are taken in the axial direction and the flow is driven using the volumetric

flux technique of section 3.2. A fully turbulent flow is simulated for a short period of time

using a very high-resolution mesh. The resulting flow field provides an initial condition to

test any given candidate mesh Kr;✓ .

A spectral interpolation technique is used to project the high-order flow field onto each

candidate mesh, and as a result it is likely that some small numerical errors may appear. For

instance, some meshes may contain nodal positions near to or on the boundary which do not

appear on the high-resolution mesh. In order to alleviate these problems, the field is allowed

to ‘burn in’ for 100-200 time units, providing sufficient time for transient effects resulting

from the interpolation to decay.

After the burn-in period, a large number of quantities are recorded; of particular interest are:

✏ regular outputs of field data;

✏ time-averaged field data;
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Figure 4.2: Trace of the axial velocity u.0; t / for the instigation of turbulence in a pipe of
length L D 20D. The figure is split up into three regions: (a) initial deformation of the
turbulent profile; (b) onset of instabilty; (c) transition to statistically steady turbulent flow.

✏ the forcing term ˛.t/ used to impose the constant volumetric flux condition;

✏ shear stress data around the boundary to determine ⌧w .

By comparing these quantities to existing literature, or the results from the high-resolution

mesh, we can draw conclusions pertaining to the suitability of any given candidate mesh.

The choice of high-resolution mesh is critical, since it is the benchmark to which all other

meshes are compared. Initial testing revealed that the reflective mesh of figure 4.1(b) using

P D 12 provides a sufficient mesh to provide a good comparison. Indeed, comparison

against literature (in particular McIver et al., 2000, which also uses this mesh) shows it

remains well-resolved up to Re ⇡ 5;000.

To generate the initial turbulent field, we use a standard technique seen in much of the

existing literature. An initial laminar condition u0 is generated with the mean profile of a

turbulent field. To this, we add normally-distributed white noise with a small amplitude. A

good approximation to the mean profile can be obtained by using a one-seventh power law,

so that the initial condition becomes

u0.x; r; ✓/ D .C.R � r/ 1

7 ; 0; 0/C 10�4
n.x; r; ✓/
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Figure 4.3: L1 error of the near-wall axial velocity u+
z for various polynomial orders P for

four candidate meshes.

where C is a constant ensuring that the fluxQ.u0/ is approximately equal to the bulk velocity

and n.x; r; ✓/ is normally distributed noise with zero mean. Figure 4.2 shows the resulting

transition to turbulence for this initial condition in a pipe of length L D 20D and diameter

D D 1. Part (a) of the figure shows a deformation of the initial mean-turbulent profile

into one approaching laminarity. However, after around 75 time units, part (b) shows the

sudden growth of the small perturbations, leading to the initial onset of turbulent flow. These

perturbations grow most rapidly in the axial component of velocity, and as such the flowrate

restriction forces the mean velocity to remain near its maximum of umax D 2. After a short

period of apparent stability, the disturbance grows large enough in the transverse velocity

that a sharp drop in mean velocity to a statistically steady turbulent state is seen, as shown in

part (c) of the figure.

One remaining question is that of the length of time required to generate suitable averages

for the field data and wall-shear stress. Here, each simulation of a candidate mesh gathers

precisely 5 ⇥ 102 time units of data after burn-in, a quantity which is regarded to be far

more than is statistically necessary. For the high-resolution mesh, we use a field obtained by

averaging over 2 ⇥ 103 time units to obtain a more accurate temporal average.

A classical test for measuring the accuracy of numerical turbulence results is a semi-
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logarithmic plot of the non-dimensionalised mean axial wall velocity u+ as a function

of wall units y+. This curve has a distinctive shape and is very sensitive to numerical error.

To obtain a general overview as to the suitability of each mesh, a velocity field Qu+.y+/ is

generated and the L1 error k Qu+ � u+k1 is calculated, where u+ is the field obtained from

a simulation on the high-resolution mesh. Figure 4.3 shows these errors for polynomial

orders 7 6 P 6 12 on the reflective mesh of figure 4.1(b) and a variety of rotational meshes:

namely, K6;5 and K8;r for r D 4; 5.

There are a number of immediate conclusions that can be drawn from this plot. Firstly,

increasing P broadly decreases the error for all meshes, demonstrating that this is a rea-

sonably suitable metric by which to compare them. In addition, the reflective mesh (for

which P D 12 is the high-resolution comparison mesh) shows consistently similar results

for P > 10, indicating its suitability for comparison at P D 12.

The worst performing mesh is clearly K6;5, which shows persistent under-resolution even

at high polynomial order. The radial spacings here are precisely those used in the K8;5

mesh which performs significantly better at all polynomial orders. This indicates that 6

azimuthal elements are insufficient to correctly resolve the domain, and we therefore require

✓ > 8 azimuthally placed elements. To determine the suitability of the radial resolution, we

consider another mesh K8;4 which has fewer radial elements. At P D 7 and 8, the mesh

performs similarly to theK6;5 mesh, and indicates the domain is significantly under-resolved

in the radial direction. However, for P > 10, the error is more similar to that seen in theK8;5

mesh indicating that the errors seen are more likely to arise from azimuthal under-resolution.

These results demonstrate that the K8;4 mesh at P D 12 provides an ideal compromise of

azimuthal and radial resolution, providing a very close approximation to the comparison

mesh. Figure 4.4 shows a standard semi-logarithmic plot of u+ against wall units y+ for the

comparison mesh (solid blue line) and the K8;4 (dots) mesh which demonstrate the accuracy

of the fit across the whole of the curve.

The significant advantage of this mesh is the improvement in computational speed. For any

mesh, the total number of degrees of freedom in the system is given by Ndof D 4NxNelP
2.

(The multiplication by four arrives from the three components of the velocity field and the

pressure field.) For the high resolution mesh, Nel D 64, whereas the K8;4 mesh only has

Nel D 36 elements, thus reducing the overall number of degrees of freedom by a factor of

82



100 101 102

y+

0

5

10

15

20

u+
z

High-order mesh, P D 12
K4;8 mesh, P D 12

Figure 4.4: Axial component of the near-wall velocity u+
z in a full-turbulence simulation at

Re D 3000 using two different types of meshes.

around two at any given P .

4.2 Transitional Dynamics

The investigation of pipe flow has its origins with Reynolds (1883a),b, whose famous

experiments demonstrated the classical relationship between the onset of turbulence and the

dimensionless parameter known today as the Reynolds number

Re D UD

⌫
:

Reynolds discovered that above some critical threshold, the underlying Hagen-Poiseuille

equations will, if sufficiently disturbed, give rise to turbulence. Similarly, below this threshold

the parabolic Hagen-Poiseuille velocity profile is recovered. His experiments demonstrated

that this transition occured around Re ⇡ 2;000, although he was not able to determine a

precise value for the transition point. Finding the exact value for this point has remained

a topic of fundamental importance and remains an open problem. In chapter 5 we will

investigate this problem in far greater detail.
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Figure 4.5: Schematic traces of the axial velocity u for a puff (left) and slug (right) along
the pipe axis x advected from left to right. Leading edges (LE) and trailing edges (TE) are
noted on each figure. umax signifies the maximum attainable laminar velocity (equal to 2 if
U D 1).

In practice, pipe flow is extremely susceptible to perturbations. Reynolds was originally

able to maintain laminar flow up to an impressive Re ⇡ 12;000, but this value has been

significantly extended; Pfenniger (1961) demonstrated laminar flow up to 105. However,

extreme measures need to be taken to isolate the system from external noise and to reduce

disturbances at the in-flow. The sensitivity of pipe flow is aptly described by Wygnanski &

Champagne (1973), who noted that placing a standard incandescent light bulb 10 feet from

their experimental apparatus led to a significant change in their observed data.

Mathematically however, the laminar equations of motion remain extremely resilient to the

application of infinitesimal perturbations. Unlike many dynamical systems, in which the

underlying stable profile undergoes a bifurcation to instability upon the change of a parameter,

it is believed that the base flow profile remains linearly stable (Meseguer & Trefethen, 2003),

with proofs existing in the case where the infinitessimal perturbation is axisymmetric (Herron,

1991). The conflicting nature of these theoretical and experimental observations has lead

pipe flow to become a topic of great interest for mathematicians, physicists and engineers

alike, motivating a large number of studies over the last 125 years.

Most of these studies have focused on the investigation of coherent structures found in the

flow as the flow transitions from laminarity to turbulence. Reynolds’ original experiments

noted that for Re ⇡ 2;300, applying a perturbation to the fluid leads to isolated ‘flashes’ in

the fluid which grow and split to contaminate the downstream flow. The work of Wygnanski

& Champagne (1973) greatly expanded the understanding of these flashes and classified

them into two distinct states. Puffs are small regions of intense turbulence found around
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transitional Re, which maintain a length of approximately 25D and are categorised by their

distinctive trailing edge (TE), schematically defined in the left side of figure 4.5. Slugs are

the high-Re equivalent of puffs, with a far sharper leading edge (LE) and are found for Re

which is typically associated with fully-developed turbulence.

Both of these structures can be generated by sufficiently disturbing the laminar flow profile

with a finite-amplitude perturbation at various Re. Puffs are found for values as low as

Re & 1;700, and at these lower Re will often decay quickly. For Re & 2;300, splitting events

occur with new puffs being nucleated downstream from the leading edge of existing puffs

(Nishi et al., 2008). Between these two values, puffs remain isolated and of a constant length,

and are thus deemed ‘equilibrium’ puffs; a topic investigated at length by Wygnanski et al.

(1975) and further by Bandyopadhyay (1986). Slugs evolve in a radically different fashion,

with the TE moving far slower than the mean flow and the LE advected much faster, so that

any disturbance rapidly contaminates the downstream flow (Duguet et al., 2010).

Until recently, the simulation of puffs and slugs has proven beyond the reach of computation

due to the large domains required to adequately resolve them. The first fully-resolved

turbulence computations at Re D 3;500 were performed by Eggels et al. (1993) in a pipe of

length L D 5D and in Eggels et al. (1994) these were compared to existing experimental

data. Later work by Shan et al. (1999) used a 1D/2D joint spectral-element–Fourier code to

simulate puffs and slugs and expanded these domains to a much larger L D 16⇡D; however

the computations here suffer from an under-resolution in the axial direction, especially in the

simulation of slugs at Re D 5;000. Faisst & Eckhardt (2004) examined decay rates of puffs

in a fully-resolved domain of length L D 5D; however too short to fully encompass a single

puff. Most recently, work by Willis & Kerswell (2007) employed the use of an efficient

hybrid finite-difference–spectral solver in domains of length L D 50D and are the first

examples of fully-resolved simulations in domains large enough to faithfully represent puffs.

Further work has also made significant use of computational resources in order to simulate

puffs and slugs (Willis & Kerswell, 2008, Hof et al., 2010, Avila et al., 2010, Duguet et al.,

2010).

However, the common theme amongst most of these works is that they concentrate on the

transition from a laminar to turbulent flow. This requires the use of a perturbation and thus

the transition may depend upon both the type and amplitude of the disturbance applied. In
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addition, most studies have concentrated on investigating the temporal aspects of the flow; for

instance, measuring the average time taken for turbulence to decay. Complex spatio-temporal

interactions, such as the interaction of two puffs, have been for the most part overlooked.

Another line of research has emerged concerning alternating turbulent-laminar flow states

which form in subcritical shear flows over large length scales (Prigent et al., 2002, 2003,

Barkley & Tuckerman, 2005, 2007, Tsukahara et al., 2005, Manneville, 2009). This work

has established that in plane Couette flow (Prigent et al., 2002, 2003, Barkley & Tuckerman,

2005, 2007), counter-rotating Taylor-Couette flow (Prigent et al., 2002, 2003), and plane

Poiseuille flow (Tsukahara et al., 2005), near transition the system can exhibit a remarkable

phenomenon, in which turbulent and laminar flow form persistent alternating patterns on

scales very long relative to wall separation and the spacing between turbulent streaks. While

the origin of these patterns remains a mystery, they are intimately connected with the lower

limit of turbulence in shear flows.

In this section then, we will attempt to quantify whether pipe flow is also capable of

supporting these alternating bands, and, if they exist, investigate the form that they take.

4.2.1 Simulation methodology

The general methodology for these series of simulations is to examine a pipe of length L

which is sufficiently long to encompass large-scale structures. Periodic boundary conditions

are used at each end of the pipe, removing the need for inflow and outflow boundary

conditions and thus the experimental constraint of a domain of the order of thousands of

diameters. Whilst it is possible to argue that the choice of periodic boundary conditions

allows us to use an arbitrarily small domain length, it must be large enough to encompass

the structures discussed thus far. At a minimum then, we require L > 25D so that the

domain may resolve a single puff. However, if larger-scale structures exist then they will

not be represented. Here then, we opt to use a pipe of length L D 40⇡D ⇡ 125D. Whilst

extremely computationally expensive, this very large choice of length allows us to study very

large-scale structures, should they exist, in the transitional regime.

The simulation is started with a uniformly turbulent state at Re D 5;000 using the reflective

mesh of section 4.1.3 at polynomial order P D 12. Whilst extremely expensive, this
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increased resolution allows us to use the perturbation technique shown in figure 4.2 to

generate the turbulent initial condition. The flow is driven using a constant volumetric flux

so that the bulk velocity U D 1, ensuring that the simulations are performed at a prescribed

Reynolds number.

Since the turbulent flow is more resilient to large alterations in parameters (e.g. mean flow

speed) at higher Re and thus less prone to abrupt relaminarisation, we rapidly reduce Re

to 4;000 and 3;000 in quick succession, simulating each for around 300 time units .D=U /.

Nearer the transitional regime, we reduce the polynomial order to P D 11 and decrease Re

in finer increments; initially, in steps of 200 and then in smaller steps of 50. We also increase

the simulation length to examine lower Re cases in greater detail, with each case being

run for 2;000 time units. This simulation represents the longest continuous fully-resolved

numerical simulation of transitional pipe flow to date.

4.2.2 Identifying turbulence

Given the large number of degrees of freedom, the field data for this simulation is too large

to record frequently. Instead, at any given time tn, we sample this data at a subset of points

H D π.xk; 0; 0; tn/ 2 � ⇥ Œ0;1/ j 0 6 k 6 Nxº called history points, where xk D kÅx

denotes the position of each two-dimensional circular Fourier plane along the axis of the

pipe. Since the mean flow obtains its maximum at the centre of the pipe, this allows us to

obtain a general overview of the state of the system without recording all field data.

Given the existence of possible intermittent states, it is also necessary to construct a quantity

to identify the intensity of turbulent areas throughout the pipe length. A classical choice as

used in Pope (2000) is the vorticity ! D r ⇥ u. However, this cannot be constructed from

the data contained in H . Instead, we consider a scalar based upon .v; w/, the transverse

components of velocity. Whenever the flow is laminar, we must have that v D w D 0;

therefore in areas of low turbulence, v and w must be close to zero.

We thus construct the scalar field q W H ! R

q.xk; tn/ D
q
v.xk; tn/2 C w.xk; tn/2; (4.1)

which is related to the transverse kinetic energy Etransverse D 1
2
.v2 C w2/, an important
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quantity for studying the transport and dissipation of turbulent flows. This satisfies the

condition that q D 0 whenever the fluid is laminar. Composing this with the square root

intensifies areas of turbulence and allows us to see areas of very-near laminar behaviour.

Since U D 1, a fluid particle along the axis will travel through the pipe once every 125 time

units on average, and so it is desirable to view the data in a moving frame of reference. Given

a speed c, this can be achieved through use of the Galilean transformation

q.x; t/ 7! q.x � ct; t/:

This transformation would be somewhat difficult to implement in a standard inflow-outflow

problem, since it requires changing the no-slip boundary condition so that u.@�/ D .0; 0; c/,
and hence assumes a prior knowledge of the speed c.

Another advantage of using periodic boundary conditions then is that it allows us to apply

the transformation for any given c when post-processing the data. Expanding q as a Fourier

series,

q.x C ct; t/ D
X

k2Z

Oqk.t/e
ik.x�ct/ D

X

k2Z

Œ Oqk.t/e
�ikct çeikx;

and so the transformation can be obtained through a simple multiplication of the Fourier

modes of q.

Although c can be any arbitrary constant, there are two choices which would be suitable

for this simulation. We may pick the bulk velocity U by which all velocites are non-

dimensionalised; otherwise, we could pick the mean puff velocity Upuff. The latter option is

not suitable for these simulations, since slugs are the dominant structures found at the initial

condition where Re D 3;000. In addition, even where puffs exist at lower Re, their position

(and therefore speed) is somewhat difficult to determine, as well as being Reynolds number

dependent (de Lozar & Hof, 2009). A better choice is therefore c D U , which provides a

consistent frame of reference to compare the states over a range of Re.

4.2.3 Results

The results of the above data extraction process can be seen in figure 4.6. The main figure

shows the space-time contour of q moving in a frame of reference moving at a speed U .
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Figure 4.6: Dynamics of transitional flow from simulations of a L D 125D pipe. The
central plot shows a space-time diagram with the streamwise direction horizontal and time
increasing vertically upwards. The value of Re changes as indicated on the right. The
magnitude of the transverse velocity q is sampled along the axis of the pipe and visualised
in a frame moving at the average fluid velocity: q.x � U t; t/. Colours are such that light
corresponds to turbulent flow and black corresponds to laminar flow. Below and above are
flow visualizations in vertical cross-sections through the pipe at the initial and final times,
and over the 25D streamwise extents indicated by arrows.
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From the bottom of the figure moving upwards (i.e. as time increases), Re is decreased

in discrete steps at the times indicated by ticks on the right of the figure. Three uniquely

identifiable regimes can be visually identified.

At Re & 2;600, the flow remains uniformly turbulent, with no large-scale variation evident

in the turbulent structure throughout the pipe as visualised in the bottom portion of the figure.

This is easily contrasted with the behaviour seen as Re is reduced below 2;600. Regions of

nearly laminar flow (identified by dark colours in the figure) are seen to spontaneously form

and disappear within large areas of turbulence. Slightly downstream of these regions one

finds a sharp increase in the turbulent activity, similar to that seen diagramatically in figure

4.5. Furthermore, this change in behaviour occurs immediately upon the change of Reynolds

number from 2;600 to 2;500. At this point, the fluid is in an intermittent state, possessing

qualities of both turbulence and laminarity.

As Re is reduced further, the small laminar patches that appear at Re D 2;500 grow steadily

in size, giving rise to a more regular alternation of turbulent and laminar flow. The turbulent-

laminar states are not, however, steady; there are splitting and extinction events which occur

in a sporadic fashion, sometimes in quick succession. (For an example, see t ⇡ 8;600; x ⇡
100D for an extinction and t ⇡ 8;000; x ⇡ 80D for a splitting event.)

These extinctions and splittings slow as Re is reduced so that the turbulent patterns become

almost steady, and at the end of the simulation there are four clear turbulent structures

separated by relatively laminar flow. The upper flow visualisation reveals that these turbulent

structures are, in fact, equilibrium puffs, identical to those observed by Wygnanski &

Champagne (1973) and commonly seen in many other experiments.

The ‘slant’ of the puffs is due to the fact that the frame of reference here is taken using

the bulk velocity U . Puffs will typically travel at speeds slower than the bulk velocity

as computed in Shan et al. (1999), since they require energy from the mean flow to pass

through them in order to sustain turbulence. Typical speeds for Re D 2;250 are around

Upuff ⇡ 0:95U , demonstrated experimentally by de Lozar & Hof (2009), and have been

validated to be approximately the same here, giving another indication that the domain is

correctly resolved.

Figure 4.6 shows that pipe flow exhibits a variety of previously unseen behaviour. Firstly,

it conclusively demonstrates the spontaneous emergence of (equilibrium) puffs from a
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uniformly turbulent state. The dynamics of the flow at transition then naturally incorporate

puffs, and they are not a result of random perturbations to the flow. Moreover, states involving

trains of two or more puffs are shown to exist that do not end in the annihilation of all but

one puff, conclusively demonstrating that the turbulent-laminar alternation seen in other

flows also exists in pipe flow. Spatio-temporal intermittency therefore plays a key role in the

transition process.

The rest of this chapter will be dedicated to investigating the states and transitions contained

in figure 4.6. Whilst the onset of intermittency is intuitively and visually clear, it still remains

for it to be quantified. In addition, a second transition, which is not clearly identified in the

figure, can be identified which distinguishes the unsteady intermittent flashes to the more

ordered behaviour seen towards the end of the simulation. We shall investigate the latter

transition first.

4.3 Transition between localised and intermittent turbulence

In figure 4.6, there is a striking difference between the unsteady, constantly changing turbulent

flashes seen at Re D 2;350 and the more ordered puff-like behaviour seen at Re D 2;250.

The splitting and extinction events which occur at higher Re seemingly happen at random,

and therefore the major question that may be asked is: “is there a critical Re below which

puffs remain isolated?” The work presented in this section represents an initial attempt at

answering this question, based on the dynamics seen in figure 4.6.

4.3.1 Methodology

The methodology for this series of simulations will closely follow the domain expansion

approach adopted for Couette flow by Barkley & Tuckerman (2005), in which a similar

pattern of alternating laminar-turbulent bands is examined. The initial condition is taken to be

a single equilibrium puff in a domain of length L D 25D with periodic boundary conditions,

where the domain is resolved with the same density of collocation points as in the previous

section and a constant volumetric flux U D 1 is enforced. Initially, the puff is evolved for

1,000 time units to ensure that it remains stable and does not abruptly relaminarise.
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L (inclusive) Nx

25D 384
30D ! 35D 512
40D ! 45D 768
50D ! 70D 1,024
75D ! 90D 1,536

Table 4.1: Axial resolution requirements for the pipe expansion experiment of section 4.3.1
for various domain lengths L.

After this initial period, L is increased by five diameters, and the solution field is stretched to

fit the new domain length. The field is then timestepped for 500 time units, allowing enough

time for the solution to stabilise after the stretching procedure and any transient effects to

disappear. This lengthening procedure is applied repeatedly at 500 time unit intervals until

L D 90D, at each stage ensuring that the domain remains correctly resolved by increasing

the axial resolution by use of the values stated in table 4.1.

4.3.2 Results

The results of this simulation can be seen in the space-time diagrams of figure 4.7. The

difference between the two states is immediately apparent. At Re D 2;250, a single localised

turbulent puff persists independently as L is increased. On the other hand, at Re D 2;350
any change in L results in splittings so that puff structures fill the entire length of the pipe

and the ratio of turbulent to laminar flow is kept constant.

We begin by looking in more detail at Re D 2;250. Once L is sufficiently large, the predomi-

nant state is that of a single localised puff, and this state remains unchanged throughout the

entire simulation. Surrounding the turbulent puff is not only laminar flow; far downstream,

fully developed parabolic Hagen-Poiseuille flow is recovered. This is demonstrated by the

trace of the axial velocity in the upper part of figure 4.8 which shows that the centre-line

velocity asymptotes to umax D 2.

Note that, as is clearly shown in figure 4.6, states exist at Re D 2;250 which contain multiple

puffs, and of course since these simulations are run in a periodic domain, the solution

here actually corresponds to multiple puffs in an infinitely long pipe. However, given the

long domain length and the re-laminarisation downstream of the puff, the simulation here
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Figure 4.8: Streamwise velocity u and y-component of the transverse velocity v for the
final state of figure 4.7 at Re D 2;250 (top) and Re D 2;350 (bottom).

suggests that the long-time, large-domain state at Re D 2;250 is persistent localised patches

of turbulence travelling at a fixed speed and maintaining a constant size, residing in a

background of laminar flow.

By contrast, the behaviour seen on the right of figure 4.7 at Re D 2;350 shows far more

complex dynamics than those at Re D 2;250. The single puff at L D 25D undergoes

splittings at L D 50D and L D 75D so as to maintain the spatial proportion of turbulent

to laminar flow. Whilst this splitting is unsteady and unordered (especially during the last

500 time units), the lower portion of figure 4.8 shows the distinctive velocity traces of three

puffs travelling closely in the pipe. Note that the maximum parabolic velocity umax D 2 is

never attained; instead, the puffs appear to maintain a (relatively) fixed distance from one

another, never allowing the flow to fully re-laminarise. Further work by Samanta et al. (2010)

on this topic has confirmed that puffs maintain a fixed interaction distance dmin ⇡ 20D at

Re D 2;350 so that in a pipe of length 90D, there should be a maximum of three puffs,
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corresponding to the number seen in these studies.

The striking difference in the two simulations performed here lends credibility to the idea

of a transition point between intensive and extensive dynamics; two terms which are often

referred to in the context of thermodynamical systems. An extensive quantity is dictated by

the size of a domain, whereas intensive quantities remain scale invariant. At Re D 2;350,

turbulence can be viewed as an extensive quantity, since the amount of turbulent flow is

dictated by L and not the initial conditions. However at Re D 2;250, the turbulence becomes

an intensive quantity since changing L has no effect on the proportion of turbulent flow in

the pipe. Somewhere between these two values then, there should exist a critical point which

may be approximated as 2;300 from this data. Beyond this value, the dynamics become

extensive leading to the splitting of puff states, causing turbulence to spread throughout the

domain and thus leading to a sustained turbulence state. Therefore the intensive-extensive

transition point can be classified as the critical Reynolds number and thus Rec ⇡ 2;300.

Whilst this is a valid conclusion from the available data, it is not however entirely correct,

since as will be explained in chapter 5 we must not only consider a single simulation, but in

fact multiple simulations each of which uses a different puff state as initial condition. The

reason for this stems from the investigation of the lifetimes of puffs, in which the question

asked is, “does there exist a critical Reynolds number above which puffs do not decay?” The

lifetime studies of Faisst & Eckhardt (2004) conclusively demonstrated that the decay of

puffs is governed by a memoryless process which appears stochastic and is characterised by

a mean lifetime. The precise scaling of this lifetime as a function of Re has received much

attention since the original publication; however, further work by Hof et al. (2006), Hof et al.

(2008) and Avila et al. (2010) amongst many others shows that given sufficient time there is

always a non-zero probability of decay.

The notion of a stochastic process which is embedded within a deterministic system is

somewhat strange since, from the standpoint of dynamical systems, any given initial condition

has a prescribed and unchanging evolution through the phase space of possible solutions and

no random effects are introduced to the solution in the manner of a stochastic PDE. However,

the complexity of this space means that the evolution of two very similar, but distinct states

can be radically different. In this case, the behaviour of the decay process presents itself

as observing certain properties which can be deemed to be stochastic, thus the use of the
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terminology.

Since the nature of the decay process is stochastic, it therefore seems that to correctly interpret

these results a large number of additional simulations must be performed, and this is done in

chapter 5. However, it is important to note that even with this oversight, the results presented

here still lend credibility to the idea of an intensive-extensive transition. By considering an

ensemble of initial conditions, we will determine in chapter 5 what the nature of this point

is, and whether it is indeed the case that all puffs split above Rec , or whether some other

stochastic effects must be taken into account.

The one clear observation from these simulations is that whilst lifetime studies seem to

suggest that all localised puffs will eventually relaminarise regardless of Re, the data at

Re D 2;350 in figure 4.7 shows that this is not likely to be the case. Even at Re D 2;250,

the characteristic lifetime for the decay of a puff is above ⌧ D 1010 (de Lozar & Hof, 2009),

nine orders of magnitude greater than the time taken to observe a split in the simulation at

Re D 2;350. From these results, we may infer that the upper bound on this transition point

is Rec 6 2;350, but further simulations which take into account any stochastic properties of

the splitting process must be performed in order to determine a precise value.

4.4 Onset of intermittency

The most visually apparent transition point of figure 4.6 is the appearance of laminar spots

from the fully turbulent initial condition. As Re increases upward from 2,300 (moving

downwards in figure 4.6), intermittent puff splittings and extinctions give rise to an increased

proportion of turbulent flow in which puffs are not clearly identifiable. One continues to

observe more intense turbulence on the downstream sides of laminar regions much like the

trailing edge of a puff. Intermittent events are visually apparent until Re D 2;500, and minor

fluctuations can be detected at Re D 2;600, but not at higher Re.

A natural question to ask then is “is there a critical Reynolds number below which the flow

becomes intermittent?” Unfortunately this question, whilst simple to state, is difficult to

answer and somewhat ill-posed. Firstly, whilst the onset of intermittency is easy to identify

by eye in figure 4.6, we must address what is meant by ‘intermittency’ and thus identify a

quantitative method for identifying flows which are intermittent. In addition, this method
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should hopefully be independent of any artificial parameters so that the transition as a

function of Re can be obtained.

In the sections below, we describe two different techniques for identifying intermittent

flows, and outline the methodology for an experiment to identify a transition point. We then

conclude with the results of this experiment along with an analysis of the data in hopes of

identifying the transition point.

4.4.1 Intermittency factor

The intermittency factor is a classic metric representing the balance of turbulent to laminar

flow which is present in a fluid at any given time. It has not typically been used in pipe flow

studies, with the notable exception of Rotta (1956) who examined various unsteady states

around transition using the intermittency factor. In order to define the intermittency factor,

we must select a function which is zero around areas of laminar (or nearly laminar) flow. As

in the previous sections, we adopt the use of the function q which only relies on the history

points H .

Definition 4.4.1 (Intermittency factor). Let q W H ! R be defined as in section 4.2.2.

Then, given a parameter q⇤ > 0, the intermittency factor �q⇤ is defined as

�q⇤ D hI.�; �I q⇤/i

where the mean is taken over all points inH and I W H ! π0; 1º is the intermittency function

I.xk; tnI q⇤/ D
´
1; q.xk; tn/ > q⇤;
0; otherwise:

Under this definition, intermittent flow is characterised by states where 0 < �q⇤ < 1; i.e.

the flow is neither fully turbulent nor fully laminar. Whilst � is dependent on the choice of

parameter q⇤, by studying a variety of suitably small parameters we can (to a certain degree)

make our analysis independent of q⇤.
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Figure 4.9: Intermittency function I.x; t I 1 ⇥ 10�2/ for velocity traces of a single puff (top)
and multiple puffs (bottom).

Figure 4.9 shows the intermittency factor I for two velocity traces along the axis of the pipe

corresponding to the final conditions of figure 4.7. The intermittency function picks out areas

of laminarity reasonably well. However, due to the fact that the transverse velocities cross

zero and also the leading edge of the puff is not well-defined, turbulence can sometimes

be mis-identified as laminar flow. There are various techniques which may be adopted to

reduce this effect. As with other noisy signals, the data may be smoothed using a simple

window-average technique or by more sophisticated convolution methods, hence reducing

the number of crossing points. Alternatively we may use a binning procedure to make the

spatial or temporal spacing coarser, removing small pockets of laminar flow. However, both

of these techniques add additional parameters such as the width of the smoothing window or

bin size, thus even when the field is uniformly turbulent, � will not saturate to precisely one.
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4.4.2 Laminar lengths

Whilst the intermittency factor provides a general overview of the proportion of turbulent to

non-turbulent flow, it gives no indication as to the size of any laminar areas that may form

within the fluid. Intuitively, as puff-like structures start to dominate the flow field, the size of

laminar regions should increase and give another indication as to the onset of intermittency.

This technique was adopted by Manneville (2009) to identify the appearance of laminar areas

in two-dimensional cross-sections of Couette flow. It is also relatively simple to implement

in pipe flow, since we need only consider the flow along the axis of the pipe. Here we define

an implementation for pipe flow in such a way that it relies only on history points H .

Definition 4.4.2 (Laminar length). Let I.xk; tnI q⇤/ be the intermittency function given in

definition 4.4.1. At any given time tn, suppose that there exist natural numbers i and ` such

that 0 6 i < Nx , ` > 1, and

I.xi ; tnI q⇤/ D I.xiC1; tnI q⇤/ D � � � D I.xiC`; tnI q⇤/ D 0:

Then the fluid is said to possess a laminar length of size `.

Remark 4.4.3. Note that laminar lengths are still well-defined using the definition above

even if i C ` > Nx , since periodic boundary conditions are used in the axial direction and

so xiCN
x

D xi . Indeed, care must be taken to include periodicity when calculating laminar

lengths of the step function I .

From these laminar lengths, it is possible to form a discrete probability distribution. Let c`;n

denote the number of laminar lengths of size ` in the flow at time tn. Given a simulation with

N time samples, these weights then give a probability mass function L W π1; : : : ; Nx � 1º !
Œ0; 1ç where

L.`/ D
NX

nD1

c`;n

Z
and Z D

NX

nD1

N
x

�1X

`D1

c`;n:

Given any particular simulation at a given Re, we can calculate L and its associated random

variable X ⇠ L. From this we may calculate the mean and variance of X ,

E.X/ D
N

x

�1X

`D1

`P .X D `/ D
N

x

�1X

`D1

`L.`/; �2.X/ D E.X2/ � ŒE.X/ç2:
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Figure 4.10: Visualisation of the laminar length distribution L.`/ for in a pipe of length
L D 25D at Re D 2;200 (left) and Re D 2;600 (right).

For intermittent and fully turbulent flows, the laminar length distribution will be hugely

peaked around ` D 1, as demonstrated in figure 4.10. Even in the case of a single puff, the

leading edge is unsteady and may, at points, ‘break up’ a large, mostly laminar length into

many parts. However, as the flow becomes more intermittent, the distribution should become

less sharply peaked as the number of larger areas increases. Of particular interest then is the

variance, which measures the spread of the distribution and should therefore be sensitive to a

transition from turbulence to intermittency.

4.4.3 Methodology

The methodology of this experiment is somewhat different than the two experiments de-

scribed earlier in that we do not perform a single simulation, changing the Reynolds number

at prescribed times. Instead, to begin, a uniformly turbulent flow is simulated at Re D 3;000
and is evolved for 10;000 time units. The history data are sampled at intervals of 50 timesteps

(10 times per time unit), and these form the samples from which the intermittency function

and laminar length distributions are calculated.

We then start another experiment at a lower Re using a randomly chosen snapshot from

this simulation, which is burned in for O.200/ time units so that any transient effects of

100



the change of Re disappear and the simulation forgets its initial condition. The burn-in

time is chosen both heuristically from figure 4.6 and upon the evidence of Eggels et al.

(1994). Additional work by Avila et al. (2010) has shown that samples can be taken from

a continuous simulation at as little as 10 time units apart and, upon a change of Re, forget

their initial conditions. This choice of burn-in time is therefore highly likely to provide

sufficient time for transient effects to dissipate. We continue this process for the whole series

of Reynolds numbers we wish to simulate. Finally then, at each Re, we obtain 105 samples,

large enough to calculate reasonable averages for both the intermittency factor and laminar

length distribution.

Throughout all of the simulations, the domain length L is fixed at 25D for two reasons.

Firstly, the computational costs of running a fully-resolved 10;000 time unit simulation at any

given domain length are extremely large. This choice of L allows us to use fewer processors

and hence run multiple simulations concurrently. Of equal significance however, the domain

has deliberately been chosen to coincide with the length scale of a single puff. Whilst this

choice is not particularly important for these simulations, the next section will re-use this

simulation data and hence the choice will be further explained there.

4.4.4 Results

The results of the above simulations can be seen in figure 4.11 which depicts the intermittency

factor and laminar length scales for 2;350 6 Re 6 3;000. We first consider the intermittency

factor. It is clear that, regardless of the choice of parameter q⇤, � increases continuously

until Re ⇡ 2;600 where it saturates to � ⇡ 1. Based on the intermittency factor alone then,

we draw the conclusion that there exists a critical point at Rei D 2;600 signifying to the

transition to intermittency as Re decreases.

Figure 4.12 shows the gradual increase in size of laminar areas (coloured as black) as Re is

reduced. In (c) at the transition point, laminar flow is barely distinguishable from background

turbulence. Reducing Re to 2,450, we see a large increase in the size of laminar areas.

Not indicated in the plot is the increased turbulent activity as puff-like structures begin to

dominate the flow. As Re is reduced through to 2,300 in plot (a), these areas increase in size

to that of regular puff structures.
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Further evidence for the transition is given by studying the standard deviation � of the

laminar length distribution, depicted in bottom half of figure 4.11. Again at Rei ⇡ 2;600,

the flow undergoes a transition and thus the underlying distribution spreads as larger laminar

areas appear within the flow. As Re reduces further, these areas dominate the flow and lead to

a significant increase in � . Figure 4.10 demonstrates this spreading process at two Reynolds

numbers above and below Rei .

Another well-known metric for characterising turbulent flows is through the use of one-

dimensional probability density functions of a single velocity component. Figure 4.13 shows

f .v/, the normalised pdf of the transverse velocity v, sampled at a single point along the pipe

axis. It is well-established that f is Gaussian for sufficiently turbulent flow (in particular,

see figure 21 of Tavoularis & Corrsin, 1981), although the mechanism by which this occurs

remains unclear.
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Figure 4.12: Representative space-time plots of the intermittency function I.x; t I 8⇥ 10�3/

at a selection of three Reynolds numbers in a pipe of length L D 25D.

The probability density functions of figure 4.13 show similar behaviour whenever Re >
2;700, with Gaussian distributions being represented by quadratic curves. However, upon

reducing Re below 2,600, the peaks of the pdf sharpen and the tails widen, so that the

distributions become more indicative of a power-law type distribution. There is a very small

deviation from the normal distribution at Rei D 2;600, although this is hard to see in the

figure.

4.5 Pattern formation analysis

Whilst the previous section succinctly captures the dynamics of the onset of intermittency,

neither the intermittency factor nor the one-dimensional density functions encapsulate other
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2,600, 2,800 and 3,000, as indicated by labels and alternating line types. For Re > 2;700,
the distributions are nearly Gaussian, and for Re 6 2;600 the distributions are non-Gaussian.

transition points, such as the intensive-extensive transition of section 4.3. Following the

approach of Tuckerman et al. (2008), we investigate an alternative analysis of the data set of

the previous section which allows us to incorporate this bifurcation point, and provides a

compelling view of the essence of all three flow regimes and their respective transitions.

4.5.1 Methodology

As mentioned in the previous section, this experiment re-uses the L D 25D data set of the

previous section. However, we extend the range of Reynolds numbers to include simulations

from 2;250 6 Re 6 3;000, incorporating Reynolds numbers at which localised behaviour

was observed.

We begin by taking the discrete Fourier transform of q along the axis of the pipe;

Oqk.tn/ D
N

x

�1X

jD0

eikx
j q.xj ; tn/; k D �Nx=2C 1; : : : ; Nx=2:

From a pattern formation perspective, the Fourier modes encode information about the
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structure of the solution. In particular, if periodic features of wavelength n⇡=L exist in

the function this will be highlighted by an increase in the magnitude of the n-th Fourier

coefficient.

In a pipe flow context, by choosing L D 25D so that the length of a pipe directly relates to

the scale of a single puff, any disturbance to the fluid which can be accurately represented by

q and has a wavelength of the length of the pipe should correspond to an increase in j Oq1j.

Similarly, in larger pipes, trains of puffs will be identifiable by looking at the Fourier mode

corresponding to the number of puffs seen. However, as aptly demonstrated in figure 4.7, at

certain Reynolds numbers puffs will remain in a localised state and although j Oq1j will show

an increase, the parameter will become far less sensitive as the structure is split over many

more modes. Choosing L D 25D allows us to examine puff-scale structures without this

additional complication.

Let us assume that Oqk is a complex random variable distributed according to the two-

dimensional probability density function ⇢k.r; ✓/ where .r; ✓/ describes a point z D rei✓ 2
C. In general, approximating this PDF requires many samples from the probability space,

which is expensive to generate with DNS.

One clear optimisation can be obtained by noting that q is measured at points along the

centre-line of the pipe, indicating that ✓ simply encodes the axial position of the puff.

Since the simulations use periodic boundary conditions, without loss of generality we may

translate the puff to any streamwise location, and this implies that ⇢k is axi-symmetric; that

is, ⇢kj✓2Œ0;2⇡/ is constant.

To construct an approximation to ⇢k then, we take 1 6 j 6 Nsamp samples Oqj

k
from the

distribution and construct a step function ⇢k which is constant on annuli

Ai D π.r; ✓/ j ri 6 r < riC1º:

Here we take ri D iÅr for i 2 π0; 1; 2; : : : º; i.e. a uniform radial grid with spacing År .

Necessarily ⇢kjA
i

D Ni=ZiN , where Ni denotes the number of samples lying in Ai and Zi

is the appropriate weighting factor for normalisation. There are many ways to calculate Zi

corresponding to the measure we wish to use for the probability space. However, the most

intuitive approach is to insist that ⇢k is approximately equal to ⇢k on each annulus Ai . In
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this case, integrating ⇢k over Ai yields

Z

A
i

⇢k dA D 2⇡Ni

NZi

Z r
iC1

r
i

r dr D ⇡Ni

NZi
.r2

iC1 � r2
i /

D ⇡Ni

NZi
.2riÅr �År2/:

and hence taking Zi D ⇡.2riÅr CÅr2/, ⇢k gives the desired property; i.e.

Z

A
i

⇢k dA ⇡
Z

A
i

⇢k dA:

4.5.2 Results

Figure 4.14 shows cross-sections of the two-dimensional pdf ⇢1.r;�/ for � D 0. To achieve

this we use the L D 25D simulation data of the previous section at a range of representitive

Reynolds numbers. This data spans 104 time units where measurements of Oqj
1 are taken 10

times per time unit, yielding a total of 105 samples.

These approximations to ⇢ are clearly noisy around the origin. In part this is due to the

normalising technique employed above, since Zi decreases linearly with i and around the

origin, 1=Z0 D 1=År ! 1 as År ! 0. More samples with zero Fourier amplitude are

therefore needed in order to counter this. Unfortunately, for a fully turbulent flow (such as

Re D 2;800), few samples possess this property as a proportion of the whole, and hence

resolving the pdf correctly near zero is extremely expensive. However, the convergence

properties away from the origin are relatively good with the small number of samples attained

in this simulation.

At Re D 2;800, where the flow is uniformly turbulent, ⇢1.r; 0/ is sharply peaked and almost

perfectly Gaussian, so that the most probable state of the system has no structure on the scale

of the 25D pipe. This can be viewed as the disordered phase. As Re is reduced past Rei , ⇢1

becomes non-Gaussian, with the peak reducing and the function spreading. This signifies the

appearance of larger-scale structures; from examining the data and from figure 4.6, these

take the form of puff-like structures forming within the pipe.

Finally, as Re reduces past 2;200, the peak clearly shifts to r > 0, signifying the presence

of structures in the fluid on the scale of L; i.e. the appearence of equilibrium puffs. In
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addition, the most probable structure that can be observed is a puff, and the probability

of finding uniform turbulence (r D 0) becomes 0. This can be seen as the ordered phase,

whereby between Rec and Rei , the dynamics of the flow consist of a mixture of ordered

and disordered phases. This demonstrates that the underlying dynamics form a reversible

continuous transition between these transition points as Re is varied.

4.6 Conclusions

The main focus of this chapter has been the examination of the reverse transition process

in pipe flow by use of large-scale direct numerical simulations in long, periodic pipes.

Through the computational results presented here, we have demonstrated the existence of

two transitions and critical points: the intensive-extensive transition which occurs at Rec and

the death of the intermittent regime occurring at Rei ⇡ 2;600.

Key to the existence of these transitions are the highly fluctuating spatio-temporal dynamics

highlighted in figure 4.6. Irregular turbulent patches within laminar pipe flow have been

reported since the original experiments by Reynolds (1883b), and observations of puff

splitting near transition go back many years (Rotta, 1956, Wygnanski et al., 1975). These

observations failed to capture the essential point, however, that in a well-defined range

Rec 6 Re 6 Rei , intermittent turbulent-laminar flows are the intrinsic, asymptotic form of

turbulence. Moreover, while near to Rec irregularity takes the form of puff splittings and

extinctions, intermittent states vary continuously with Re, and nearer to Rei intermittency

takes the form of laminar flashes in a turbulent background.

Taken in the context of what is known about other shear flows, especially plane Couette

flow (Prigent et al., 2002, Barkley & Tuckerman, 2005, Manneville, 2009), we see a generic

and perhaps universal picture emerging for the route from turbulence to laminar flow in

subcritical shear flows as Re is reduced to the smallest value that supports turbulence. At

Rei (whose value depends on the particular flow), uniform turbulence becomes unstable on

long length scales and gives rise to an intermittent alternation of turbulent and laminar flow.

At some lower value Rec , this in turn gives rise to localised turbulence within a laminar

background and such turbulence has a finite characteristic lifetime as shown in, for example,

Avila et al. (2010).
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What remains to be investigated however is the precise value of the critical Reynolds number

Rec which denotes the transition between isolated turbulent puffs and more complex spatio-

temporal intermittency. In the following chapter, we introduce the necessary statistical

analysis used to determine the distributions of puff lifetimes, and using this run a series of

numerical simulations to determine the nature of the splitting process. We then introduce

the simple stochastic model of directed percolation which, as suggested by Pomeau (1986),

shares many properties with pipe flow. By drawing upon the existing knowledge of this

model, and through use of large quantites of experimental data, we show that puff splitting

exhibits the same exponentially distributed behaviour seen in puff decay and calculate the

characteristic splitting time. From this we are able to calculate the scaling of splitting

lifetimes as a function of Re and thus determine the critical Reynolds number.
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Chapter 5

Spreading turbulence in pipe flow

In the previous chapter, we considered the existence of a bifurcation point above which

isolated turbulent regions (puffs) split and nucleate new pockets of turbulence in downstream

laminar flow. Whilst the results were not conclusive, they indicate that such a bifurcation may

exist, and furthermore, the spatial dynamics inherent to this process are extremely important

in understanding the transition to turbulence. The purpose of this chapter is therefore to

further investigate this process by drawing upon knowledge of other simple and universal

models which possess similar properties and mechanisms.

Throughout this chapter we will consider turbulence as a spreading process, whereby areas

of laminar flow are ‘contaminated’ by upstream turbulent pockets. Spreading processes are

commonly found in many aspects of nature, such as in the transmission of diseases within

populations or the dynamics of expanding fronts in forest fires. The analysis of both of

these problems, whilst vastly complex in their own right, can be linked to other, far simpler

statistical models such as coupled-map lattices and directed percolation (DP) where a control

parameter dictates the balance between the rates of infection and recovery. When the rate

of recovery is high, infection quickly dies out and in the infinite-time limit all sites become

inactive. However, as the rate of infection increases and overwhelms recovery, the system

undergoes a subcritical bifurcation and the limiting state consists of either fully active sites

or an intermittent mixture of both active and inactive sites.

In order to consider pipe flow in a similar light, we will therefore examine the two processes

which dictate the decay and spreading of turbulence. The first part of the chapter is dedicated
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to a summary of lifetime studies of the decay aspect of the problem. This is important both

because only by knowing the decay timescale is it possible to know when growth overwhelms

decay, and because similar methods will be used in spreading studies. Specifically we

concentrate on puff decay, now a well-documented phenomenon, in which turbulent puffs

re-laminarise following a memoryless process according to a timescale characterised by a

mean lifetime. We first summarise the various studies which propose different scalings for

this lifetime as a function of Re. We then introduce the statistical techniques and analysis

of Avila et al. (2010), which strongly suggests that isolated puffs always have a non-zero

probability of decay, and thus their mean lifetime diverges only as Re!1.

The other process at work in pipe flow, as demonstrated in both figures 4.6 and 4.7 of

the previous chapter, is that of puff splitting, in which active regions spread and give rise

to spatio-temporal intermittency. The key difference between the approach taken in the

previous chapter and the method adopted here is the use of the statistical analysis which is

prevalent throughout decay studies. The remainder of this chapter is therefore devoted to

applying these statistical methods to the splitting process and demonstrating its connections

to directed percolation. By utilising data obtained both numerically and experimentally from

a collaboration between Warwick (D. Moxey & D. Barkley) and Göttingen (K. Avila, A. de

Lozar, M. Avila & B. Hof), and comparing the relavent timescales for splitting and decay, we

determine the critical Reynolds number Rec D 2;040˙ 10. This critical point characterises

a phase transition from states which are more likely to decay, to those which are more likely

to spread. It is worth noting that the intensive-extensive transition described in the previous

chapter does not therefore strictly exist, since every puff is not guaranteed to split under this

new framework. However, it does offer a glimpse of the dynamics that one can typically

expects as the Reynolds number is increased above Rec .

5.1 Decay studies

Over the last decade, a topic of much interest in the hunt for the critical Reynolds number

in a pipe has been the relaminarisation of turbulent flow below the suspected transition

point. Faisst & Eckhardt (2004) performed the first rigorous study of this problem, by use

of fully-spectral numerical simulations in a pipe of length 5D. In this work, simulations

start with a flow field u D uHP C auP, where uHP is the usual Hagen-Poiseuille flow. uP is
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a perturbation generated by randomly exciting modes in a spectral expansion and a some

amplitude lying between 0 and 1, so that after a short time the flow transitions to turbulence.

A criterion is also defined based upon the total energy of the fluid, which is then used to

determine when a given simulation relaminarises. The lifetime of a turbulent state is therefore

the amount of time taken to relaminarise according to this criterion.

By performing an ensemble of 50 simulations, each of which with a different choice of a

and uP, Faisst & Eckhardt (2004) determined that the lifetimes of turbulent states are in fact

distributed according to some probability distribution function; that is, the lifetime of a given

turbulent state is dictated by a random variable and is therefore a stochastic process. As

explained in chapter 4 the fact that random behaviour is observed in a deterministic system

arises from the complexity of the phase space of the Navier-Stokes equations, whereby two

similar but distinct initial conditions will behave in radically different ways.

At each Re therefore, one must construct probability distributions in order to determine the

mean turbulent lifetime ⌧ . The easiest and most intuitive approach is to calculate the survival

function S.t/ defined as

S.t/ D P .flow remains turbulent up to time t /I

i.e. the function which describes the probability of an individual turbulent sample surviving

up to time t .

Constructing S.t/ is computationally very expensive, as we must obtain a large number of

samples (and thus perform many expensive simulations) in order to guarantee convergence

to the true distribution. We also wish for the correlation between each initial condition of

each simulation to be very close to zero, so that the observed distribution is not biased. Faisst

& Eckhardt (2004) determined that the survival function obeys an exponential distribution,

so that

S.t/ D expŒ�t=⌧.Re/ç

where ⌧.Re/ denotes the average lifetime of a puff at a given Reynolds number. Puff decay

is therefore a memoryless process, so that if the random variable T is distributed according
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to the lifetime of turbulent puffs at some Re then for any s and t ,

P .T > t C s j T > t/ D P .T > s/:

The essential issue here is determining the scaling of the lifetime ⌧ as Re varies. By

performing simulations at a variety of Re and obtaining a fit for the data, Faisst & Eckhardt

(2004) determined that

⌧.Re/ / 1

Re � Rec

where Rec ⇡ 2;250, so that at Rec turbulent lifetimes asymptotically diverge to infinity and

turbulence becomes sustained.

Whilst this novel study demonstrated that pipe flow exhibits interesting statistical properties,

there are several issues which required further investigation. From the previous chapter as

well as numerous other studies, turbulence is known to take the form of puffs at the proposed

critical Re. The length of the pipe used for these simulations is set at L D 5D to both allow

for direct comparison with Eggels et al. (1994) and to reduce computational costs. This

therefore precludes the possibility of observing puffs, which require a length of at least 25D

to be accurately reproduced, the observed distribution of lifetimes may be biased. In addition,

it is unclear whether both the type of perturbation used to trigger transition to turbulence

and its amplitude affect S.t/ and thus ⌧ . Finally, the method used to determine ⌧ from

individual lifetime measurements requires further statistical analysis, since some states did

not relaminarise before the end of simulations, thus biasing measurements of ⌧ .

The experimental results of Peixinho & Mullin (2006) further validated the original work

and found that ⌧ observed a similar scaling, albeit at a much lower Rec ⇡ 1;750. In this

study, puffs were generated at a high Reynolds number using a perturbation at the pipe wall,

and assuming the puffs survived for at least 100 diameters, Re was reduced to values below

the critical point. However, the validity of this Re-reduction technique remained unjustified.

Also, unlike the previous numerical work where the three-dimensional average kinetic energy

was used as a criterion for decay, in this study puff decay was visually observed. However,

more evidence supporting this scaling was presented by Willis & Kerswell (2007), who

performed numerical simulations in a much longer L D 50D periodic pipe and determined

that Rec ⇡ 1;860.
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The conclusion of these studies conflicts with the experimental results of Hof et al. (2006)

obtained using a gravity driven pipe, which suggested that ⌧�1 D exp.aReC b/ for fixed

constants a; b. Under this distribution, isolated puffs have finite lifetime at any given Re.

Whilst this was contested, the greatly improved measurements of Hof et al. (2008) using

many additional samples in a variety of pipes demonstrated that in fact a super-exponential

scaling of the form ⌧ D expŒexp.aReC b/ç provided a very good fit for the data. This fit

was validated again by experimental observations of Kuik et al. (2010).

For the most part, the apparent disagreement between all of these studies – either in the

distribution of lifetimes obtained, or the value of Rec – can be attributed to statistical error

from the relatively small number of samples observed. Numerically, the problem is extremely

challenging due to the long domains required and the very large timescales that must be

resolved. Indeed, most Re are inaccessible numerically due to the unfeasibly large amounts

of computer time which would be required. In a similar fashion, experimental studies must

use a pipe which is sufficiently long in order to resolve the timescales involved.

Finally, the techniques used to determine ⌧ initially relied on extrapolating the median

half-life of the data set. Statistically, a much better quantity to use is the maximum likelihood

estimator (MLE), and from this we may readily obtain 95% confidence intervals which

determine the accuracy of the estimate for ⌧ given the observed data. In the following

sections, we outline the relevant statistical knowledge needed to define the MLE and show

how it is applied to decay studies.

5.1.1 Lifetime statistics

Lifetime problems are often encountered in a number of real-world applications such as

manufacturing for quality control purposes or drug trials and medical studies. The statistical

analysis of lifetimes is therefore a well-studied topic, and many techniques exist to obtain

the best estimate of the mean lifetime and the accuracy of this estimate. In this section, we

will briefly outline the relevant measurement techniques of Lawless (2003), which provides

an extremely comprehensive reference outlining a wide variety of statistical methods which

can be used to analyse lifetime problems.

We assume that the lifetime of individuals in a population can be described by a random
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variable T which lies in Œ0;1/ and is distributed according to a probability density function

f .t/. Lifetime distributions are most obviously constructed via the survival function S.t/.

Definition 5.1.1 (Survival function). The survival function f .t/ is defined by

S.t/ D P .T > t / D
Z 1

t

f .x/ dx:

In a general lifetime problem, it is often the case that by observing a finite number of

lifetimes πtiºniD1 which are distributed according to f , we surmise that f belongs to a family

of possible density functions πg.xI ✓/ j ✓º. For example, in pipe flow each g represents an

exponential distribution, and ✓ corresponds to ⌧ . The problem therefore is to find:

✏ an approximation of the true value of ✓ from the given lifetime data, denoted by O✓ ;

✏ how accurate this value is, given the sample size.

The best statistical approach for the first question is to apply the method of maximum

likelihood, which provides an optimal estimate of the true value given any observed data.

Definition 5.1.2 (Maximum likelihood estimator). Given i.i.d. lifetimes πtiºniD1 distributed

as f .xI ✓/, we define the likelihood function J.✓/ as

J.✓ j t1; : : : ; tn/ D
nY

iD1

f .ti I ✓/:

If O✓ maximizes J , then it signifies the most likely parameter and is known as the maximum

likelihood estimator.

When the survival function is exponential so that S.t I ✓/ D exp.�t=✓/ and f .t I ✓/ D
✓�1 exp.�t=✓/, it can be shown that O✓ is given by the usual sample mean

O✓ D 1

n

nX

iD1

ti :

However, this analysis assumes that we are always able to observe the lifetimes of any given

sample, which is often not the case. For example in pipe flow, puffs have lifetimes exceeding

106 time units for even moderately large Reynolds numbers which is often inaccessible

through either experiment or simulation.
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A natural way to avoid this problem is to censor the data by imposing some restrictions on the

observation time. Lawless (2003) examines two common cases. Type 1 censoring imposes

an upper limit on all observation times, so that ti 6 tmax for all i , in which case we define

the number of uncensored lifetimes r to be the number of samples which have ti < tmax (i.e.

those which do not exceed the upper limit on the observation time). In type 2 censoring, prior

to the start of the simulation we determine the number of uncensored lifetimes r which will

be observed, leaving n � r censored cases. Simulations are then performed until r lifetimes

have been observed. Both methods have their merits; type 1 is often easier and more natural

to implement, but is difficult to obtain estimates for the accuracy of the MLE. On the other

hand, the accuracy of the MLE for type 2 may be derived exactly, but the total observation

time remains unknown.

In either case, the MLE is obtained through a slight variation of the sample mean, with

O✓ D 1

r

nX

iD1

ti :

The reliability of this MLE may be determined through the standard statistical method of

confidence intervals. Given a confidence level 1 � ˛ with 0 < ˛ < 1, we determine an

interval ŒL; U ç such that P .L < O✓ < U/ D 1 � ˛; i.e. the range of values likely to contain
O✓ up to probability 1 � ˛. In the case of type 2 censoring, exact confidence intervals may be

derived as

ŒL; U ç D O✓ ⇥
"

2r

�2
2r;˛=2

;
2r

�2
2r;1�˛=2

#

where �2
r;p denotes the p-th quantile of the �2 distribution with r degrees of freedom; i.e.

the value such that if X ⇠ �2
r then

P .X 6 x/ D p:

In the case of type 1 censoring however, exact intervals are impossible to determine and so

must be estimated numerically. One approach is to appeal to the central limit theorem, in

which case intervals may be estimated by O✓ ⇥ .1˙ 0:96n�1=2/. However, for small sample

sizes this approximation is not accurate and is easily affected by non-symmetric distributions.

Instead then, we use the relatively simple (and accurate) technique of bootstrapping as

presented in DiCiccio & Efron (1996), amongst others.
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1. Generate a pseudorandom sample t⇤1 ; t
⇤
2 ; : : : ; t

⇤
n by sampling from the set of available

lifetimes πtiºniD1 with replacement. For example when n D 3, a possible pseudoran-

dom sample may be πt1; t1; t2º.

2. Calculate the maximum likelihood estimator O✓⇤1 of this data as

O✓⇤1 D
1

r⇤1

nX

kD1

t⇤k ;

where r⇤1 is the number of uncensored lifetimes.

3. Repeat the previous two steps B times to obtain bootstrap samples π O✓⇤1 ; O✓⇤2 ; : : : ; O✓⇤Bº.

4. Sort this data so that O✓⇤
b
< O✓⇤

bC1
.

Assuming B D 10k where k > 2, confidence intervals at level 1� ˛ may then be read off as

Œ O✓⇤
B �˛=2

; O✓⇤
B �.1�˛=2/

ç.

5.1.2 Current state of lifetime statistics

The work presented in Avila et al. (2010) is the first study which applies the above statistical

analysis on large sets of numerical and experimental data over a wide range of Re. The main

aims of this paper are to describe how these techniques can be applied to pipe flow, and also

to consolidate many existing studies in order to determine a scaling for ⌧ . To accomplish

the first task, we must incorporate the use of a formation time t0 (Willis & Kerswell, 2007,

Schneider & Eckhardt, 2008). The formation time represents the amount of time necessary

for the flow to transition from a laminar state to a puff, through whatever experimental

or numerical perturbation is applied to the flow. Equivalently, the value of t0 dictates the

time above which S.t/ becomes exponential, and so we may therefore re-write the survival

function as

S.t/ D expŒ.t � t0/=⌧ç:

t0 clearly depends non-trivially on Re and the perturbation technique, and thus is difficult to

determine. In Avila et al. (2010), t0 is found by examining the hazard function

h.t/ D � d
dt

log.S.t//
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which for the exponential distribution is the constant escape rate  D 1=⌧ . One approach

to determine the formulation time is therefore to allow the escape rate to vary as a function

of t0, so that .t0/ D 1=⌧.t0/. For large enough values of t0,  remains constant and thus

determines the formation time. It should be noted however that this technique relies on large

numbers of samples in order to be a reliable method.

The formation time must also be incorporated into the calculation of the MLE. For the

exponential distribution, this is straightforward and gives the result

O⌧ D 1

r

 
nX

iD1

ti � nt0
!
: (5.1)

The formation time also allows us to validate that there is no statistical difference between

initial conditions generated using a perturbation and those using an Re-reduction method.

The conclusion from both Avila et al. (2010), and the results of de Lozar & Hof (2009),

strongly indicate that technique used is unimportant, so long as it is sufficient enough to

reliably generate puffs.

By applying these techniques to re-analyse the data of Hof et al. (2008) and Hof et al.

(2006), as well as incorporating a substantial number of lifetimes obtained numerically, Avila

et al. (2010) present very compelling evidence which strongly suggests that ⌧ obeys the

super-exponential scaling of Hof et al. (2008). Also included in this paper is a re-analysis of

the numerical data of Willis & Kerswell (2007) which originally supported an asymptotic

increase in ⌧ at Rec D 1;870. Using these new statisitical techniques, a super-exponential

curve provides a much better fit to the data. All evidence then suggests that infinite lifetime

turbulence cannot be attained by observing the decay process alone, and that another process

is at work.

5.2 Puff splitting

The phenomenon of puff splitting is well-known and can be traced back to the studies of

Reynolds (1883b) and Wygnanski & Champagne (1973). Figure 5.1 depicts a typical puff

splitting in a L D 100D periodic pipe, where an isolated puff nucleates a new puff into

downstream laminar flow. Whilst the detailed physical mechanism underlying splitting is
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Figure 5.1: Spatio-temporal dynamics of puff splitting in a L D 100D domain at Re D
2;350. The turbulence intensity q.x; t/ as defined in equation (4.1) is visualised in a frame
of reference moving at speed c D 0:914U . The white dashed line indicates the splitting time
detected by the criterion of section 5.2.1.
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at present unresolved, the splitting process has been observed in detail (Nishi et al., 2008).

Initially, a patch of vorticity escapes from the ‘seed’ puff into downstream laminar flow.

Provided that the disturbance is large enough, and escapes sufficiently far downstream, it

will evolve into a puff structure. This process, and the growth of the downstream puff,

is highlighted in figure 5.3. Figure 5.2 demonstrates the space-time characteristics of the

splitting process in an L D 200D simulation at Re D 2;350, and shows how repeated splits

can lead to the spreading of turbulence throughout the entire domain as long as the flow is

observed for a sufficient period of time.

Fundamentally, in much the same way as puff decay, splitting evolves according to a

stochastic process, and therefore must be investigated through an ensemble of simulations.

We must therefore determine the statistical distributions which underly the splitting process,

and from this investigate the scaling of the mean lifetime of an isolated puff. Complicating

this issue is that large timescales are inherent to the splitting process. By manually observing

a small selection of samples, it is easy to ascertain that the probability of observing a split

is much higher for larger Re than lower Re. Cases at very low Re close to 2,000, at which

splitting events are extremely infrequent, cannot therefore be considered numerically due

to the considerable computational costs involved. To overcome this problem, we shall later

combine the numerical data with results obtained from a series of physical experiments.

5.2.1 Methodology

The general process for this series of numerical simulations is much the same as described in

the previous section and Avila et al. (2010). We may define the survival function S.t/ so that

it represents the probability of a puff remaining isolated up until time t ; i.e. it determines the

probability that the puff does not split. These simulations therefore resolve the timescales

which are inherent to the splitting process. In order to construct S.t/, we must determine the

method by which initial samples are generated and how splitting events are detected.

Simulations were performed using Semtex in a periodic pipe of length L D 50D; the

minimum that can be used since we require that the pipe be capable of encompassing at least

two puffs. The axial resolution remains fixed at Nx D 768 throughout, and the 36 element

K8;4 mesh similar to figure 4.1(c) is used at polynomial order P D 12 to correctly resolve

the flow. All simulations impose periodic boundary conditions and use a constant mass flux
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Figure 5.3: Snapshots of the streamwise vorticity !x through cross-sections of an L D 50D
pipe at Re D 2;350 as a puff splits. Positive and negative vorticity are denoted by blue and
red respectively; black areas represent !x D 0. At t D 0 (bottom image), Re is changed
from 2,100 to 2,350, and further snapshots are taken at t D 50; 138; 198 with the snapshot at
t D 438 showing the final two-puff configuration.

of U D 1 to drive the flow.

Prior to any splitting simulations, a 1,500 time unit data set was generated using an isolated

puff at Re D 2;100 as an initial condition. The first 500 time units of this simulation provided

sufficient time to confirm that the puff travelled at a relatively constant speed and did not

abruptly relaminarise. After this initial period, snapshots of the flow field from the latter

1,000 time units were taken every 20 time units, providing 50 separate flow fields. Each of

these form the initial condition for splitting simulations at some higher Re.

This Re-increase technique is similar to the Re-reduction technique employed in decay

studies. Avila et al. (2010) determined that samples initialised with Re-reduced puffs are

not statistically different from those generated using a perturbation-type approach, and

only impact on the formation time t0. Whilst a similar investigation was not performed

here, the later comparison of experimental results, obtained using puffs generated with a

jet perturbation at the pipe wall, showed that the Re-increase technique is not statistically

different. Primarily, as long as t0 is properly determined for each distinct method, then the

obtained distributions are statistically identical.

A criterion for determining the splitting time of any given sample is obviously very important

in terms of generating correct statistics. In decay studies, one may simply observe some
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Figure 5.4: Schematic drawings depicting criterion used to determine splitting times. Shaded
rectangles indicate the region around the primary peak of the signal to be ignored, of width
dmin D 20D.

global quantity such as the total kinetic energy to determine the moment of decay. When

decay occurs, the change in such quantities is abrupt and thus the uncertainty in determining

the moment of decay is small. On the other hand, in order to observe a split we must

determine a signal which is sensitive to the process, such that it differentiates a single puff

from multiple puffs. One of the most convenient signals to process is the pressure field p,

which for puffs has a distinctive shape and peaks around the area of maximal turbulence

intensity. An added advantage of the pressure field is that it remains accessible experimentally

at the pipe wall.

Let pk D p.xk; 0; 0; t/ denote the pressure field along the pipe axis at position xk D kÅx.

The criterion by which a splitting is determined is as follows:

✏ Roll data so that argmax06k<N
x

pk D 0.
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✏ Given a minimum interaction distance dmin D 20D, determine the corresponding

number of grid spaces Nmin D ddmin=Åxe.

✏ If the condition

max
Nmin6k6N

x

�Nmin
pk > K max

k
pk

is satisfied, then we say a split has occured at time t . K is a threshold parameter, in

this case fixed at K D 2
3

.

Figure 5.4 visually depicts how this splitting criterion works. The top half of the figure shows

a signal where the nucleation of a puff has started to occur from a ‘parent’ puff which is

located using the maximum of the pressure signal. At this stage, the strength of the nucleated

puff may not be sufficient in order to guarantee its survival. This is highlighted in figure 5.1,

which shows the detected splitting time for a simulation in an L D 100D pipe. The splitting

process begins approximately 100 time units before the observed time, with small patches of

turbulence escaping downstream of the puff. These patches are not guaranteed to develop

into puffs, and so the use of K and dmin allows us to distinguish small regions which quickly

decay from those which survive and eventually form puffs.

The first half of the figure therefore demonstrates the purpose of dmin which is chosen to

correspond with the approximate length of a puff, so that we ignore small patches until they

are sufficiently far downstream of the leading edge of the original puff. The second half of

the figure shows how the nucleated puff may evolve, and depicts the moment in time that we

classify a splitting. In this case, the puff has grown sufficiently in strength (determined by

K) and established a large enough distance from the parent puff that it is highly likely to

survive, and thus may be classified as a successful split.

The criterion was tested by both visually comparing splitting times to the space-time data of

samples, and also by varying 1
2

6 K 6 9
10

, where virtually no change in the splitting time

was detected. The additional advantage of using the pressure signal is that it is accessible

experimentally at the pipe wall without disturbing the fluid, and thus allows for direct

comparison between experimental and numerical data.
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Figure 5.5: Initial condition number i against detected splitting time ti for samples obtained
when Re increased from 2,150 to 2,350.

5.2.2 Results

To overcome the problem of large timescales and to validate that numerical results are

sufficiently accurate, a second series of simulations using the hybrid finite-difference–Fourier

pseudo-spectral code of Willis & Kerswell (2009) was performed by Marc Avila. This code

solves the Navier-Stokes equations in cylindrical co-ordinates .x; r; ✓/, with 56 radial points,

64 azimuthal Fourier collocation points and 2048 axial Fourier collocation points to resolve

the L D 32⇡D ⇡ 100D domain. Periodic boundary conditions and constant mass flux were

also imposed. Results from Semtex are denoted as DNS1, and from the alternative code by

DNS2.

The aim of the numerical simulations is to encompass as large a range of Re as computa-

tionally possible. DNS1 simulations were therefore performed at 2;275 6 Re 6 2;375

using intervals of ÅRe D 25. Further simulations were performed using DNS2 for

2;250 6 Re 6 2;350 with ÅRe D 50 to widen the range of observed Reynolds num-

bers and provide a larger set of samples at Re D 2;300 and Re D 2;350 in order to provide

better statistical averages.

Figure 5.5 demonstrates the stochastic nature of the splitting process. Each initial condition
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Figure 5.6: Survival functions S.t/ for Re D 2;300 (top) and Re D 2;350 (bottom).
.n; r/ D .90; 51/ and .95; 90/ samples are obtained respectively using Semtex (DNS1) and
the code of Willis & Kerswell, 2009 (DNS2, courtesy of Marc Avila). Dashed line represents
the curve S.t/ D expŒ�.t � t0/= O⌧.Re/ç, and shaded areas represent the 95% confidence
interval associated with each simulation.

is numbered according to an index k corresponding to the snapshot taken at time 500C 20k,

and its detected splitting time tk recorded. The lack of correlation between the splitting time

of each sample further indicates that the Re-increase technique employed to generate initial

conditions is valid.

The survival functions S.t/ obtained through simulation data are visualised in figure 5.6
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at Re D 2;300 and Re D 2;350. Samples obtained using both DNS codes are included to

improve statistical accuracy, and the results from each are indicated by the marker colour.

In both cases, a clear exponential fit is found and, like decay studies, S.t/ may therefore be

determined as

S.t/ D expŒ�.t � t0/= O⌧.Re/ç;

where O⌧ is the MLE corresponding to the true mean lifetime ⌧ . A maximum simulation time

of tmax D 1;500 time units was imposed on each sample, so that the lifetime observations are

subject to type 1 censoring and thus O⌧ may be determined through equation (5.1). The solid

lines in each figure show this exponential fit. The shaded regions in each figure show the

95% confidence intervals as determined by the bootstrapping process of section 5.1.1. The

vast majority of samples lie within these bounds, indicating the validity of the exponential fit.

This exponentially decaying survival function is also found at every Re tested numerically.

In the decay studies of Avila et al. (2010), the hazard function was be used to determine a

sufficiently large formation time t0. This approach depends on a large number of samples,

and is not possible in this setting since higher Re demands higher domain resolution and thus

more computational resources. Throughout these simulations then, we estimate .t0/true by

t0 D maxπ150;minπtiºº:

The lower bound of 150 was determined from experimental studies, where again exact values

for t0 are unknown but are estimated as 50 6 t0 6 150. It is therefore likely that this

provides an over-estimate of .t0/true, especially at low Re for which splitting events are rare

and thus minπtiº is large. However, this is much more beneficial than an under-estimate,

since for exponential distributions a larger t0 will not affect O⌧ .

Table 5.1 summarises the results of all experimental data obtained through DNS1, including

the number of samples n used at each Re, number of uncensored lifetimes r and the estimated

confidence intervals˙Å O⌧ for the MLE O⌧ .

The results of figure 5.6 clearly demonstrate the stochastic nature of the splitting process

(where again the word ‘stochastic’ refers to the sensitivity to initial conditions in the Navier-

Stokes equations). In particular, the exponential probability distributions obtained after the

initial formation time show that splitting is a memoryless process, and the probability for a
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Re ⌧ r n t1 tmax CÅ⌧ �Å⌧
2275 1795 15 30 281 1500 1349 664
2300 1042 22 30 177 1500 550 344
2325 563 27 30 233 1500 247 184
2350 429 67 70 170 1500 110 92
2375 454 29 30 147 1500 153 116

Table 5.1: Data obtained from DNS1 of the characteristic splitting time ⌧ as a function of
Reynolds number, where each simulation observes r splittings from n initial samples. t1
denotes the first observed splitting time, and tmax the maximum simulation time. Upper and
lower confidence intervals are denoted by˙Å⌧ .

puff to split thus does not depend its prior evolution or the method which was used to generate

it. The fact that these properties are also shared with the puff decay process indicates that

these two processes are closely linked together. Indeed, in many simple stochastic models of

thermodynamic systems, the critical value of the parameter which separates different phases

may be classified by examining the relative timescales of two competing processes. In the

next section, we will briefly outline the model of directed percolation, which may be used to

represent simple epidemiological problems and in which the rates of infection and recovery

determine the final evolution of the system. We then return to pipe flow, and by use of the

numerical data and additional experimental evidence, obtain the scaling of ⌧ as a function

of Re. Drawing upon inspiration from directed percolation, the timescales of decay and

splitting are then used to determine the critical Reynolds number Rec .

5.3 Directed percolation

The scientific examination of diseases and how they contaminate a population has been a

major driving force in determining new ways of modelling real-world problems. The simplest

of these models partition the population into healthy and infected individuals. Initially only a

small group of individuals will be infected. As time progresses the disease spreads to others

whilst infected individuals eventually recover, although perhaps still remaining susceptible

to further infection. The rates at which these different processes occur dictate whether the

disease will perpetuate indefinitely or eventually reach the absorbing state where it dies out

and no further infection is possible. Any model for this classic epidemiological problem
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must therefore incorporate this behaviour, so that as the infection rate increases the system

undergoes a phase transition.

Directed percolation (DP) is perhaps the simplest class of models which exhibits this bi-

furcation. The name arises from the study of fluid flow through a porous media along a

given direction – for instance, groundwater flow may be driven vertically downwards by

gravity. In DP, the permeability of the substrate determines whether the flow fully percolates

through it or if the material is ultimately impermeable. However, DP forms a universality

class, which encompasses simple epidemiological models such as the one described above.

There are many models for directed percolation; the simplest are the standard contact process

(Harris, 1974) and directed bond percolation (Broadbent & Hammersley, 1957). In this

section, we shall investigate the latter process following the guidance of Hinrichsen (2000),

and demonstrate that it shares many similarities with pipe flow.

5.3.1 Bond percolation

In directed bond percolation, the population or substrate is represented by a lattice. Each

site on the lattice may be either active (infected) or inactive (healthy). In general, the lattice

is (n+1)-dimensional; that is, n spatial dimensions represent the population and a single

dimension describes the percolation direction. Figure 5.7 shows the simplest example of

bond percolation in (1+1) dimensions, where the process is therefore represented by a rotated

two-dimensional square lattice. In this figure, the direction of percolation is represented as

the evolution of time, where spatial locations are updated according to a difference relation.

Each site on the lattice is enumerated by st
i , where i 2 π1; : : : ; N º and t 2 π0; 1; 2; : : : º

represent the spatial and temporal co-ordinates respectively. Any given simulation must start

with an initial configuration s

0 D πs0
1 ; : : : ; s

0
N º. Edges of the lattice represent bonds which

connect sites together. Each bond may be either open or closed, and fluid (or infection) is

only allowed to flow through open bonds.

At any given time t , the dynamics evolve according to a simple stochastic rule. For each

pair of bonds connecting the points .i ˙ 1; t/ to .i; t C 1/ we generate two uniformly

distributed random numbers z˙i 2 Œ0; 1ç. Then a bond is open if z˙i < p, where p is the

control parameter dictating the rate of infection; otherwise it is deemed to be closed. Sites
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Figure 5.7: Directed bond percolation on a (1+1)-dimensional square lattice utilising pe-
riodic boundary conditions, where the percolation direction (time) is vertically upwards.
Active and inactive sites are denoted by black and white dots respectively. Open bonds are
represented by solid lines, and closed bonds by dashed lines. Numbers along the bottom
correspond to spatial locations i .

remain active so long as they possess at least one open bond, and therefore dynamics evolve

according the difference equation

stC1
i D

8
<̂

:̂

1; st
i�1 D 1 and z�i < p;

1; st
iC1 D 1 and zCi < p;

0; otherwise:

At each end of the lattice where i 2 π1;N º if t is even we must apply a boundary condition.

In the examples considered here, a periodic boundary condition is used so that s2t
1 D s2t

N .

Figure 5.8 shows space-time visualisations for three representative values of p. In each

case, simulations start from a random initial configuration (bottom) or an isolated active site

(top). In general, directed percolation systems undergo a continuous phase transition as the

parameter p is altered. Below some critical value pc – part (a) of the figure – the absorbing

state, where all sites remain inactive and there is zero probability of returning from, is always

reached. Around pc (b), intermittent dynamics are prevalent, where activity is widespread

and persistent but grows slowly. Sites alter sporadically between active and inactive states,

and where it occurs active sites are restricted to narrow bands. When p > pc as in (c), even

a single active site causes infection to break out and quickly contaminate the entire domain.
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(a) p < pc (b) p D pc (c) p > pc

Figure 5.8: Examples of critical behaviour in directed bond percolation usingN D 500 sites
over t D 2;000 timesteps. Figures along the top row start with a configuration possessing a
single active site, and those below use a random initial configuration.

It is interesting to note that even in this simple two-dimensional geometry, an exact value for

pc is yet to be analytically derived; Essam et al. (1986) estimate pc ⇡ 0:644701.

5.3.2 Universality and connections to pipe flow

Universality is an important concept in dynamical systems and statistical mechanics, whereby

properties of sometimes vastly differing systems can be linked by examining the order

of phase transitions occurring within the systems. Directed percolation is a particularly

interesting example of a universality class which encompasses many problems in physics,

chemistry and statistics. Whilst there have been many suggestions that turbulent transition in

shear flows may be connected to the DP universality class, the spatial-temporal dynamics of

pipe flow in particular are not well studied. This can be explained by both the difficulty of

observing space-time data experimentally due to the strong advection of the flow, and the

computational requirements needed to perform large-scale pipe flow simulations.
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The idea that fluid dynamics may undergo stochastic phase transitions dates back to the work

of Pomeau (1986), who suggested that directed percolation may share certain characteristics

with fluid dynamics in a general fashion. Further studies of Couette flow presented in Bottin

& Chaté (1998) and Bottin et al. (1998) revealed that intermittent dynamics have various

ties to directed percolation and other similar systems such as coupled map lattices. More

recent work by Manneville (2009) also suggests that Couette flow has very close ties with

the DP universality class, and the very recent DP simulations of Sipos & Goldenfeld (2011)

in a (3+1)-dimensional pipe-shaped domain may indicate that pipe flow observes scalings

relevant to DP.

From a completely qualitative perspective, some of the behaviour seen in figure 5.8 can be

readily reproduced in pipe flow. Figure 5.9 demonstrates some representative dynamics in

pipe flow by use of a long L D 200D pipe, which resolves the pipe using Nx D 3;072

collocation points and the K8;4 mesh similar to figure 4.1(c) at polynomial order P D 12.

As in figure 4.6, the quantity q.x; t/ D pv2 C w2 where .v; w/ represent the transverse

velocity components is visualised in a reference frame moving at the bulk velocity U . The

initial condition for each simulation is an isolated puff state obtained from a simulation at

Re D 2;000, which is instantaneously changed to 1;700 (bottom) and 2;700 (top).

The bottom half of the figure corresponds to the case where p < pc and active sites – i.e.

puffs – eventually decay to background laminar flow. The top half of the figure demonstrates

how turbulence rapidly spreads throughout the domain at high Re and shows the link between

pipe flow and DP when p > pc . In this regime the structure seen is known as a slug, depicted

diagramatically in figure 4.5. The evolution of slugs is radically different to that of puffs, and

is not something which will be further considered here. However, recent work by Duguet

et al. (2010) suggests that the underlying mechanism behind this process may involve vortex

shedding near the pipe wall via a Kelvin-Helmholtz mechanism.

Both of these figures clearly correspond visually to the dynamics of DP seen in figure 5.8, and

with other studies suggesting that fluid flow in general has close ties wtih DP, it is apparent

that the spatio-temporal intermittency in the flow is crucial to the nature of turbulence. In

particular, the decay studies seen earlier only describe half of the true dynamics of the system

where p < pc or equivalently Re < Rec . In order to determine the onset of turbulence, we

must therefore contrast the characteristic timescales of decay to those of splitting. In the next
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Figure 5.9: Space-time figures demonstrating a relationship between directed percolation
and pipe flow. In each case, the initial condition is an isolated puff, and Re is instantaneously
set to 2,700 (top) and 1,700 (bottom).
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section, we describe how the numerical results of the previous section can be incorporated

into experimental data in order to find a close approximation to Rec .

5.4 Critical point

The results of the previous two sections clearly demonstrate the stochastic and memoryless

nature of the splitting process beyond the formation time, and thus the scaling of the mean

lifetime ⌧ of an isolated puff must be calculated for each process. The numerical results of

section 5.2 are confined to a narrow range of Re due to the large computational requirements

at low Re, and thus to determine an accurate scaling we must obtain data points as close to

the suspected critical Reynolds number as possible. Since the data from table 5.1 clearly

demonstrates the quick growth of ⌧ as Re decreases, it is not computationally feasible to

obtain these numerically.

To this end, as part of the Warwick-Göttingen collaboration we combine the numerical data

obtained from DNS1 and DNS2 with the experimental data of Kerstin Avila, Alberto de

Lozar and Björn Hof in a very long pipe of length L D 3;750D. The setup of the experiment

is detailed thoroughly in de Lozar & Hof (2009) and Avila et al. (2011), and allows for up to

60,000 samples to be obtained at a single Re if required. Splitting events are detected using

the pressure signal at the pipe wall, and thus the numerical results presented here therefore

provide an immediate validation for the experimental results and vice versa.

In figure 5.10 (which is adapted from Avila et al., 2011), we visualise the characteristic puff

lifetime ⌧ as a function of Re for both decaying (left) and spreading (right) turbulence, using

all of the available experimental (coloured points) and numerical data (solid black triangles).

Decay lifetimes are presented using the experimental and numerical data from Hof et al.

(2008), Kuik et al. (2010) and Avila et al. (2010).

For both decay and splitting processes, super-exponential curves of the form

⌧.Re/ D expŒexp.aReC b/ç

provide a very good fit to the data, where for decay we obtain .a; b/ D .0:005556; 8:499/
and for splitting .a; b/ D .�0:003115; 9:161/ using standard regression techniques. The
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numerical data, whilst limited in scope to a small range of Re, provides excellent agreement

with the experimental data, with the super-exponential fit lying within the 95% confidence

intervals at each of the measured data points.

One important consequence of the data presented here is that there is no particular Re beyond

which spatial proliferation abruptly sets in, as suggested in the results of the previous chapter

and other studies (e.g. Wygnanski & Champagne, 1973, Nishi et al., 2008). Indeed, like

decay, it appears that the tendency to split is intrinsic to all puffs, regardless of the Reynolds

number. Therefore ‘equilibrium’ puffs, described by Wygnanski et al. (1975) as those which

do not grow in length and advect at a constant speed, do not exist: after a time governed by a

random variable, any localised puff will either decay or split.

This point is especially emphasised in the experimental samples, for which much larger data

sets can be obtained and thus far lower Re examined. Here, the measured samples extend as

low as Re D 2;032. At this Reynolds number, splits are extremely infrequent, but still occur:

out of 57,823 initial conditions only 7 were observed, so that ⌧ ⇡ 2:7 ⇥ 107. Further details

of the experimental data can be found in the supplementary materials of Avila et al. (2011).

The intersection of the super-exponential fits at Re ⇡ 2;040 therefore marks a tipping point

between the two competing processes of splitting and decay. As Re increases, pipe flow

undergoes a statistical phase transition so that the probability of splitting outweigh that of

decay.

A typical trait of many systems which undergo stochastic phase transitions is that the tipping

point between competing processes often under- or over-estimates the true critical point

of the system. A classical example of this is in the standard contact process, in which

the infection rate must outweight the rate of recovery by a factor of just over three (see

Hinrichsen, 2000, Harris, 1974) before the absorbing state yields to intermittent or active

states which are fully active throughout the domain.

However, for pipe flow, the super-exponential scalings of ⌧ mean that the intersection point

must be almost indistinguishable from the critical point. At Re D 2;050, 10 above the

intersection point, the splitting rate already outweighs the decay rate by a factor of four.

Indeed, reduced models of pipe flow which exhibit the same stochastic properties seen

here indicate that the actual critical point is within around 0.3% of the value stated here

(Barkley, 2011). Therefore we may surmise that the actual critical point lies within the
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Figure 5.10: Characteristic lifetime ⌧ as a function of Reynolds number for an isolated puff.
Coloured points represent experimental data (courtesy of Kerstin Avila, Alberto de Lozar
and Björn Hof), and solid black triangles those obtained from Semtex (DNS1) and a hybrid
spectral finite-difference code (DNS2). The dashed line denotes the super-exponentially
increasing fit for mean decay times, and the solid line the decreasing fit for mean splitting
times. The crossover point at Rec D 2;040˙ 10, determines the transition between transient
and sustained turbulence in pipe flow.

interval Rec D 2;040˙ 10, and this marks the onset of sustained turbulence in pipe flow.

One further point requiring clarification is the definition of ‘sustained turbulence’. In

the original experiments of Reynolds (1883a),b Rec is defined to be the number above

which turbulence persists indefinitely, and the results presented here clearly indicate an

exponentially small probability of decay above Rec . However in this context, a more natural

definition of ‘sustained turbulence’ is instead to consider the thermodynamic limit (i.e. an

average over space, time and ensemble of initial conditions, where space and time tend to

infinity) of the turbulence fraction or intermittency factor � . Below Rec , � D 0 as decay is

the more likely scenario; above Rec we obtain sustained turbulence where � > 0.
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5.5 Conclusion and Discussion

In this chapter, we have further examined the interesting and complex spatio-temporal

dynamics of pipe flow found around transition. In contrast with the classical view of Landau

& Lifshitz (1959) and Ruelle & Takens (1971) which postulate that temporal aspects of

the flow determine the onset of turbulence, we have shown that pipe flow exhibits many

properties native to simple stochastic systems, such as models of directed percolation. A

common trait of these systems is that the critical point is determined by the balance of rates

of spreading and decay of active sites, and therefore complex spatio-temporal coupling plays

a fundamental role in understanding how the dynamics alter throughout the domain. By

drawing upon the experimental and numerical evidence obtained through lifetime studies

of puffs, and taking inspiration from these stochastic models, we have ascertained that the

spatial aspects puff splitting process prove to be the decisive factor in identifying the critical

Reynolds number, which is recorded as Rec D 2;040˙ 10.

One aspect of the comparison to directed percolation which has not been addressed here is the

measurement of scaling laws which characterise DP. Models belong to the DP universality

class if they possess the same critical exponent ˇ and both spatial and temporal length scales

⇠? and ⇠k, which depend on the spatial dimension d . These scalings have not been measured

for pipe flow due to the large time and length scales which must be resolved, both of which

require significant computational effort when combined with the number of simulations

that must be performed to ensure accurate averaging. A possible line of future research is

therefore to calculate these scalings and place pipe flow firmly in the DP universality class.

Whilst the question of transition in a pipe is of obvious interest to the academic community,

the complexity of the dynamics found within the transition is mirrored in many other

shear flows — particularly Couette flow and various types of channel and duct flows. The

intermittently alternating laminar and turbulent regions encountered in pipe flow just above

criticality are intrinsic to the problem, and such bands are known to exist in these flows, as

demonstrated in Tuckerman & Barkley (2011) for Couette flow. Since the technique adopted

here, in which decay and spreading processes are considered separately, does not rely on

knowledge of how the relevant mechanisms work, this approach should provide a method

which can be adopted to determine the critical Reynolds number in other geometries.
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Additionally, there are many other interesting, important and unanswered questions that can

be posed regarding puffs and slugs in pipe flow and the role they play in transition. From

the perspective of dynamical systems, it is not immediately clear why solutions involving

localised pockets of turbulence should exist at all. The incredibly challenging nature of this

question inevitably leads to a very broad scope of possible solutions. Possible avenues of

interest may involve further examination of the travelling wave solutions and edge states

(Faisst & Eckhardt, 2003, Wedin & Kerswell, 2004, Pringle & Kerswell, 2007), examining

pipe flow in a setting which reduces the number of degrees of freedom of the system (Willis

& Kerswell, 2009), or deriving models which mimic many of the essential properties of pipe

flow (Barkley, 2011).

In physical terms, the mechanism which governs puff decay and splitting is of great practical

and theoretical significance. In particular, examining splitting will inevitably prove useful in

terms of understanding the nature of fluid turbulence, and being able to delay or encourage

the onset of turbulent flow. From a computational perspective however, the results of this

chapter and other studies (Avila et al., 2010, Hof et al., 2010) demonstrate that large-scale

fluid problems are now well within reach of numerical methods. As such, fields and quantities

which are difficult to obtain experimentally (e.g. vorticity) can be captured throughout the

entirety of the domain and thus influence the direction of further studies.
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Chapter 6

Summary

Starting with the work of Pomeau (1986), many studies over the last thirty years have

emphasised how the transition to turbulence, and understanding the turbulent attractor

generally, hinges on considering not only the temporal aspects of the flow, but simultaneously

on both the spatial and the temporal aspects. The work in this thesis further emphasises

this point, and shows that the spatio-temporal dynamics in pipe flow are fundamental to

determining the onset of turbulence and understanding the transition process.

The study of the reverse transition in chapter 4 demonstrates the natural form of transitional

dynamics in a pipe, and examines the two critical points key to the transition process.

Above Rei ⇡ 2;600, flow remains uniformly turbulent. As the Reynolds number is reduced

below this value, the flow undergoes a transition to intermittency, which initially appears

as small pockets of laminar flow residing in a turbulent background. As Re is reduced

further, intermittency in pipe flow takes the form of unsteady laminar-turbulent bands which

constantly decay and split. Finally, as the Reynolds number is reduced below Rec , the decay

process dictates the dynamics of the flow, causing the bands to dissipate and the flow to

relaminarise. The appearance of these laminar regions in otherwise uniformly turbulent fluid

means that many laws of fluid dynamics, such as the 5/3 power law for the Kolmogorov

spectrum or the law of the wall do not hold in this setting, and therefore non-standard

techniques are required to investigate the transition process.

To this end, chapter 5 reveals that the key to determining Rec , and thus the onset of sustained

turbulence, is to examine the process by which localised pockets of turbulence split. The
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fundamental observation is that splitting, like decay, is a memoryless stochastic process so

that the lifetimes of isolated puffs are governed by some characteristic time ⌧ which scales

with Re. Indeed, we further validate the observations of Pomeau (1986) by demonstrating

that pipe flow exhibits the same properties found in simple stochastically-driven systems

such as directed percolation. The critical Reynolds number does not therefore control the

onset of turbulence in a fluid in the same way as, for example, a parameter for a system of

ODEs which dictates that a particular solution remain stable above and unstable below some

critical value. Instead, it denotes a phase transition so that for Re < Rec turbulence is more

likely to decay and for Re > Rec turbulence is more likely to spread. Thus by comparing the

relevant timescales for decay and splitting, we obtain an estimate for the onset of turbulence

in pipe flow of Rec D 2;040˙ 10. Since the analysis we present here is independent of the

mechanisms which govern the splitting process, the approach taken in this chapter should be

equally applicable to determining Rec in other flow geometries.

The conclusions of these chapters highlight the important role that numerical methods are

now taking in understanding hydrodynamic stability problems. Fully-resolved simulations

of pipe flow in particular have only proven in reach of computational power within the last

twenty years (and of puffs and slugs within the last ten), but have already demonstrated

their worth. Indeed, even a highly complex algorithm such as the spectral element method

of chapter 2 has proven to be a reliable and highly accurate numerical method capable of

resolving both large timescales and spatial domains. When coupled with an appropriate

joint discretisation and the optimisations which exploit the underlying architecture of the

computing facilities, such as the parallel transpose algorithm of chapter 3, it becomes an

efficient method to study a wide variety of fluid problems in a variety of complex domains.

Potentially, the most important topic to investigate from this work is understanding the

mechanism governing the splitting process, and determining why the process is stochastic.

The study of both of these topics may lead to control mechanisms for the onset of turbulence

and thus have direct application in many engineering problems. Another important aspect of

the transition process, which has only been briefly touched upon here in chapter 4, are the

more complicated states found in the middle of the transitional regime when Re & 2;450.

Here the dynamics are characterised by turbulent regions which merge and annihilate in quick

succession. Determining how these states evolve will prove key in further understanding the

nature of turbulence and the transition process, and sets a target for future studies.
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